首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of inducible nitric oxide-synthase (iNOS) enzymatic activity during cutaneous wound repair leads to severely impaired tissue regeneration. To assess whether disturbed leukocyte infiltration might participate in impaired repair, we determined expressional kinetics of neutrophil-attracting macrophage inflammatory protein-2 (MIP-2), and monocyte-attracting macrophage chemoattractant protein-1 (MCP-1) using an excisional wound healing model in mice. MCP-1 was induced in epithelial keratinocytes upon wounding, and our data indicate that NO serves a negative regulatory role for MCP-1 expression in vivo, as clearly reduced numbers of wound margin keratinocytes associated with NO-deficient repair compensate for high MCP-1 expression levels observed during normal healing. MIP-2 expression was restricted to hair follicles which were not reduced in number during NO-deficient repair. In vitro studies confirmed a regulatory role of NO for keratinocyte-derived chemokine expression, as NO attenuated IL-1beta- and TNF-alpha-induced MCP-1 mRNA expression, whereas NO augmented IL-1beta-induced IL-8 (functional human homolog to murine MIP-2) mRNA expression in the human keratinocyte cell line HaCaT.  相似文献   

2.
An important role of inducible nitric oxide (NO) synthase for epithelial action during skin repair has been well established. Although a delayed healing of skin wounds has been recently described for eNOS-deficient mice, a participation of endothelial-type NO synthase (eNOS) in skin repair largely remains unclear. In this study we determined the expression pattern of eNOS during wound healing in healthy and in diabetic mice. Remarkably, normal repair in healthy animals was characterized by a moderate induction of eNOS at the mRNA and protein level, whereas diabetes-impaired healing was associated with a clearly reduced eNOS protein expression. Immunohistochemistry revealed the endothelial lining of blood vessels within the granulation tissue, and also keratinocytes of the wound margins, the developing neo-epithelium, and the hair follicles to express eNOS protein. Keratinocyte-derived expression of eNOS could be confirmed at the mRNA level in vitro for human primary keratinocytes and the keratinocyte cell line HaCaT. Furthermore, eNOS enzymatic activity most likely contributes to epithelial regeneration, as eNOS-deficient (eNOS -/-) animals exhibited reduced wound margin epithelia associated with reduced keratinocyte proliferation.  相似文献   

3.
BACKGROUND: Expression and enzymatic activity of heme oxygenase (HO) has been implicated in the development, as well as in the resolution, of inflammatory conditions. Because inflammation is central to tissue repair, we investigated the presence and potential functions of HO in an excisional model of normal and diabetes-impaired wound repair in mice. MATERIALS AND METHODS: Expression of HO-1 during cutaneous healing was analyzed by RNase protection assay, Western blot, and immunohistochemical techniques in a murine model of excisional repair. Furthermore, we determined HO-1-dependent release of proinflammatory cytokines from RAW 264.7 macrophages by enzyme-linked immunosorbent assay (ELISA). RESULTS: Upon injury, we observed a rapid and strong increase in HO-1 mRNA and protein levels at the wound site. By contrast to normal repair, late stages of diabetes-impaired repair were associated with elevated HO-1 expression. Besides a few keratinocytes of the hyperproliferative epithelium, immunohistochemistry revealed infiltrating macrophages as the predominant and major source of HO-1 at the wound site. In vitro studies demonstrated the potency of exogenous and also endogenous nitric oxide (NO) to strongly induce HO-1 expression in RAW 264.7 macrophages. However, L-NIL-mediated enzymatic inhibition of inducible NO-synthase (iNOS) at the wound site in vivo was not paralleled by decreased HO-1 levels. In vitro inhibition of HO-1 enzymatic activity by tin protoporphyrin IX (SnPPIX) in RAW 264.7 macrophages markedly attenuated tumor necrosis factor-alpha (TNF-alpha), but strongly increased interleukin-1beta (IL-1beta) release in RAW 264.7 macrophages in vitro. CONCLUSIONS: The observed injury-mediated increase in HO-1 mRNA and protein at the wound site was due to infiltrating HO-1 expressing monocytic cells. Macrophage-derived HO-1 expression was not under regulatory control by NO in skin repair. We provide evidence that HO-1 might exert a regulatory role in macrophage-derived cytokine release.  相似文献   

