首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prolonged or high-intensity exposure to visible light leads to photoreceptor cell death. In this study, we demonstrate a novel pathway of light-induced photoreceptor apoptosis involving the low-affinity neurotrophin receptor p75 (p75NTR). Retinal degeneration upregulated both p75NTR and the high-affinity neurotrophin receptor TrkC in different parts of Müller glial cells. Exogenous neurotrophin-3 (NT-3) increased, but nerve growth factor (NGF) decreased basic fibroblast growth factor (bFGF) production in Müller cells, which can directly rescue photoreceptor apoptosis. Blockade of p75NTR prevented bFGF reduction and resulted in both structural and functional photoreceptor survival in vivo. Furthermore, the absence of p75NTR significantly prevented light-induced photoreceptor apoptosis. These observations implicate glial cells in the determination of neural cell survival, and suggest functional glial-neuronal cell interactions as new therapeutic targets for neurodegeneration.  相似文献   

2.
Both proNGF and the neurotrophin receptor p75 (p75(NTR)) are known to regulate photoreceptor cell death caused by exposure of albino mice to intense illumination. ProNGF-induced apoptosis requires the participation of sortilin as a necessary p75(NTR) co-receptor, suggesting that sortilin may participate in the photoreceptor degeneration triggered by intense lighting. We report here that light-exposed albino mice showed sortilin, p75(NTR), and proNGF expression in the outer nuclear layer, the retinal layer where photoreceptor cell bodies are located. In addition, cone progenitor-derived 661W cells subjected to intense illumination expressed sortilin and p75(NTR) and released proNGF into the culture medium. Pharmacological blockade of sortilin with either neurotensin or the "pro" domain of proNGF (pro-peptide) favored the survival of 661W cells subjected to intense light. In vivo, the pro-peptide attenuated retinal cell death in light-exposed albino mice. We propose that an auto/paracrine proapoptotic mechanism based on the interaction of proNGF with the receptor complex p75(NTR)/sortilin participates in intense light-dependent photoreceptor cell death. We therefore propose sortilin as a putative target for intervention in hereditary retinal dystrophies.  相似文献   

3.
In normal adult retinas, NGF receptor TrkA is expressed in retinal ganglion cells (RGC), whereas glia express p75(NTR). During retinal injury, endogenous NGF, TrkA, and p75(NTR) are up-regulated. Paradoxically, neither endogenous NGF nor exogenous administration of wild type NGF can protect degenerating RGCs, even when administered at high frequency. Here we elucidate the relative contribution of NGF and each of its receptors to RGC degeneration in vivo. During retinal degeneration due to glaucoma or optic nerve transection, treatment with a mutant NGF that only activates TrkA, or with a biological response modifier that prevents endogenous NGF and pro-NGF from binding to p75(NTR) affords significant neuroprotection. Treatment of normal eyes with an NGF mutant-selective p75(NTR) agonist causes progressive RGC death, and in injured eyes it accelerates RGC death. The mechanism of p75(NTR) action during retinal degeneration due to glaucoma is paracrine, by increasing production of neurotoxic proteins TNF-α and α(2)-macroglobulin. Antagonists of p75(NTR) inhibit TNF-α and α(2)-macroglobulin up-regulation during disease, and afford neuroprotection. These data reveal a balance of neuroprotective and neurotoxic mechanisms in normal and diseased retinas, and validate each neurotrophin receptor as a pharmacological target for neuroprotection.  相似文献   

