共查询到20条相似文献,搜索用时 0 毫秒
1.
Kim SJ Cho HH Kim YJ Seo SY Kim HN Lee JB Kim JH Chung JS Jung JS 《Biochemical and biophysical research communications》2005,329(1):25-31
Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation. 相似文献
2.
3.
Introduction (1) Human embryonic stem (ES) cells are pluripotent but are difficult to be used for therapy because of immunological, oncological and ethical barriers. (2) Pluripotent cells exist in vivo, i.e., germ cells and epiblast cells but cannot be isolated without sacrificing the developing embryo. (3) Reprogramming to pluripotency is possible from adult cells using ectopic expression of OKSM and other integrative and non-integrative techniques. (4) Hurdles to overcome include i.e stability of the phenotype in relation to epigenetic memory. Sources of data We reviewed the literature related to reprogramming, pluripotency and fetal stem cells. Areas of agreement (1) Fetal stem cells present some advantageous characteristics compared with their neonatal and postnatal counterparts, with regards to cell size, growth kinetics, and differentiation potential, as well as in vivo tissue repair capacity. (2) Amniotic fluid stem cells are more easily reprogrammed to pluripotency than adult fibroblast. (3) The parental population is heterogeneous and present an intermediate phenotype between ES and adult somatic stem cells, expressing markers of both. Areas of controversy (1) It is unclear whether induced pluripotent stem (iPS) derived from amniotic fluid stem cells are fully or partially reprogrammed. (2) Optimal protocols to ensure highest efficiency and phenotype stability remains to be determined. (3) The “level” of reprogramming, fully vs partial, of iPS derived from amniotic fluid stem cells remain to be determined. Growing points Banking of fully reprogrammed cells may be important both for (1) autologous and allogenic applications in medicine, and (2) disease modeling. 相似文献
4.
Effectiveness of human mesenchymal stem cells derived from bone marrow cryopreserved for 23-25 years
Objective
To evaluate long-term cryopreserved human bone marrow cells (BMCs) as a source of functional mesenchymal stem cells (MSCs).Methods
Samples of human BMCs that were cryopreserved for 23–25 years (n = 20) were thawed to obtain an initial culture and a primary culture (P0) that was propagated through five passages (P1–P5) to obtain MSCs. Freshly collected human bone marrow samples (n = 20) were used as controls for comparison of efficiency of recovery and growth characteristics of MSCs. P3 cultures were tested for their capacity to differentiate into osteoblasts, adipocytes, and neuronal cells. Appropriate staining, immunohistochemical and biochemical methods were employed to ascertain cell type identities at different stages of culturing.Results
In the initial culture, the cell adherence rate of the cryopreserved cells was significantly lower than that of controls (19.7% vs. 38.2%, p < 0.05) while the relative rate of recovery of MSCs was only 48.5 ± 8.6% in P0. At the end of P3, fibroblast-like cells accounted for about 95% of cells in both cryopreserved and control groups (p > 0.05). These cells were positive for essential MSC surface molecules (CD90, CD105, CD166, CD44, CD29, CD71, CD73) and negative for haematopoietic and endothelial cell markers (CD45, CD34, HLA-DR). The cell growth and cell cycle patterns were similar for both groups. MSCs at P3 from both groups had similar capacities to differentiate in vitro into osteoblasts, adipocytes, and neuronal cells.Conclusion
Using the methods described here, long-term (23–25 years) cryopreserved human BMCs can be successfully cultivated to obtain MSCs that have good differentiation capabilities. 相似文献5.
Xia Xu Sally Cowley Christopher J. Flaim William James Lenard W. Seymour Zhanfeng Cui 《Biotechnology progress》2010,26(3):781-788
Due to widespread applications of human embryonic stem (hES) cells, it is essential to establish effective protocols for cryopreservation and subsequent culture of hES cells to improve cell recovery. We have developed a new protocol for cryopreservation of dissociated hES cells and subsequent culture. We examined the effects of new formula of freezing solution containing 7.5% dimethylsulfoxide (DMSO) (v/v %) and 2.5% polyethylene glycol (PEG) (w/v %) on cell survival and recovery of hES cells after cryopreservation, and further investigated the role of the combination of Rho‐associated kinase (ROCK) inhibitor and p53 inhibitor on cell recovery during the subsequent culture. Compared with the conventional slow‐freezing method which uses 10% DMSO as a freezing solution and then cultured in the presence of ROCK inhibitor at the first day of culture, we found out that hES cell recovery was significantly enhanced by around 30 % (P < 0.05) by the new freezing solution. Moreover, at the first day of post‐thaw culture, the presence of 10 μM ROCK inhibitor (Y‐27632) and 1 μM pifithrin‐μ together further significantly improved cell recovery by around 20% (P < 0.05) either for feeder‐dependent or feeder‐independent culture. hES cells remained their undifferentiated status after using this novel protocol for cryopreservation and subsequent culture. Furthermore, this protocol is a scalable cryopreservation method for handling large quantities of hES cells. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
6.