4.
Abnormal wound healing with excessive scarring is a major health problem with socioeconomic and psychological impacts. In human, chronic wounds and scarring are associated with upregulation of the inducible nitric oxide synthase (iNOS). Recently, we have shown physiological regulation of iNOS in wound healing. Here, we sought to investigate the possible mechanistic role of iNOS in wound healing using biochemical and immunohistochemical assays. We found: (a) iNOS is the main source of wound nitric oxide (NO), (b) NOS inhibition in the wound, downregulated iNOS protein, mRNA and enzymatic activity, and reduced wound NO, and (c) iNOS inhibition resulted in delayed healing at early time points, and excessive scarring at late time points. Furthermore, molecular and cellular analysis of the wound showed that iNOS inhibition significantly (P < 0.05) increased TGF-β1 mRNA and protein levels, fibroblasts and collagen deposition. These latter findings suggest that iNOS might be exerting its action in the wound by signaling through TGF-β1 that activates wound fibroblasts to produce excessive collagen. Our current findings provide further support that iNOS is crucial for physiological wound healing, and suggest that dysregulation of iNOS during the inflammatory phase impairs healing, and results in disfiguring post-healing scarring. Thus, the mutual feedback regulation between iNOS and TGF-β1 at the gene, protein and functional levels might be the mechanism through which iNOS regulates the healing. Monitoring and maintenance of wound NO levels might be important for healing and avoiding long-term complications in susceptible people including patients with diabetic wounds, venous ulcers or keloid prone.  相似文献   

5.
Inducible nitric oxide synthase (iNOS) and its product, nitric oxide, have been shown to play important roles in wound biology. The present study was performed to investigate the role of iNOS in modulating the cytokine cascade during the complex process of skin graft wound healing.Fifteen iNOS-knockout mice and 15 wild-type C57BL/6J mice were subjected to autogenous 1-cm2 intrascapular full-thickness skin grafts. Three animals in each group were killed on postoperative days 3, 5, 7, 10, and 14. Specimens were then analyzed using nonisotopic in situ hybridization versus mRNA of tumor growth factor-beta1, vascular endothelial growth factor, iNOS, endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha, and basic fibroblast growth factor, as well as positive and negative control probes. Positive cells in both grafts and wound beds were counted using a Leica microgrid. Scar thickness was measured with a Leica micrometer. Data were analyzed using the unpaired Student's t test.Expression of iNOS was 2- to 4-fold higher in knockout mice than in wild-type mice on postoperative days 5, 7, and 14. Expression of eNOS was 2- to 2.5-fold higher in knockout mice than in wild-type mice on postoperative days 5 and 7. Tumor necrosis factor-alpha expression was 2- to 7-fold higher in knockout mice than in wild-type mice on all postoperative days. In contrast, expression levels of angiogenic/fibrogenic cytokines (vascular endothelial growth factor, basis fibroblast growth factor, and tumor growth factor-beta1) were 2.5- to 4-fold higher in wild-type mice than in knockout mice. Scars were 1.5- to 2.5-fold thicker in knockout mice than in wild-type mice at all time points. All of the above results represent statistically significant differences (p < 0.05).Significantly different patterns of cytokine expression were seen in knockout and wild-type mice. Although the scar layer was thicker in knockout mice, it showed much greater infiltration with inflammatory cells. These data further delineate the modulatory effect of iNOS and nitric oxide in healing skin grafts.  相似文献   