4.
A photoreceptor cell line, designated 661W, was tested for its response to growth factors secreted by retinal pigment epithelial cells including basic fibroblast growth factor, epidermal growth factor, and nerve growth factor. Early passaged 661W cells expressed high levels of retinal progenitor markers such as nestin and Pax6, but not opsin or glial fibrillary acidic protein. 661W cells grown in FGF-2 or EGF exhibited a multiple-process morphology with small phase-bright nuclei similar to neurons, whereas cells cultured in nerve growth factor (NGF) or retinal pigment epithelium (RPE)-conditioned medium (RPE-CM) displayed rounded profiles lacking processes. 661W cells grown in FGF-2 were slightly elevated, but not significantly above, control cultures; but cells treated with RPE-CM or NGF were fewer, ∼63% and 49% of control, respectively. NGF immunodepletion of RPE-CM strongly suppressed the inhibitory activity of RPE-CM on cell proliferation. Cells treated with FGF-2, but not NGF, upregulated their expression of opsin. All treatment conditions resulted in almost 100% viability based on calcium AM staining. Cells grown on extracellular matrix proteins laminin, fibronectin, and/or collagen resembled those grown on untreated dishes. This study showed that early passaged 661W cells displayed characteristics of retinal progenitor cells. The 661W cells proliferated and appeared to mature morphologically expressing rod photoreceptor phenotype in response to FGF-2. In contrast, NGF and RPE-CM inhibited proliferation and morphological differentiation of 661W cells, possibly inducing cell cycle arrest. These findings are consistent with reports that the RPE modulates photoreceptor differentiation and retinal progenitor cells via secreted factors and may play a role in the regulation of the retinal stem cell niche.  相似文献   

5.
The neurotrophin family with its first member, nerve growth factor (NGF), binds two classes of receptors, more specifically to Trk receptors and to a shared p75NTR receptor. It has been shown that proNGF rather than NGF is predominant in the mature central nervous system. A recent finding indicated that a furin-resistant proNGF preferentially binds to p75NTR, initiating a pro-apoptotic cascade even in the presence of TrkA. In this context, rodent oligodendrocytes were reported to undergo cell death when exposed to proNGF. We have investigated the effect of a non-mutated 32 kDa human recombinant proNGF (rhproNGF) on cultured pig oligodendrocytes which express TrkA, p75NTR and sortilin. Pig oligodendrocytes respond to rhproNGF (50 ng/mL) with an enhanced regeneration of their processes as already observed for NGF. Activity of mitogen-activated protein kinase (MAPK), which plays an important role in oligodendroglial process formation, was increased even when rhproNGF processing was inhibited by the furin inhibitor Decanoyl-RVKR-CMK. Similarly, a cleavage-resistant proNGF (R-1G) activated MAPK and promoted oligodendroglial process regeneration. High concentrations of rhproNGF (300 ng/mL) did not induce cell death. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis and Western blotting revealed that oligodendrocytes process rhproNGF to NGF. NGF was detected in Western blots of oligodendroglial lysates already 10 min after rhproNGF exposure, followed by a release of NGF into the culture medium. Indirect evidence indicates that rhproNGF processing occurs via an endocytotic route.  相似文献   

6.
The common neurotrophin receptor p75(NTR) has been shown to initiate intracellular signaling that leads either to cell survival or to apoptosis depending on the cell type examined; however, the mechanism by which p75(NTR) initiates its intracellular transduction remains unclear. We show here that the tumor necrosis factor receptor-associated death domain protein (TRADD) interacts with p75(NTR) upon nerve growth factor (NGF) stimulation. TRADD could be immunodetected after p75(NTR) immunoprecipitation from MCF-7 breast cancer cells stimulated by nerve growth factor. In addition, confocal microscopy indicated that NGF stimulation induced the plasma membrane localization of TRADD. Using a dominant negative form of TRADD, we also show that interactions between p75(NTR) and TRADD are dependent on the death domain of TRADD, thus demonstrating its requirement for binding. Furthermore, the p75(NTR)-mediated activation of NF-kappaB was inhibited by transfection with a dominant negative TRADD, resulting in an inhibition of NGF antiapoptotic activity. These results thus demonstrate that TRADD is involved in the p75(NTR)-mediated antiapoptotic activity of NGF in breast cancer cells.  相似文献   

7.
During development, neurons pass through a critical phase in which survival is dependent on neurotrophin support. In order to dissect the potential role of p75NTR, the common neurotrophin receptor, in neurotrophin dependence, we expressed wild-type and mutant p75NTR in cells that do not express endogenous p75NTR or Trk family members (NIH3T3). Expression of wild-type p75NTR created a state of neurotrophin dependence: cells could be rescued by nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3), but not by a mutant NGF that binds well to Trk A but poorly to p75NTR. Similarly, expression of p75NTR in human prostate cancer cells in culture rendered a metastatic tumor cell line (PC-3) sensitive to the availability of neurotrophins for survival. Moreover, expression of mutant p75NTR's in another neurotrophin-insensitive cell line (HEK293T) showed that a domain within the intracellular domain governs alternate responses to neurotrophins: the carboxy terminus of the intracellular domain of p75NTR including the sixth alpha helix domain is necessary for rescue by BDNF, but not NGF. These results, when considered with previous studies of the timing of p75NTR expression, support the hypothesis that p75NTR is a mediator of neurotrophin dependence during the critical phase of developmental cell death and during the progression of carcinogenesis in prostate cancer.  相似文献   

