首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary To visualize the localization and potential colocalization of noradrenaline and the putative pancreatic sympathetic neurotransmitters, galanin and neuropeptide Y (NPY), immunofluorescent staining for galanin, NPY and tyrosine hydroxylase (TH) was performed on sections of canine pancreas and celiac ganglion. In the pancreas, galanin-immuno-fluorescent nerve fibers were confirmed as densely and preferentially innervating the islets, whereas numerous NPY-positive nerve fibers were found in the exocrine parenchyma, the surrounding of the blood vessels and within the islets. Double-staining for the peptides and TH indicated that most galaninpositive nerve fibers were adrenergic, most NPY-positive nerve fibers were adrenergic, and many islet nerves contained both galanin and NPY, although some galaninpositive nerve fibers appeared to lack NPY. In the celiac ganglion, virtually all cell bodies were positive for both galanin and TH; a large subpopulation of these cells were also positive for NPY. Radioimmunoassay (RIA) of galanin in extracts of dog celiac ganglion revealed a very high content (256±33 pmol/g wet weight) of galanin-like immunoreactivity (GLIR), consistent with the dense staining observed. This GLIR behaved in a similar manner to synthetic porcine galanin in the RIA. In addition, the majority of the GLIR in ganglion extracts coeluted with the synthetic peptide upon gel filtration, although a minor peak of a larger apparent molecular weight was also observed, observations consistent with the presence of a precursor peptide. These findings suggest that galanin is a sympathetic post-ganglionic neurotransmitter in the canine endocrine pancreas and that NPY might serve a similar function.  相似文献   

2.
It has recently been demonstrated that aPY, a peptide which has significant homology with neuropeptide Y (NPY) is present in extracts of anglerfish islets. The purpose of this study was to determine whether cells or nerves which contain NPY-like immunoreactivity could be identified in anglerfish islet tissue and whether aPY is synthesized by this tissue. Antisera against bovine pancreatic polypeptide (BPP), NPY and the 200 kd neurofilament polypeptide were used for immunohistochemical analysis of islets. Identical cells were stained by both the NPY and BPP antisera. The NPY and 200 kd neurofilament antisera also labeled nerve fibers in the tissue which were not stained with the BPP antiserum. The nature of the NPY-like peptide synthesized in islet cells was determined by subjecting differentially radioactively labeled Mr 2,500-8,000 peptides from islet extracts to reverse phase HPLC. Labeled aPY was unequivocally identified in the extracts and was labeled appropriately (as predicted from its sequence) with 13 different radioactive amino acids. These results demonstrate that one form of NPY-like peptide synthesized in anglerfish islets is aPY. The form of NPY-like peptide which was immunolocalized in nerves remains to be determined.  相似文献   

3.
The distribution of the NPY-like substances in the nervous system and the midgut of the migratory locust, Locusta migratoria and in the brain of the grey fleshfly, Sarcophaga bullata was determined by immunocytochemistry using an antiserum directed against synthetic porcine NPY. The peroxidase-antiperoxidase procedure revealed that NPY immunoreactive cell bodies and nerve fibers were observed in the brain, optic lobes, corpora cardiaca, suboesophageal ganglion and ventral nerve cord of the locust and in the brain, optic lobes and suboesophageal ganglion of the fleshfly. In the locust midgut, numerous endocrine cells and nerve fibers penetrating the outer musculature contained NPY-like immunoreactivity. The concentrations of NPY immunoreactive material in acetic acid extracts of locust brain, optic lobes, thoracic ganglia, ovaries and midguts was measured using a specific radioimmunoassay technique. The dilution curves of the crude tissue extracts were parallel to the standard curve. The highest amount of NPY-like immunoreactivity was found in the locust ovary and midgut. Reverse-phase high-performance liquid chromatography (RP-HPLC) and radioimmunoassay were used to characterize the NPY-like substances in the locust brain and midgut. HPLC-analysis revealed that NPY-immunoreactivity in the locust brain eluted as three separate peaks. The major peak corresponded to a peptide less hydrophobic than synthetic porcine NPY. RP-HPLC analysis of midgut extracts revealed the presence of an additional NPY-immunoreactive peak which had a retention time similar to the porcine NPY standard. The present data show the existence of a widespread network of NPY immunoreactive neurons in the nervous system of the locust and the fleshfly. Characterization of the immunoreactive substances indicates that peptides similar but not identical to porcine NPY are present in the central nervous system and midgut of insects.  相似文献   