6.
iNOS expression inhibits hypoxia-inducible factor-1 activity   总被引:11,自引:0,他引:11  
Hypoxia-inducible factor-1 (HIF-1) activates genes important in vascular function such as vascular endothelial growth factor (VEGF), erythropoietin (EPO), and inducible nitric oxide synthase (iNOS). iNOS catalyzes the synthesis of nitric oxide (NO), a free radical gas that mediates a number of cellular processes, including regulation of gene expression, vasodilatation, and neurotransmission. Here we demonstrate that iNOS expression inhibits HIF-1 activity under hypoxia in C6 glioma cells transfected with an iNOS gene and a VEGF promoter-driven luciferase gene. HIF-1 induction of VEGF-luciferase activity in C6 cell is also inhibited by sodium nitroprusside (SNP). Furthermore, pretreatment of C6 cells with N-acetyl-l-cysteine (NAC), an antioxidant, nullified the inhibitory effect of iNOS on HIF-1 binding. These results demonstrate that NO generated by iNOS expression inhibits HIF-1 activity in hypoxic C6 cells and suggest a negative feedback loop in the HIF-1 --> iNOS cascade.  相似文献   

7.
Wound healing is a highly ordered process, requiring complex and coordinated interactions involving peptide growth factors of which transforming growth factor-beta (TGF-beta) is one of the most important. Nitric oxide is also an important factor in healing and its production is regulated by inducible nitric oxide synthase (iNOS). We have earlier shown that curcumin (diferuloylmethane), a natural product obtained from the plant Curcuma longa, enhances cutaneous wound healing in normal and diabetic rats. In this study, we have investigated the effect of curcumin treatment by topical application in dexamethasone-impaired cutaneous healing in a full thickness punch wound model in rats. We assessed healing in terms of histology, morphometry, and collagenization on the fourth and seventh days post-wounding and analyzed the regulation of TGF-beta1, its receptors type I (tIrc) and type II (tIIrc) and iNOS. Curcumin significantly accelerated healing of wounds with or without dexamethasone treatment as revealed by a reduction in the wound width and gap length compared to controls. Curcumin treatment resulted in the enhanced expression of TGF-beta1 and TGF-beta tIIrc in both normal and impaired healing wounds as revealed by immunohistochemistry. Macrophages in the wound bed showed an enhanced expression of TGF-beta1 mRNA in curcumin treated wounds as evidenced by in situ hybridization. However, enhanced expression of TGF-beta tIrc by curcumin treatment observed only in dexamethasone-impaired wounds at the 7th day post-wounding. iNOS levels were increased following curcumin treatment in unimpaired wounds, but not so in the dexamethasone-impaired wounds. The study indicates an enhancement in dexamethasone impaired wound repair by topical curcumin and its differential regulatory effect on TGF-beta1, it's receptors and iNOS in this cutaneous wound-healing model.  相似文献   

8.
In this study, we determined the regulation and potential function of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (HMGR) during skin repair in mice. Upon skin injury, healthy mice exhibited a biphasic increase in HMGR expression and activity with elevated levels at days 3 and 13 post-wounding. In situ hybridization revealed wound margin keratinocytes as a cellular source of HMGR expression. In vitro experiments using cultured HaCaT keratinocytes uncovered epidermal growth factor (EGF), transforming growth factor (TGF)-alpha, and insulin as potent co-inducers of HMGR activity and vascular endothelial growth factor (VEGF) in the cells. Insulin-, but not EGF-mediated VEGF protein expression was functionally connected to co-induced HMGR activity, as simvastatin restrictively interfered only with insulin-induced translation of VEGF mRNA by inhibition of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) phosphorylation. Functional ablation of insulin-induced sterol regulatory element-binding protein (SREBP)-2 by siRNA abolished HMGR expression and insulin-triggered VEGF protein release from keratinocytes. Simvastatin also blocked proliferation of cultured keratinocytes. The observed inhibitory effects of simvastatin on keratinocyte VEGF expression and proliferation could be reversed by mevalonate, the product of HMGR enzymatic activity. In accordance, simvastatin-mediated inhibition of HMGR activity in acutely regenerating tissue of wounded mice was paralleled by a marked loss of VEGF protein expression and disturbances of normal proliferation processes in wound margin keratinocytes during skin repair.  相似文献   