The osteogenic capacity of human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) has been demonstrated both in vitro and in vivo. Therefore, cell labeling and storage are becoming necessary for researching the potential therapeutic use of UCB-MSCs for bone tissue engineering. The aim of this study was to determine the effect of cryopreservation on the osteogenic differentiation of green fluorescent protein (GFP)-marked UCB-MSCs in vitro. MSCs were isolated from full-term human UCB, expanded, transfected with the GFP gene, and then cryopreserved in liquid nitrogen for 4 weeks. After thawing, cell surface antigen markers and osteogenic potential were analyzed, and the luminescence of these cells was observed by fluorescence microscopy. The results demonstrate that cryopreservation has no effect on the cell phenotype, GFP expression or osteogenic differentiation of UCB-MSCs, showing that cryopreserved GFP-labeled UCB-MSCs might be applied for bone tissue engineering. 相似文献
7.
8.
Amniotic fluid (AF) contains heterogeneous and multipotential cell types. A pure mesenchymal stem cells group can be sorted from AF using flow cytometry. In order to evaluate a possible therapeutic application of these cells, the human AF-derived c-kit+ stem cells (c-kit+ AFS) were compared with the c-kit− (unselected) stem cells (c-kit− AFS). Our findings revealed that the optimal period to obtain c-kit+ AFS cells was between 16 and 22 weeks of gestation. Following cell sorting, c-kit+ AFS cells shared similar morphological and proliferative characteristics as the c-kit− AFS cells. Both c-kit+ and c-kit− AFS cells had the characteristics of mesenchymal stem cells through surface marker identification by flow cytometric and immunocytochemical analysis. Both c-kit+ and c-kit− AFS cells could differentiate along adipogenic and osteogenic lineages. However, the myocardial differentiation capacity was enhanced in c-kit+ AFS cells by detecting GATA-4, cTnT, α-actin, Cx43 mRNA and protein expression after myocardial induction; whereas induced c-kit− AFS cells were only detected with GATA-4 mRNA and protein expression. The c-kit+ AFS cells could have potential clinical application for myogenesis in cardiac regenerative therapy. 相似文献
9.
《Cell cycle (Georgetown, Tex.)》2013,12(8):1611-1620
The 49-member human ATP binding cassette (ABC) gene family encodes 44 membrane transporters for lipids, ions, peptides or xenobiotics, four translation factors without transport activity, as they lack transmembrane domains, and one pseudogene. To understand the roles of ABC genes in pluripotency and multipotency, we performed a sensitive qRT-PCR analysis of their expression in embryonic stem cells (hESCs), bone marrow-derived mesenchymal stem cells (hMSCs) and hESC-derived hMSCs (hES-MSCs). We confirm that hES-MSCs represent an intermediate developmental stage between hESCs and hMSCs. We observed that 44 ABCs were significantly expressed in hESCs, 37 in hES-MSCs and 35 in hMSCs. These variations are mainly due to plasma membrane transporters with low but significant gene expression: 18 are expressed in hESCs compared with 16 in hES-MSCs and 8 in hMSCs, suggesting important roles in pluripotency. Several of these ABCs shared similar substrates but differ regarding gene regulation. ABCA13 and ABCB4, similarly to ABCB1, could be new markers to select primitive hMSCs with specific plasma membrane transporterlow phenotypes. ABC proteins performing basal intracellular functions, including translation factors and mitochondrial heme transporters, showed the highest constant gene expression among the three populations. Peptide transporters in the endoplasmic reticulum, Golgi and lysosome were well expressed in hESCs and slightly upregulated in hMSCs, which play important roles during the development of stem cell niches in bone marrow or meningeal tissue. These results will be useful to study specific cell cycle regulation of pluripotent stem cells or ABC dysregulation in complex pathologies, such as cancers or neurological disorders. 相似文献
10.