4.
Summary The distribution of neuropeptide Y (NPY) immunoreactivity has been studied by means of immunocytochemistry and radioimmunoassay in the brain of the goldfish. It was found that NPY had a widespread distribution in the entire brain in particular in the telencephalon, diencephalon, optic tectum and rhombencephalon. In the pituitary gland, positive type-B fibers were observed in the various lobes frequently in direct contact with secretory cells, in particular the gonadotrophs, somatotrophs and MSH (melanocyte-stimulating hormone) secreting cells. When measured by radioimmunoassay, the highest NPY concentrations were found in the pituitary and telencephalon, confirming the results of immunocytochemistry. The displacement curves obtained with serial dilutions of brain extracts were parallel to that of synthetic porcine NPY. Following high performance liquid chromatography, the NPY-like material extracted from goldfish brain co-eluted as a single peak with synthetic porcine NPY. These data demonstrate the presence of an NPY-like substance widely distributed in the goldfish brain. The observation of NPY-immunoreactive fibers in the pituitary gland suggests that, among its other functions, NPY may play a role in the neuroendocrine regulation of pituitary function.  相似文献   

5.
We have studied the effect of histamine (HA) and histidine (HIS) on the release of immunoreactive glucagon (IRG) and insulin (IRI) by isolated rat islets and pieces of pancreas. In isolated islets, HA and HIS stimulated IRG release at a glucose concentration of 3.0 mg/ml and IRI release at a glucose concentration of 0.5 mg/ml. In pieces of pancreas incubated in the presence of glucose (3.0 mg/ml), HA at a 2mM concentration stimulated IRG release and had no effect on the release of IRI; however, when the concentration of HA was doubled (4 mM), an inhibition of IRI release could also be demonstrated. HIS was ineffective. Perphenazine and dexchlorpheniramine, two anti-histaminic agents, inhibited IRG and stimulated IRI release. These results indicate that histamine, whether endogenous or exogenous, directly stimulated IRG and inhibits IRI release and suggest that some of the in vivo effects of histamine, such as hyperglycemia and lipid mobilization, may be mediated, at least in part, by these endocrinologic effects.  相似文献   

6.
We have evaluated the effect of serotonin (5-HT) and of its biosynthetic precursors 5-Hydroxytryptophan (5-HTP) and tryptophan (TRP) on the release of immunoreactive glucagon (IRG) and insulin (IRI) from isolated islets and pieces of pancrease of the rat. In isolated islets, 5-HT inhibited the IRI response to a high glucose concentration (3.0 mg/ml), without affecting the IRG response to either a low (0.5 mg/ml) or a high glucose concentration; TRP stimulated the IRG and IRI response to the low glucose concentration, while 5-HTP was ineffective. When pieces of pancreas were used, 5-HT and 5-HTP inhibited IRG response to both glucose concentrations, while IRI release was inhibited only by 5-HT. The anti-5-HT agent metergoline enhanced the release of IRG and IRI by pieces of pancreas at both glucose concentrations. The results indicate that exogenous and endogenous 5-HT inhibit basal as well as glucose-mediated IRG and IRI release; that isolated islets are less sensitive than pieces of pancreas to the inhibitory effect of 5-HT and that TRP acts as an amino acid and not as a precursor of 5-HT.  相似文献   

7.
The present study was designed to examine the effects of intravenously injected alloxan (75 mg/kg) upon plasma somatostatin-like immunoreactivity (SLI), glucagon (IRG), insulin (IRI) and glucose levels in 6 dogs. Within 2 hours of the injection of alloxan, SLI and IRI levels decreased significantly below their respective baselines, while IRG and plasma glucose concentrations increased. At 8 hours SLI levels had increased significantly by 55 pg/ml, together with a rise in IRI and a decrease in IRG and glucose concentrations. After 24 hours, marked hyperglycemia and hyperglucagonemia had developed whereas SLI levels were not different from preinjection values.  相似文献   