9.
Angiogenesis is crucial to all types of wound healing, including gastric ulcer healing. The most potent promoter of angiogenesis is vascular endothelial growth factor (VEGF). We hypothesized that a 15-amino acid peptide designed to mimic the angiogenic action of VEGF would accelerate gastric ulcer healing. Gastric ulcers were induced in mice by serosal application of acetic acid. Treatment with the VEGF mimetic accelerated gastric ulcer healing when administered orally or intraperitoneally, at a dose of 50 ng/kg or greater. Such healing was not observed when the reverse sequence pentadecapeptide or the full-length VEGF protein was administered. Contrary to our hypothesis, the VEGF mimetic did not significantly increase angiogenesis in the ulcerated stomach. The enhancement of ulcer healing by the VEGF mimetic occurred independently of cyclooxygenase-2 (COX-2) activity but was blocked by inhibitors of inducible nitric oxide synthase (iNOS). These results demonstrate that a VEGF mimetic is a potent stimulus for gastric ulcer healing, even when given orally. The effects of the mimetic were independent of stimulatory effects on angiogenesis and COX-2 activity but were dependent on iNOS-derived NO production.  相似文献   

10.
The present study examined factors that may be involved in the development of hypoxic periventricular white matter damage in the neonatal brain. Wistar rats (1-day old) were subjected to hypoxia and the periventricular white matter (corpus callosum) was examined for the mRNA and protein expression of hypoxia-inducible factor-1alpha (HIF-1alpha), endothelial, neuronal and inducible nitric oxide synthase (eNOS, nNOS and iNOS), vascular endothelial growth factor (VEGF) and N-methyl-D-aspartate receptor subunit 1 (NMDAR1) between 3 h and 14 days after hypoxic exposure by real-time RT-PCR, western blotting and immunohistochemistry. Up-regulated mRNA and protein expression of HIF-1alpha, VEGF, NMDAR1, eNOS, nNOS and iNOS in corpus callosum was observed in response to hypoxia. NMDAR1 and iNOS expression was found in the activated microglial cells, whereas VEGF was localized to astrocytes. An enzyme immunoassay showed that the VEGF concentration in corpus callosum was significantly higher up to 7 days after hypoxic exposure. NO levels, measured by colorimetric assay, were also significantly higher in hypoxic rats up to 14 days after hypoxic exposure as compared with the controls. A large number of axons undergoing degeneration were observed between 3 h and 7 days after the hypoxic exposure at electron-microscopic level. Our findings point towards the involvement of excitotoxicity, VEGF and NO in periventricular white matter damage in response to hypoxia.  相似文献   

11.
L-Arginine (L-arg) is metabolized to nitric oxide (NO) by inducible NO synthase (iNOS) or to urea and L-ornithine (L-orn) by arginase. NO is involved in the inflammatory response, whereas arginase is the first step in polyamine and proline synthesis necessary for tissue repair and wound healing. Mitogen-activated protein kinases (MAPK) mediate LPS-induced iNOS expression, and MAPK phosphatase-1 (MKP-1) plays a crucial role in limiting MAPK signaling in macrophages. We hypothesized that MKP-1, by attenuating iNOS expression, acts as a switch changing L-arg metabolism from NO production to L-orn production after endotoxin administration. To test this hypothesis, we performed studies in RAW264.7 macrophages stably transfected with an MKP-1 expression vector in thioglyollate-elicited peritoneal macrophages harvested from wild-type and Mkp-1–/– mice, as well as in vivo in wild-type and Mkp-1–/– mice. We found that overexpression of MKP-1 resulted in lower iNOS expression and NO production but greater urea production in response to LPS. Although deficiency of MKP-1 resulted in greater iNOS expression and NO production and lower urea production in response to LPS, neither the overexpression nor the deficiency of MKP-1 had any substantial effect on the expression of the arginases. lung injury; macrophage; ornithine; mitogen-activated protein kinases  相似文献   