Human umbilical cord(UC)is a promising source of mesenchymal stem cells(MSCs).Apart from their prominent advantages,such as a painless collection procedure and faster self-renewal,UC-MSCs have shown the ability to differentiate into three germ layers,to accumulate in damaged tissue or inflamed regions,to promote tissue repair,and to modulate immune response.There are diverse protocols and culture methods for the isolation of MSCs from the various compartments of UC,such as Wharton’s jelly,vein,arteries,UC lining and subamnion and perivascular regions.In this review,we give a brief introduction to various compartments of UC as a source of MSCs and emphasize the potential clinical utility of UC-MSCs for regenerative medicine and immunotherapy. 相似文献
11.
Aiko Yamazaki Yuko Hamada Nobuko Arakawa Masateru Yashiro Sumiyuki Mii Ryoichi Aki 《Cell cycle (Georgetown, Tex.)》2016,15(19):2619-2625
We have previously discovered nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells and have shown that they can differentiate to neurons, glia, and many other cell types. HAP stem cells can be used for nerve and spinal cord repair. We have recently shown the HAP stem cells can differentiate to beating heart-muscle cells and tissue sheets of beating heart-muscle cells. In the present study, we determined the efficiency of HAP stem cells from mouse vibrissa hair follicles of various ages to differentiate to beating heart-muscle cells. We observed that the whiskers located near the ear were more efficient to differentiate to cardiac-muscle cells compared to whiskers located near the nose. Differentiation to cardiac-muscle cells from HAP stem cells in cultured whiskers in 4-week-old mice was significantly greater than in 10-, 20-, and 40-week-old mice. There was a strong decrease in differentiation potential of HAP stem cells to cardiac-muscle cells by 10 weeks of age. In contrast, the differentiation potential of HAP stem cells to other cell types did not decrease with age. The possibility of rejuvenation of HAP stem cells to differentiate at high efficiency to cardiac-muscle cells is discussed. 相似文献
12.
Varga N Veréb Z Rajnavölgyi E Német K Uher F Sarkadi B Apáti A 《Biochemical and biophysical research communications》2011,(3):474-480
Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures. 相似文献
13.
Mesenchymal stem cells (MSCs) are known to be an attractive cell source for tissue engineering and regenerative medicine. One of the main limiting steps for clinical use or biotechnological purposes is the expansion step. The research of compatible biomaterials for MSCs expansion is recently regarded as an attractive topic. The aim of this study was to create new functional biomaterial for MSCs expansion by evaluating the impact of chitosan derivative films modified by enzymatic approach. First, chitosan particles were enzymatically modified with ferulic acid (FA) or ethyl ferulate (EF) under an eco‐friendly procedure. Then, films of chitosan and its modified derivatives were prepared and evaluated by physicochemical and biological properties. Results showed that the enzymatic grafting of FA or EF onto chitosan significantly increased hydrophobic and antioxidant properties of chitosan films. The MSCs cell viability on chitosan derivative films also increased depending on the film thickness and the quantity of grafted phenols. Furthermore, the cytotoxicity test showed the absence of toxic effect of chitosan derivative films towards MSCs cells. Cell morphology showed a well attached and spread phenotype of MSCs cells on chitosan derivative films. On the other hand, due to the higher phenol content of FA‐chitosan films, their hydrophobic, antioxidant properties and cell adhesion were improved in comparison with those of EF‐chitosan films. Finally, this enzymatic process can be considered as a promising process to favor MSCs cell growth as well as to create useful biomaterials for biomedical applications especially for tissue engineering. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:491–500, 2016 相似文献
14.
Numerous challenges remain in the successful clinical translation of cell-based therapeutic studies for skeletal tissue repair, including appropriate cell sources and viable cell delivery systems. Poly(ethylene glycol)-poly(ε-caprolactone) (PEG-PCL) amphiphilic block copolymers have been extensively explored in microspheres preparation. Due to the introduction of hydrophilic PEG segments into PCL backbones, these copolymers have shown much more potentials in carrying protein, lipophilic drugs or genes than commonly used poly (ε-caprolactone) (PCL) and poly (lactic acid). The aim of this study is to investigate the attachment and osteogenic differentiation of human placenta derived mesenchymal stem cells (PMSCs) on PEG-PCL triblock copolymers nanofiber scaffolds. Here we demonstrated that PMSCs proliferate robustly and can be effectively differentiated into osteogenic-like cells on nanofiber scaffolds. This study provides evidence for the use of nanofiber scaffolds as an ideal supporting material for in vitro PMSCs culture and an in vivo cell delivery vehicle for bone repair. 相似文献
15.