8.
The distribution of neuropeptide Y (NPY) in the central nervous system of the frog Rana ridibunda was determined by immunofluorescence using a highly specific antiserum. NPY-like containing perikarya were localized in the infundibulum, mainly in the ventral and dorsal nuclei of the infundibulum, in the preoptic nucleus, in the posterocentral nucleus of the thalamus, in the anteroventral nucleus of the mesencephalic tegmentum, in the part posterior to the torus semicircularis, and in the mesencephalic cerebellar nucleus. Numerous perikarya were also distributed in all cerebral cortex. Important tracts of immunoreactive fibers were found in the infundibulum, in the preoptic area, in the lateral amygdala, in the habenular region, and in the tectum. The cerebral cortex was also densely innervated by NPY-like immunoreactive fibers. A rich network of fibers was observed in the median eminence coursing towards the pituitary stalk. Scattered fibers were found in all other parts of the brain except in the cerebellum, the nucleus isthmi and the torus semicircularis, where no immunoreactivity could be detected. NPY-immunoreactive fibers were observed at all levels of the spinal cord, with particularly distinct plexus around the ependymal canal and in the distal region of the dorsal horn. At the electron microscope level, NPY containing perikarya and fibers were visualized in the ventral nuclei of the infundibulum, using the peroxidase-antiperoxidase and the immunogold techniques. NPY-like material was stored in dense core vesicles of 100 nm in diameter. A sensitive and specific radioimmunoassay was developed. The detection limit of the assay was 20 fmole/tube. The standard curves of synthetic NPY and the dilution curves for acetic acid extracts of cerebral cortex, infundibulum, preoptic region, and mesencephalon plus thalamus were strictly parallel. The NPY concentrations measured in these regions were (pmole/mg proteins) 163±8, 233±16, 151±12 and 60±13, respectively. NPY was not detectable in cerebellar extracts. After Sephadex G-50 gel filtration of acetic acid extracts from whole frog brain, NPY-like immunoreactivity eluted in a single peak. Reverse phase high performance liquid chromatography (HPLC) and radioimmunoassay were used to characterize NPY-like peptides in the frog brain. HPLC analysis revealed that infundibulum, preoptic area and telencephalon extracts contained a major peptide bearing NPY-like immunoreactivity. The retention times of frog NPY and synthetic porcine NPY were markedly different. HPLC analysis revealed also the existence, in brain extracts, of several other minor components cross-reacting with NPY antibodies. These results provide the first evidence for the presence of NPY in the brain of a non-mammalian chordate and indicate that the structure of NPY is preserved among the vertebrate phylum. The abundance of NPY producing neurons in the hypothalamus and telencephalon suggests that this peptide may play both neuroendocrine and neurotransmitter functions in amphibians.  相似文献   

9.
Summary The colocalization of the peptides neuropeptide Y (NPY) and Phe-Met-Arg-Phe-NH2 (FMRFamide) in the brain of the Atlantic salmon was investigated with double immunofluorescence labeling and peroxidase-antiperoxidase immunocytochemical techniques. Colocalization of NPY-like and FMRE amide-like immunoreactivities was observed in neuronal cell bodies and fibers in four brain regions: in the lateral and commissural nuclei of the area ventralis telencephali, in the nucleus ventromedialis thalami, in the laminar nucleus of the mesencephalic tegmentum, and in a group of small neurons situated among the large catecholaminergic neurons in the isthmal region of the brainstem. All cell bodies in these nuclei were immunoreactive to both NPY and FMRF. We consistently observed larger numbers of FMRF-immunoreactive than NPY-immunoreactive fibers. In the nucleus ventromedialis thalami NPY- and FMRFamide-like immunoreactivities were colocalized in cerebrospinal fluid (CSF)-contacting neurons. NPY-immunoreactive, but not FMRF-immunoreactive, neurons were found in the stratum periventriculare of the optic tectum, and at the ventral border of the nucleus habenularis (adjacent to the nucleus dorsolateralis thalami). Neurons belonging to the nucleus of the nervus terminalis were FMRF-immunoreactive but not NPY-immunoreactive. The differential labeling indicates, as do our cross-absorption experiments, that the NPY and FMRFamide antisera recognize different epitopes. Thus, it is probable that NPY-like and FMRFamide-like substances occur in the same neurons in some brain regions.  相似文献   

10.
Anglerfish peptide YG (aPY) was isolated from pancreatic islets of the anglerfish. Subsequent immunohistochemical and biochemical analyses demonstrated that anglerfish islet cells synthesize aPY. We have now developed and characterized a radioimmunoassay (RIA) for aPY and have examined extracts of anglerfish brain for aPY-like peptides. Brain extracts were subjected to gel filtration and high performance liquid chromatography (HPLC). Fractions from HPLC eluates were analyzed in the aPY RIA and also in a neuropeptide Y (NPY) RIA. A single peak of aPY-like immunoreactivity eluted from HPLC columns. The elution position of this aPY-like peptide coincided exactly with the aPY-Gly marker under several gradient conditions. Results from the NPY RIA confirmed the presence of several molecular forms of NPY-like immunoreactive peptides in the anglerfish brain. These results demonstrate the utility of the newly developed aPY RIA for studies of anglerfish brain peptides and extend our previous immunohistochemical demonstration of aPY-like staining in the anglerfish brain.  相似文献   