12.
In the skin, wounding initiates a complex array of physiological processes mediated by growth factors and inflammatory mediators which stimulate tissue repair and protect against infection. We report that primary cultures of human keratinocytes and a mouse keratinocyte cell line respond to the inflammatory stimuli gamma-interferon and lipopolysaccharide or tumor necrosis factor-alpha by producing nitric oxide and hydrogen peroxide, two reactive mediators that are important in nonspecific host defense. Nitric oxide is produced by the l-arginine- and NADPH-dependent enzyme, nitric oxide synthase. In murine keratinocytes, optimal enzymatic activity was found to be dependent on Ca2+ and calmodulin as well as on glutathione. Inflammatory mediators were also found to inhibit the growth of keratinocytes, an effect that could be reversed by a nitric oxide synthase inhibitor. Epidermal growth factor (EGF), which promotes wound healing by stimulating cellular proliferation, was found to be a potent antagonist of reactive nitrogen and reactive oxygen intermediate production by keratinocytes. EGF also reversed the growth inhibitory actions of the inflammatory mediators. These data suggest that nitric oxide produced by keratinocytes is important in the control of cellular proliferation during wound healing. Our findings that EGF effectively regulates the production of free radicals by keratinocytes may represent an important pathway by which this growth factor not only stimulates epidermal cell proliferation but also facilitates the resolution of inflammation following wounding.  相似文献   

13.
Wound repair is regulated by overlapping cellular, physiological and biochemical events. Prostaglandins and nitric oxide have been a focus for inflammation research particularly since the discovery of their inducible isoforms nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Study of the cellular expression of iNOS and COX-2 and arginase which competes with iNOS for its substrate, in an in vivo model of wound healing could reveal important roles for these enzymes in the physiological progression of wound repair. Adult male rats received full thickness dermal wounds which were harvested at different times. Protein levels and activities of the enzymes were assessed by western blot and biochemical assays respectively. The cellular distribution and the colocalization were assessed by immunostaining. The protein levels and activities of iNOS, arginase, and COX-2 increased only during the inflammatory phase of wound. Immunocytochemistry showed that the three enzymes were coexpressed and the main cellular source was inflammatory cells mainly macrophages. iNOS was induced at the wound site and was the earliest to increase significantly (p < 0.05) for only up to 3 days postwounding. However, arginase and COX-2 significant ( p < 0.05) upregulation started at a later time points and continued for up to 14 days postwounding. Therefore iNOS, compared with arginase and COX-2, showed a temporal difference in expression during wound healing which could be explained by their products being required at different stages of the healing process. The coordinated expression of the three enzymes at different time points could account for the physiological progression of the healing process.  相似文献   

14.
Nitric oxide is proangiogenic in the retina and choroid   总被引:7,自引:0,他引:7  
Nitric oxide (NO) has been shown to have proangiogenic or antiangiogenic effects depending upon the setting. In this study, we used mice with targeted deletion of one of the three isoforms of nitric oxide synthase (NOS) to investigate the effects of NO in ocular neovascularization. In transgenic mice with increased expression of vascular endothelial growth factor (VEGF) in photoreceptors, deficiency of any of the three isoforms caused a significant decrease in subretinal neovascularization, but no alteration of VEGF expression. In mice with laser-induced rupture of Bruch's membrane, deficiency of inducible NOS (iNOS) or neuronal NOS (nNOS), but not endothelial NOS (eNOS), caused a significant decrease in choroidal neovascularization. In mice with oxygen-induced ischemic retinopathy, deficiency of eNOS, but not iNOS or nNOS caused a significant decrease in retinal neovascularization and decreased expression of VEGF. These data suggest that NO contributes to both retinal and choroidal neovascularization and that different isoforms of NOS are involved in different settings and different disease processes. A broad spectrum NOS inhibitor may have therapeutic potential for treatment of both retinal and choroidal neovascularization.  相似文献   