8.
Neurotrophins induce neural cell survival and differentiation during retinal development and regeneration through the high-affinity tyrosine kinase (Trk) receptors. On the other hand, nerve growth factor (NGF) binding to the low-affinity neurotrophin receptor p75 (p75(NTR)) might induce programmed cell death (PCD) in the early phase of retinal development. In the present study, we examined the retinal cell types that experience p75(NTR)-induced PCD and identify them to be postmitotic retinal ganglion cells (RGCs). However, retinal morphology, RGC number, and BrdU-positive cell number in p75(NTR) knockout (KO) mouse were normal after embryonic day 15 (E15). In chick retina, migratory RGCs express p75(NTR), whereas layered RGCs express the high-affinity NGF receptor TrkA, which may switch the pro-apoptotic signaling of p75(NTR) into a neurotrophic one. In contrast to the chick model, migratory RGCs express TrkA, while stratified RGCs express p75(NTR) in mouse retina. However, RGC number in TrkA KO mouse was also normal at birth. We next examined the expression of transforming growth factor beta (TGFbeta) receptor, which modulates chick RGC number in combination with p75(NTR), but was absent in mouse RGCs. p75(NTR) and TrkA seem to be involved in the regulation of mouse RGC number in the early phase of retinal development, but the number may be later adjusted by other molecules. These results suggest the different mechanism of RGC number control between mouse and chick retina.  相似文献   

9.
Neurotrophins are a family of proteins with pleiotropic effects mediated by two distinct receptor types, namely the Trk family, and the common neurotrophin receptor p75NTR. Binding of four mammalian neurotrophins, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5), to p75NTR is studied by molecular modeling based on X-ray structures of the neurotrophins and the extracellular domain of p55TNFR, a homologue of p75NTR. The model of neurotrophin/receptor interactions suggests that the receptor binding domains of neurotrophins (loops I and IV) are geometrically and electrostatically complementary to a putative binding site of p75NTR, formed by the second and part of the third cysteine-rich domains. Geometric match of neurotrophin/receptor binding domains in the complexes, as characterized by shape complementarity statistic Sc, is comparable to known protein/protein complexes. All charged residues within the loops I and IV of the neurotrophins, previously determined as being critical for p75NTR binding, directly participate in receptor binding in the framework of the model. Principal residues of the binding site of p75NTR include Asp47, Lys56, Asp75, Asp76, Asp88, and Glu89. The additional involvement of Arg80 and Glu53 is specific for NGF and BDNF, respectively, and Glu73 participates in binding with NT-3 and NT-4/5. Neurotrophins are likely to induce similar, but not identical, conformational changes within the p75NTR binding site.  相似文献   

10.
11.
Neurotrophins control neuron number during development by promoting the generation and survival of neurons and by regulating programmed neuronal death. In the latter case, the cell death induced by nerve growth factor (NGF) in the developing chick retina is mediated by p75(NTR), the common neurotrophin receptor (J. M. Frade, A. Rodriguez-Tebar, and Y.-A. Barde, 1996, Nature 383, 166-168). Here we show that NGF also induces the programmed death of paraxial mesoderm cells in the developing somites. Both NGF and p75(NTR) are expressed in the somites of chick embryos at the time and the place of programmed cell death. Moreover, neutralizing the activity of endogenous NGF with a specific blocking antibody, or antagonizing NGF binding to p75(NTR) by the application of human NT-4/5, reduces the levels of apoptotic cell death in both the sclerotome and the dermamyotome by about 50 and 70%, respectively. Previous data have shown that Sonic hedgehog is necessary for the survival of differentiated somite cells. Consistent with this, Sonic hedgehog induces a decrease of NGF mRNA in somite explant cultures, thus showing the antagonistic effect of NGF and Sonic hedgehog with respect to somite cell survival. The regulation of programmed cell death by NGF/p75(NTR) in a mesoderm-derived tissue demonstrates the capacity of neurotrophins and their receptors to influence critical developmental processes both within and outside of the nervous system.  相似文献   