11.
Based on the fact that human pancreas has thyrotropin-releasing hormone (TRH) immunoreactivity and bioactivity, we studied the effect of TRH on peripheral plasma levels of pancreatic glucagon (IRG) and insulin (IRI) in healthy subjects. During the infusion of 400 micrograms TRH for 120 min basal plasma IRI and IRG levels did not change significantly. In addition, intravenous infusion of 400 micrograms TRH did not affect the increments in the plasma IRG levels and the decrements in the blood glucose during insulin hypoglycemia.  相似文献   

12.
The distribution of corticotropin-releasing factor (CRF)-like immunoreactivity and its colocalization with neuropeptide Y (NPY)-like substances were investigated in the optic lobe and peduncle complex of the octopus (Octopus vulgaris) using immunohistochemical techniques. In the optic lobe cortex, CRF-immunoreactive (CRF-IR) and NPY-immunonegative varicose fibers were observed in the plexiform layer. In the medulla, CRF-IR somata were seen in the cell islands, and CRF-IR varicose fibers were observed in the neuropil. About half of the CRF-IR structures in the medulla showed NPY-like immunoreactivity. In the peduncle lobe, no CRF-IR somata but abundant CRF-IR varicose fibers were observed, and about half of them showed NPY-like immunoreactivity. In the olfactory lobe, CRF-IR somata and abundant CRF-IR varicose fibers were observed. Almost all the CRF-IR somata located in the posterior olfactory lobule showed NPY-like immunoreactivity, whereas those seen in the median olfactory lobule were immunonegative for NPY. About half of the CRF-IR fibers in the anterior lobule neuropil were immunopositive for NPY, but those in the median and posterior lobule neuropils were immunonegative for NPY. In the optic gland, almost all the CRF-IR varicose fibers were immunoreactive for NPY. Western blot analysis of the optic lobe and peduncle complex indicated that anti-CRF antiserum labeled approximate 16.4- and 14.6-kDa bands and that anti-NPY antiserum labeled an approximate 16.2-kDa band. CRF-IR and NPY-immunoreactive neurons in the optic lobe may participate in the modulation of visual information and those in the optic gland may be involved in the regulation of endocrine function.  相似文献   

13.
Summary In colchicine-pretreated cells of sympathetic ganglia, intensely NPY-immunoreactive material was localized within vacuoles and vesicles of the disorganized, widely dispersed Golgi apparatus. Intensely positive large granular vesicles, which are known to be one of major storage sites of various peptides in the autonomic nerve endings, were essentially unobserved in the perikaryal cytoplasm. The present finding provides evidence that one pool of NPY-like immunoreactivity is localized in the Golgi apparatus of colchicine-pretreated as well as normal sympathetic ganglion cells. It is also clear that visualization of NPY-immunoreactive somata by colchicine-pretreatment in the sympathetic ganglia is due to the accumulation of the neuropeptide in the disorganized Golgi stacks instead of increased amount of the large granular vesicles containing NPY.  相似文献   

14.
Summary An immunohistochemical investigation of the mink pineal gland was performed by use of antibodies raised in rabbits against neuropeptide Y (NPY) and Cys-NPY (32–36)-amide recognizing neuropeptide Y with an amidation at position 36 (NPYamide). NPY-immunoreactive nerve fibers were located predominantly in the rostral part of the pineal gland and in the pineal stalk. Immunoreactive nerve fibers were found throughout the pineal gland, but the number of fibers in the caudal part of the gland was low. The fibers were present both in the perivascular spaces and between the pinealocytes. Many NPY-immunoreactive fibers were also located in the posterior and habenular commissures; some of these fibers were connected with the fibers in the rostral part of the mink pineal gland, indicating that at least some of the NPY-immunoreactive nerve fibers are of central origin. The nerve fibers immunoreactive to amidated NPY were distributed in a similar manner. However, the number of fibers immunoreactive to NPYamide was lower than the number of fibers immunoreactive to NPY itself. After removal of the superior cervical ganglia bilaterally 22 days or 12 months before sacrifice, NPY-immunoreactive nerve fibers remained in the gland. This immunohistochemical study of the mink pineal gland therefore shows that the NPY/NPYamide-immunoreactive nerve fibers innervating the pineal gland in this spegcies are a component of the central innervation or originnate from extracerebral parasympathetic ganglia.  相似文献   

15.
Whim MD 《PloS one》2011,6(4):e19478

Background

In addition to polypeptide hormones, pancreatic endocrine cells synthesize a variety of bioactive molecules including classical transmitters and neuropeptides. While these co-transmitters are thought to play a role in regulating hormone release little is known about how their secretion is regulated. Here I investigate the synthesis and release of neuropeptide Y from pancreatic beta cells.