15.
sAPP, the secretory domain of the beta-amyloid precursor protein (APP), exerts a growth promoting and motogenic activity on keratinocytes. Here we report on the expression of APP and its homologue, the amyloid precursor like protein 2 (APLP2), during cutaneous wound repair using a full-thickness excisional wound healing model in mice. In unwounded skin APP was predominantly expressed in the basal cell layer. During wound healing increased suprabasal expression of APP was observed in all cell layers of the hyperproliferative epithelium at the wound margin. APP mRNA was increased up to 2.3-fold, whereas the APLP2 mRNA was decreased. Immunocytochemically, all proliferation competent keratinocytes of the normal as well as the wound site epidermis showed increased expression of APP but not of APLP2. Using culture models of keratinocyte differentiation the release of sAPP was found to be significantly higher in proliferating cells, i.e., when cultured at subconfluency or at low [Ca(2+)], than in quiescent, partially differentiated keratinocytes cultured at confluency or at high [Ca(2+)]. Our results suggest that sAPP secretion is presumably also increased in proliferation competent keratinocytes of the wound margin and that sAPP due to its growth promoting and motogenic function might participate in the control of epidermal wound repair.  相似文献   

16.
Osteopontin is induced by nitric oxide in RAW 264.7 cells   总被引:1,自引:0,他引:1  
Nitric oxide (NO) produced by macrophages is thought to contribute to various pathological conditions. Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of NO production. However, the relationship between NO and endogenous OPN in activated macrophages has not yet been elucidated. We therefore examined expression of endogenous iNOS and OPN in a murine macrophage cell line, RAW 264.7 cells, by treating the cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Treatment of cells with LPS and IFN-gamma resulted in an increase of iNOS mRNA to maximum at 12 h after stimulation. In contrast, OPN mRNA was induced more slowly than iNOS mRNA. Induction of both iNOS and OPN mRNA in RAW 264.7 cells was markedly suppressed by addition of the specific iNOS inhibitor S-2-aminoethyl isothiourea dihydrobromide. The NOS inhibitor NG-methyl-L-arginine also suppressed induction of OPN mRNA but hardly affected iNOS mRNA expression. The NO-releasing agent spermine-NONOate but not peroxynitrite enhanced induction of OPN mRNA. These results suggest that NO directly up-regulates the endogenous OPN in macrophages stimulated with LPS and IFN-gamma. This up-regulation of endogenous OPN may represent a negative feedback system acting to reduce iNOS expression.  相似文献   

17.
In this study, we demonstrated that lipopolysaccharide (LPS) markedly increased nitric oxide (NO) production and indoleamine 2,3-dioxygenase (IDO) activity in mouse peritoneal cells in the presence of activated Vα14 natural killer T cells. Moreover, LPS-induced NO production in peritoneal cells from IDO-knockout (KO) mice was more increased than that from wild-type mice. However, there was no significant difference in the expression of inducible nitric oxide synthase (iNOS) mRNA and protein between the wild-type and IDO-KO mice. No significant difference was also observed in the ratio of CD3- and DX5-positive cells and F4/80- and TLR4-positive cells in peritoneal cells between the wild-type and IDO-KO mice. Since the IDO activity was enhanced by an NO inhibitor, NO may be post-translationally consumed by inhibiting the IDO activity. IDO is well known to play an important role in immunosuppression during inflammatory disease. Therefore, the inhibition of IDO by NO may exacerbate inflammation in the peritoneal cavity.  相似文献   