12.
Neuregulins play a major role in the formation and stabilization of neuromuscular junctions, and are produced by both motor neurons and muscle. Although the effects and mechanism of neuregulins on skeletal muscle (e.g. regulation of acetylcholine receptor expression) have been studied extensively, the effects of neuregulins on motor neurons remain unknown. We report that neuregulin-1beta (NRGbeta1) inhibited apoptosis of rat motor neurons for up to 7 days in culture by a phosphatidylinositol 3 kinase-dependent pathway and synergistically enhanced motor neuron survival promoted by glial-derived neurotrophic factor (GDNF). However, binding of neurotrophins, including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), to the p75 neurotrophin receptor (p75NTR) abolished the neuregulin anti-apoptotic effect on motor neurons. Inhibitors of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase prevented motor neuron death caused by co-incubation of NRGbeta1 and BDNF or NGF, as well as by trophic factor deprivation. Motor neuron apoptosis resulting from both trophic factor deprivation and exposure to NRGbeta1 plus neurotrophins required the induction of neuronal nitric oxide synthase and peroxynitrite formation. Because motor neurons express both p75NTR and neuregulin erbB receptors during the period of embryonic programmed cell death, motor neuron survival may be the result of complex interactions between trophic and death factors, which may be the same molecules acting in different combinations.  相似文献   

13.
Specific binding of nerve growth factor (NGF) to p75 neurotrophin receptor (p75(NTR)) leads to p75(NTR) polyubiquitination and its subsequent interaction with TRAF6 resulting in neuronal cell survival. However, when the binding of NGF to p75(NTR) was blocked with p75 antiserum, p75(NTR) polyubiquitination and neuronal cell survival were impaired. Results showed that tyrosine phosphorylation of p75(NTR) increased the polyubiquitination of p75(NTR) and contributed to the observed apparent neuroprotective effects. Similar to p75(NTR) polyubiquitination, interaction of TRAF6 with p75(NTR) was NGF/tyrosine phosphorylation dependent suggesting that TRAF6 might function as an E3 ubiquitin ligase. In sum, the results show that specific binding of NGF to p75(NTR) mediates neuronal cell survival.  相似文献   

14.
15.
16.
β-amyloid precursor protein (APP) is a key factor in Alzheimer''s disease (AD) but its physiological function is largely undetermined. APP has been found to regulate retrograde transport of nerve growth factor (NGF), which plays a crucial role in mediating neuronal survival and differentiation. Herein, we reveal the mechanism underlying APP-mediated NGF trafficking, by demonstrating a direct interaction between APP and the two NGF receptors, TrkA and p75NTR. Downregulation of APP leads to reduced cell surface levels of TrkA/p75NTR and increased endocytosis of TrkA/p75NTR and NGF. In addition, APP-deficient cells manifest defects in neurite outgrowth and are more susceptible to Aβ-induced neuronal death at physiological levels of NGF. However, APP-deficient cells show better responses to NGF-stimulated differentiation and survival than control cells. This may be attributed to increased receptor endocytosis and enhanced activation of Akt and MAPK upon NGF stimulation in APP-deficient cells. Together, our results suggest that APP mediates endocytosis of NGF receptors through direct interaction, thereby regulating endocytosis of NGF and NGF-induced downstream signaling pathways for neuronal survival and differentiation.  相似文献   