Methodology/Principal Findings

NPY appears to be an authentic co-transmitter in neonatal, but not adult, beta cells because (1) early in mouse post-natal development, many beta cells are NPY-immunoreactive whereas no staining is observed in beta cells from NPY knockout mice; (2) GFP-expressing islet cells from an NPY(GFP) transgenic mouse are insulin-ir; (3) single cell RT-PCR experiments confirm that the NPY(GFP) cells contain insulin mRNA, a marker of beta cells. The NPY-immunoreactivity previously reported in alpha and delta cells is therefore likely to be due to the presence of NPY-related peptides. INS-1 cells, a beta cell line, are also NPY-ir and contain NPY mRNA. Using the FMRFamide tagging technique, NPY secretion was monitored from INS-1 beta cells with high temporal resolution. Peptide release was evoked by brief depolarizations and was potentiated by activators of adenylate cyclase and protein kinase A. Following a transient depolarization, NPY-containing dense core granules fused with the cell membrane and discharged their contents within a few milliseconds.

Conclusions

These results indicate that after birth, NPY expression in pancreatic islets is restricted to neonatal beta cells. The presence of NPY suggests that peptide co-transmitters could mediate rapid paracrine or autocrine signaling within the endocrine pancreas. The FMRFamide tagging technique may be useful in studying the release of other putative islet co-transmitters in real time.  相似文献   

16.
Islet-activating protein (IAP) is a substance purified from the culture medium of Bordetella pertussis, and its main action is characterized by the enhancement of secretory response to glucose and other stimuli in pancreatic islet. In this experiment, the effect of IAP on epinephrine-induced secretion of immunoreactive insulin (IRI) and glucagon (IRG) was investigated in normal dogs. Epinephrine suppressed IRI secretion and it had a little increment to IRG secretion in control group, while IRI and IRG secretions were significantly increased by epinephrine in IAP pretreated group. Using beta-blocker (Propranolol) with epinephrine, these increments of IRI and IRG secretions in IAP pretreated group were abolished. However, using alpha-blocker (Phentolamine) with epinephrine, these secretions of IRI and IRG in IAP pretreated group were much more increased than epinephrine alone induced secretions. Blood glucose levels were lower in IAP pretreated group than in control group throughout the loading tests in all of the experiments. These findings suggest that (1) IAP decreases blood glucose level and (2) IAP enhances epinephrine-induced secretion of insulin and glucagon by acceleration of beta-adrenergic effect and by reduction of alpha-adrenergic suppression in dogs.  相似文献   

17.
Ding, W.-G., H. Kimura, M. Fujimura and M. Fujimiya. Neuropeptide Y and peptide YY immunoreactivities in the pancreas of various vertebrates. Peptides 18(10) 1523–1529, 1997.—NPY-like immunoreactivity was observed in nerve fibers and endocrine cells in pancreas of all species examined except the eel, which showed no NPY innervation. The density of NPY-positive nerve fibers was higher in mammals than in the lower vertebrates. These nerve fibers were distributed throughout the parenchyma, and were particularly associated with the pancreatic duct and vascular walls. In addition, the density of NPY-positive endocrine cells was found to be higher in lower vertebrates than mammals; in descending order; eel = turtle = chicken > bullfrog > mouse = rat = human > guinea pig = dog. These NPY-positive cells in the eel and certain mammals tended to be localized throughout the islet region, whereas in the turtle and chicken they were mainly scattered in the exocrine region. PYY-immunoreactivity was only present in the pancreatic endocrine cells of all species studied, and localized similarly to NPY. Thus these two peptides may play endocrine or paracrine roles in the regulation of islet hormone secretion in various vertebrate species.  相似文献   