18.
Nitric oxide (NO) has emerged as an important mediator of many physiological functions. Recent reports have shown that NO participates in the wound healing process, however, its role in keloid formation remains unclear. This study aimed to investigate the effect of NO on keloid fibroblasts (KF) and to determine the levels of inducible nitric oxide synthase (iNOS) expression in clinical specimens of keloid. Scar tissue from seven keloid patients with matched perilesion skin tissue controls was studied for inducible nitric oxide synthase expression and location. In addition, primary keloid and normal scar skin fibroblast cultures were set up to investigate the effects of NO in inducing collagen type I expression. Inducible nitric oxide synthase expression, and NO production were elevated in keloid scar tissues but not in matched perilesion skin tissues. Furthermore, exposure of KF to exogenous NO resulted in increased expression of collagen type I in a dose-dependent manner. NO exposure also induced time-course dependent collagen I expression that peaked at 24h in KF. Taken together, these results indicate that excess collagen formations in keloid lesion may be attributed to iNOS overexpression.  相似文献   

19.
Nitric oxide (NO) represents a short lived mediator that pivotally drives keratinocyte movements during cutaneous wound healing. In this study, we have identified p68 DEAD box RNA helicase (p68) from an NO-induced differential keratinocyte cDNA library. Subsequently, we have analyzed regulation of p68 by wound-associated mediators in human and murine keratinocytes. NO, serum, growth factors, and pro-inflammatory cytokines were potent inducers of p68 expression in the cells. p68 was constitutively expressed in the epithelial compartment of murine skin. Upon injury, we found a transient down-regulation of overall p68 protein in wound tissue. However, p68 did not completely disappear during early wound repair, as we found an expression of p68 protein in isolated wound margin tissue 24 h after wounding. Moreover, immunohistochemistry and cell fractionation analysis revealed a restricted localization of p68 in keratinocyte nuclei of the developing epithelium. Accordingly, cultured keratinocytes also showed a nuclear localization of the helicase. Moreover, confocal microscopy revealed a strong localization of p68 protein within the nucleoli of the cells. Functional analyses demonstrated that p68 strongly participated in keratinocyte proliferation and gene expression. Keratinocytes that constitutively overexpressed p68 protein were characterized by a marked increase in serum-induced proliferation and vascular endothelial growth factor expression, whereas down-regulation of endogenous p68 using small interfering RNA markedly attenuated serum-induced proliferation and vascular endothelial growth factor expression. Altogether, our results suggest a tightly controlled expression and nucleolar localization of p68 in keratinocytes in vitro and during skin repair in vivo that functionally contributes to keratinocyte proliferation and gene expression.  相似文献   

20.
Remodeling and relaxation of the mouse pubic symphysis (PS) are central events in parturition. The mouse PS remodels in a hormone-controlled process that involves the modification of the fibrocartilage into an interpubic ligament (IpL), followed by its relaxation prior to parturition. It is recognized that nitric oxide synthase (NOS) and consequently nitric oxide (NO) generation play important roles in extracellular matrix modification, and may promote cytoskeleton changes that contribute to the remodeling of connective tissue, which precedes the onset of labor. To our knowledge, no studies thus far have investigated inducible nitric oxide synthase (iNOS) expression, protein localization, and NO generation in the mouse PS during pregnancy. In this work, we used a combination of the immunolocalization of iNOS, its relative mRNA expression, and NO production to examine the possible involvement of iNOS in remodeling and relaxation of the mouse IpL during late pregnancy. The presence of iNOS was observed in chondrocytes and fibroblast-like cells in the interpubic tissues. In addition, iNOS mRNA and NO production were higher during preterm labor on Day 19 of pregnancy (D19) than NO production on D18 or in virgin groups. The significant increase in iNOS mRNA expression and NO generation from the partially relaxed IpL at D18 to the completely relaxed IpL at D19 may indicate that NO plays an important role in late pregnancy during relaxation of the mouse IpL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号