Anna Rita Migliaccio Giovanni Migliaccio Brigitte Durand GianCarlo Mancini John W. Adamson 《Cytotechnology》1993,11(2):107-113
We have analyzed the effect of stem cell factor (SCF), alone or in combination with other growth factors, on the generation of colony-forming cells (CFC) and on the expansion of hematopoiesisin vitro from light density, soybean agglutinin–, CD34+ cord blood cells under serum-deprived conditions. The growth factors were either added only once at the onset of the culture or added every few days when the cultures were demidepopulated and refed with fresh medium. No growth factor, alone, generated CFC or expanded hematopoiesis under these conditions. However, SCF, in combination with interleukin 3 (IL-3) or with late-acting factors (granulocyte colony-stimulating factor (G-CSF) or erythropoietin (Epo)), generated large numbers of mature cells as well as CFC. The number of CFC generated depended on the refeeding procedure adopted. In cultures never refed, the CFC numbers increased from > 160 CFC/culture at day 0 to > 3000 CFC at day 10. The CFC numbers stayed above the input levels for 25 days before declining. Almost no CFC were detectable after one month. In contrast, in cultures regularly refed, CFC were detectable for at least 40 days. The lineages of the mature cells and the types of CFC generated varied with the different growth factors. In the presence of SCF plus IL-3, erythroid burst-forming cells (BFU-E) and granulocyte/macrophage colony-forming cells (GM-CFC) were generated and erythroid as well as myelomonocytic precursors were present among the differentiated cells. In contrast, in the presence of SCF and G-CSF or Epo, the progenitor cells as well as the differentiated cells were dictated by the late-acting growth factor (i.e. mostly G-CFC and myeloid cells in the presence of SCF and G-CSF vs. BFU-E, erythroid colony-forming cells (CFU-E) and erythroblasts in the presence of SCF and Epo). Thus, marked expansion of erythropoiesis and granulopoiesis can be achievedin vitro by as few as two factors — SCF acting as the early factor along with the appropriate late-acting factor.Paper presented in part at the World Congress on Cell Cultures, Washington D.C., 21–24 June 1992. 相似文献
16.
Andersen DC Kortesidis A Zannettino AC Kratchmarova I Chen L Jensen ON Teisner B Gronthos S Jensen CH Kassem M 《Molecules and cells》2011,32(2):133-142
Human mesenchymal stem cells (hMSC) are currently being introduced for cell therapy, yet, antibodies specific for native and
differentiated MSCs are required for their identification prior to clinical use. Herein, high quality antibodies against MSC
surface proteins were developed by immunizing mice with hMSC, and by using a panel of subsequent screening methods. Flow cytometry
analysis revealed that 83.5, 1.1, and 8.5% of primary cultures of hMSC were double positive for STRO-1 and either of DJ 3,
9, and 18, respectively. However, none of the three DJ antibodies allowed enrichment of clonogenic hMSC from BMMNCs as single
reagents. Using mass-spectrometric analysis, we identified the antigen recognised by DJ3 as CD44, whereas DJ9 and DJ18 recognized
HLA-DRB1 and Collagen VI, respectively. The identified proteins were highly expressed throughout in vitro osteogenic- and adipogenic differentiation. Interestingly, undifferentiated cells revealed a sole cytoplasmic distribution
pattern of Collagen VI, which however changed to an extracellular matrix appearance upon osteogenic- and adipogenic differentiation.
In relation to this, we found that STRO-1+/−/Collagen VI− sorted hMSC contained fewer differentiated alkaline phosphatase+ cells compared to STRO-1+/−/Collagen VI+ hMSC, suggesting that Collagen VI on the cell membrane exclusively defines differentiated MSCs. In conclusion, we have generated
a panel of high quality antibodies to be used for characterization of MSCs, and in addition our results may suggest that the
DJ18 generated antibody against Collagen VI can be used for negative selection of cultured undifferentiated MSCs. 相似文献
17.
Mammalian aging of many tissues is associated with a decline in the replicative and functional capacity of somatic stem cells. Understanding the basis of this decline is a major goal of aging research. Human bone marrow-derived multipotent stromal cells (MSCs) have been applied in the treatment of fracture nonunion. Clinical application of MSCs requires abundant cells that can be overcome by ex vivo expansion of cells, but often at the expense of stemness and differentiation potentiality. We first demonstrated that late-passage MSCs exhibited decreased proliferation capacity, reduced expression of stemness markers such as Oct-4 and Nanog, and deterioration of osteogenic potential. Further, late-passage MSCs showed increased expression of p21(Cip1/Waf1) (p21), an inhibitor of the cyclin-dependent kinase. Knockdown of p21 by lentivirus-mediated shRNAs against p21 in late-passage MSCs increased the proliferation capacity, the expression of Oct-4 and Nanog, and osteogenic potential compared with cells transduced with control shRNA. More importantly, reduction in p21 expression in MSCs enhanced the bone repair capacity of MSCs in a rodent calvarial defect model. Knockdown of p21 in MSCs also increased the telomerase activity and telomere length, and did not show chromosomal abnormalities or acquire transformation ability. Therefore, these data successfully demonstrate the involvement of senescence gene in the expression of stemness markers and osteogenic potential of MSCs. 相似文献
18.