18.
The presence of neuropeptide tyrosine (NPY) in the intermediate lobe of the frog pituitary was demonstrated using indirect immunofluorescence, the immunogold technique and a specific radioimmunoassay combined with high pressure liquid chromatography (HPLC). A high density of NPY-containing fibers, was found among the parenchymal cells of the intermediate lobe. These fibers originated from the ventral infundibular nucleus, travelled via the median eminence to the pars intermedia. At the electron microscopic level, NPY-like material was found exclusively in nerve fibers where the product of the immunoreaction was associated to dense-core vesicles. High concentrations of NPY-like peptide were found in neurointermediate lobe extracts. After Sephadex G-50 gel filtration the major peak of immunoreactive material appeared to co-elute with synthetic porcine NPY. Conversely, HPLC analysis revealed that the NPY-like peptide of the frog pituitary had a retention time shorter than the porcine NPY. The localization of NPY-like material in the pars intermedia suggested a possible role of NPY in the regulation of melanotropic cell secretion. In fact, graded concentrations of synthetic NPY induced a dose-dependent inhibition of alpha-melanotropin (alpha-MSH) release in vitro. The lack of effect of a dopaminergic antagonist on NPY-induced alpha-MSH release inhibition demonstrated that the local dopaminergic system could not account for the NPY action. These results indicate that NPY located in the hypothalamo-hypophyseal system of the frog may act as a melanotropin-release inhibiting factor.  相似文献   

19.
Summary In several animal species, galanin occurs in pancreatic nerves and inhibits insulin secretion. However, the presence and action of galanin in the human pancreas have not been established. Therefore, we examined the presence and nature of human pancreatic galanin-like immunoreactive material (GLIR) and the effects of galanin on glucose-stimulated insulin secretion from isolated human islets. Immunofluorescent staining of human pancreas revealed GLIR in fine varicose fibers in both islets and exocrine parenchyma. Furthermore, acid extracts of pancreas (n=3) and isolated islets (n=3) contained 0.17±0.06 and 0.23±0.11 pmol GLIR/mg protein. Human pancreatic GLIR coeluted with synthetic porcine galanin from Sephadex G-50. Moreover, synthetic porcine galanin inhibited glucose-stimulated insulin secretion from collagenase-isolated human islets at dose rates >10-8 M. Thus, (1) human pancreas is innervated by galanin-containing nerves, (2) human pancreatic GLIR is of similar size as synthetic porcine galanin, and (3) porcine galanin inhibits glucose-stimulated insulin secretion from human islets. Therefore, galanin could be an important local regulator of insulin secretion in man.  相似文献   

20.
The presence of neuropeptide Y (NPY)-like immunoreactivity (-LI) in sympathetic perivascular nerves and the functional effects of NPY and noradrenaline (NA) on vascular tone were studied in skeletal muscle of various species. A dense network of NPY-LI was found around arteries and arterioles but not venules in the gluteus maximus muscle of man, gracilis muscle of dog, tenuissimus muscle of rabbit and quadriceps muscle of cat, rat, guinea pig and pig. The distribution of NPY-immunoreactive (-IR) nerves was closely correlated to the presence of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH)-positive fibers, two markers for noradrenergic neurons. Double-staining experiments revealed that NPY- and TH-IR as well as NPY- and DBH-IR nerve fibers around arteries and arterioles were identical. The veins and venules, however, lacked or had a very sparse innervation of NPY-, TH- and DBH-positive fibers. The NPY- and TH-IR nerves in quadriceps muscle of the guinea pig were absent after treatment with 6-hydroxydopamine. Lumbosacral sympathetic ganglia from the same species contained many NPY-positive cells which were also TH- and DBH-IR. NPY-LI was also detected by radioimmunoassay in extracts of skeletal muscle from guinea pig, rabbit, dog, pig and man as well as of lumbosacral sympathetic ganglia. The content of NPY-LI in skeletal muscle was relatively low (0.1-0.4 pmol/g), whereas lumbosacral sympathetic ganglia had a much higher content (48-88 pmol/g). NPY (10(-7) M) contracted arterioles in the tenuissimus muscle of the rabbit to a similar extent (by 65%) as NA (10(-6) M), as studied by intravital microscopy in vivo. NPY had no effect on the corresponding venules while NA caused a slight contraction of these vessels. In vitro studies of small human skeletal muscle arteries and veins revealed that NPY was more potent than NA in contracting the arteries, and the highest concentration of NPY (5 x 10(-7) M) caused a contraction of a similar magnitude as NA 10(-5) M. NA contracted veins from human skeletal muscle, while NPY had only small effects. It is suggested that NPY, together with NA, could be of importance for sympathetic control of skeletal muscle blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号