17.
This review summarizes the present knowledge concerning the retinal localization of the nerve growth factor (NGF), its precursor proNGF, and the receptors TrkA and p75NTR in the developing and mature rodent retina. We further discuss the changes in the expression of NGF and the receptors in experimental models of retinal disorders and diseases like inherited retinitis pigmentosa, retinal detachment, glaucoma, and diabetic retinopathy. Since proNGF is now recognized as a bioactive signaling molecule which induces cell death through p75NTR activation, the role of proNGF in the induction of retinal cell loss under neurodegenerative conditions is also highlighted. In addition, we present the evidences for a potential therapeutic intervention with NGF for the treatment of retinal neurodegenerative diseases. Different strategies have been developed and experimentally tested in mice and rats in order to reduce cell loss and Müller cell gliosis, e.g., increasing the availability of endogenous NGF, administration of exogenous NGF, activation of TrkA, and inhibition of p75NTR. Here, we discuss the several lines of evidence supporting a protective effect of NGF on retinal cell loss, with specific emphasis on photoreceptor and retinal ganglion cell degeneration. A better understanding of the mechanisms underlying the effects of NGF and proNGF in the modulation of neurodegeneration and gliosis in the retina will help to develop efficient therapeutic strategies for various retinal diseases.  相似文献   

18.
The p75 neurotrophin receptor (p75(NTR)) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75(NTR) retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (DeltaDD) dominant-negative antagonist of p75(NTR) showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75(NTR)-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75(NTR) expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75(NTR) rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75(NTR) was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75(NTR)-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75(NTR) expressing prostate cancer cells.  相似文献   

19.
The mechanism of crosstalk between signaling pathways coupled to the Trk A and p75(NTR) neurotrophin receptors in PC12 cells was examined. In response to nerve growth factor (NGF), Trk A activation inhibited p75(NTR)-dependent sphingomyelin (SM) hydrolysis. The phosphoinositide 3-kinase (PI 3-kinase) inhibitor, LY294002, reversed this inhibition suggesting that Trk A activation of PI 3-kinase is necessary to inhibit sphingolipid signaling by p75(NTR). In contrast, SM hydrolysis induced by neurotrophin-3 (NT-3), which did not activate PI-3 kinase, was uneffected by LY294002. However, transient expression of a constituitively active PI 3-kinase inhibited p75(NTR)-dependent SM hydrolysis by both NGF and NT-3. Intriguingly, NGF induced an association of activated PI 3-kinase with acid sphingomyelinase (SMase). This interaction localized to caveolae-related domains and correlated with a 50% decrease in immunoprecipitated acid SMase activity. NGF-stimulated PI 3-kinase activity was necessary for inhibition of acid SMase but was not required for ligand-induced association of the p85 subunit of PI 3-kinase with the phospholipase. Finally, this interaction was specific for NGF since EGF did not induce an association of PI 3-kinase with acid SMase. In summary, our data suggest that PI 3-kinase regulates the inhibitory crosstalk between Trk A tyrosine kinase and p75(NTR)-dependent sphingolipid signaling pathways and that this interaction localizes to caveolae-related domains.  相似文献   

20.
Mutations that perturb the function of photoreceptor CNG (cyclic nucleotide-gated) channels are associated with several human retinal disorders, but the molecular and cellular mechanisms leading to photoreceptor dysfunction and degeneration remain unclear. Many loss-of-function mutations result in intracellular accumulation of CNG channel subunits. Accumulation of proteins in the ER (endoplasmic reticulum) is known to cause ER stress and trigger the UPR (unfolded protein response), an evolutionarily conserved cellular programme that results in either adaptation via increased protein processing capacity or apoptotic cell death. We hypothesize that defective trafficking of cone photoreceptor CNG channels can induce UPR-mediated cell death. To test this idea, CNGA3 subunits bearing the R563H and Q655X mutations were expressed in photoreceptor-derived 661W cells with CNGB3 subunits. Compared with wild-type, R563H and Q655X subunits displayed altered degradation rates and/or were retained in the ER. ER retention was associated with increased expression of UPR-related markers of ER stress and with decreased cell viability. Chemical and pharmacological chaperones {TUDCA (tauroursodeoxycholate sodium salt), 4-PBA (sodium 4-phenylbutyrate) and the cGMP analogue CPT-cGMP [8-(4-chlorophenylthio)-cGMP]} differentially reduced degradation and/or promoted plasma-membrane localization of defective subunits. Improved subunit maturation was concordant with reduced expression of ER-stress markers and improved viability of cells expressing localization-defective channels. These results indicate that ER stress can arise from expression of localization-defective CNG channels, and may represent a contributing factor for photoreceptor degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号