Fanny Knöspel Rudolf K. Schindler Marc Lübberstedt Stephanie Petzolt Jörg C. Gerlach Katrin Zeilinger 《Cytotechnology》2010,62(6):557-571
The in vitro culture behaviour of embryonic stem cells (ESC) is strongly influenced by the culture conditions. Current culture
media for expansion of ESC contain some undefined substances. Considering potential clinical translation work with such cells,
the use of defined media is desirable. We have used Design of Experiments (DoE) methods to investigate the composition of
a serum-free chemically defined culture medium for expansion of mouse embryonic stem cells (mESC). Factor screening analysis
according to Plackett–Burman revealed that insulin and leukaemia inhibitory factor (LIF) had a significant positive influence
on the proliferation activity of the cells, while zinc and l-cysteine reduced the cell growth. Further analysis using minimum run resolution IV (MinRes IV) design indicates that following
factor adjustment LIF becomes the main factor for the survival and proliferation of mESC. In conclusion, DoE screening assays
are applicable to develop and to refine culture media for stem cells and could also be employed to optimize culture media
for human embryonic stem cells (hESC). 相似文献
19.
Lilian Hook Joaquim Vives Norma Fulton Mathew LeveridgeSarah Lingard Martin D. BootmanAnna Falk Steven M. Pollard Timothy E. Allsopp Dennise Dalma-WeiszhauszAnn Tsukamoto Nobuko UchidaThorsten Gorba 《Neurochemistry international》2011,59(3):432-444
The utilization of neural stem cells and their progeny in applications such as disease modelling, drug screening or safety assessment will require the development of robust methods for consistent, high quality uniform cell production. Previously, we described the generation of adherent, homogeneous, non-immortalized mouse and human neural stem cells derived from both brain tissue and pluripotent embryonic stem cells ( [Conti et al., 2005] and [Sun et al., 2008]). In this study, we report the isolation or derivation of stable neurogenic human NS (hNS) lines from different regions of the 8-9 gestational week fetal human central nervous system (CNS) using new serum-free media formulations including animal component-free conditions. We generated more than 20 adherent hNS lines from whole brain, cortex, lobe, midbrain, hindbrain and spinal cord. We also compared the adherent hNS to some aspects of the human CNS-stem cells grown as neurospheres (hCNS-SCns), which were derived from prospectively isolated CD133+CD24−/lo cells from 16 to 20 gestational week fetal brain. We found, by RT-PCR and Taqman low-density array, that some of the regionally isolated lines maintained their regional identity along the anteroposterior axis. These NS cells exhibit the signature marker profile of neurogenic radial glia and maintain neurogenic and multipotential differentiation ability after extensive long-term expansion. Similarly, hCNS-SC can be expanded either as neurospheres or in extended adherent monolayer with a morphology and marker expression profile consistent with radial glia NS cells. We demonstrate that these lines can be efficiently genetically modified with standard nucleofection protocols for both protein overexpression and siRNA knockdown of exogenously expressed and endogenous genes exemplified with GFP and Nestin. To investigate the functional maturation of neuronal progeny derived from hNS we (a) performed Agilent whole genome microarray gene expression analysis from cultures undergoing neuronal differentiation for up to 32 days and found increased expression over time for a number of drugable target genes including neurotransmitter receptors and ion channels and (b) conducted a neuropharmacology study utilizing Fura-2 Ca2+ imaging which revealed a clear shift from an initial glial reaction to carbachol to mature neuron-specific responses to glutamate and potassium after prolonged neuronal differentiation. Fully automated culture and scale-up of select hNS was achieved; cells supplied by the robot maintained the molecular profile of multipotent NS cells and performed faithfully in neuronal differentiation experiments. Here, we present validation and utility of a human neural lineage-restricted stem cell-based assay platform, including scale-up and automation, genetic engineering and functional characterization of differentiated progeny. 相似文献