首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of different input data, functional units, allocation methods, reference systems and other assumptions complicates comparisons of LCA bioenergy studies. In addition, uncertainties and use of specific local factors for indirect effects (like land-use change and N-based soil emissions) may give rise to wide ranges of final results. In order to investigate how these key issues have been addressed so far, this work performs a review of the recent bioenergy LCA literature. The abundance of studies dealing with the different biomass resources, conversion technologies, products and environmental impact categories is summarized and discussed. Afterwards, a qualitative interpretation of the LCA results is depicted, focusing on energy balance, GHG balance and other impact categories. With the exception of a few studies, most LCAs found a significant net reduction in GHG emissions and fossil energy consumption when bioenergy replaces fossil energy.  相似文献   

2.

Purpose

Governments around the world encourage the use of biofuels through fuel standard policies that require the addition of renewable diesel in diesel fuel from fossil fuels. Environmental impact studies of the conversion of biomass to renewable diesel have been conducted, and life cycle assessments (LCA) of the conversion of lignocellulosic biomass to hydrogenation-derived renewable diesel (HDRD) are limited, especially for countries with cold climates like Canada.

Methods

In this study, an LCA was conducted on converting lignocellulosic biomass to HDRD by estimating the well-to-wheel greenhouse gas (GHG) emissions and fossil fuel energy input of the production of biomass and its conversion to HDRD. The approach to conduct this LCA includes defining the goal and scope, compiling a life cycle inventory, conducting a life cycle impact assessment, and executing a life cycle interpretation. All GHG emissions and fossil fuel energy inputs were based on a fast pyrolysis plant capacity of 2000 dry tonnes biomass/day. A functional unit of 1 MJ of HDRD produced was adopted as a common unit for data inputs of the life cycle inventory. To interpret the results, a sensitivity analysis was performed to measure the impact of variables involved, and an uncertainty analysis was performed to assess the confidence of the results.

Results and discussion

The GHG emissions of three feedstocks studied—whole tree (i.e., chips from cutting the whole tree), forest residues (i.e., chips from branches and tops generated from logging operations), and agricultural residues (i.e., straw from wheat and barley)—range from 35.4 to 42.3 g CO2,eq/MJ of HDRD (i.e., lowest for agricultural residue- and highest for forest residue-based HDRD); this is 53.4–61.1 % lower than fossil-based diesel. The net energy ratios range from 1.55 to 1.90 MJ/MJ (i.e., lowest for forest residue- and highest for agricultural residue-based HDRD) for HDRD production. The difference in results among feedstocks is due to differing energy requirements to harvest and pretreat biomass. The energy-intensive hydroprocessing stage is responsible for most of the GHG emissions produced for the entire conversion pathway.

Conclusions

Comparing feedstocks showed the significance of the efficiency in the equipment used and the physical properties of biomass in the production of HDRD. The overall results show the importance of efficiency at the hydroprocessing stage. These findings indicate significant GHG mitigation benefits for the oil refining industry using available lignocellulosic biomass to produce HDRD for transportation fuel.
  相似文献   

3.
Xu J  Wang Z  Cheng JJ 《Bioresource technology》2011,102(17):7613-7620
Bermuda grass is a promising feedstock for the production of fuel ethanol in the Southern United States. This paper presents a review of the significant amount of research on the conversion of Bermuda grass to ethanol and a brief discussion on the factors affecting the biomass production in the field. The biggest challenge of biomass conversion comes from the recalcitrance of lignocellulose. A variety of chemical, physico-chemical, and biological pretreatment methods have been investigated to improve the digestibility of Bermuda grass with encouraging results reported. The subsequent enzymatic hydrolysis and fermentation steps have also been extensively studied and effectively optimized. It is expected that the development of genetic engineering technologies for the grass and fermenting organisms has the potential to greatly improve the economic viability of Bermuda grass-based fuel ethanol production systems. Other energy applications of Bermuda grass include anaerobic digestion for biogas generation and pyrolysis for syngas production.  相似文献   

4.
Ethanol fuel can be produced renewably from numerous plant and waste materials, but harnessing the energy of lignocellulosic feedstocks has been particularly challenging in the development of this alternative fuel as a substitute for petroleum-based fuels. Consolidated bioprocessing has the potential to make the conversion of biomass to fuel an economical process by combining enzyme production, polysaccharide hydrolysis, and sugar fermentation into a single unit operation. This consolidation of steps takes advantage of the synergistic nature of enzyme systems but requires the use of one or a few organisms capable of producing highly efficient cellulolytic enzymes and fermenting most of the resulting sugars to ethanol with minimal byproduct formation while tolerating high levels of ethanol. In this review, conventional ethanol production, consolidated bioprocessing, and simultaneous saccharification and fermentation are described and compared. Several wild-type and genetically engineered microorganisms, including strains of Clostridium thermocellum, Saccharomyces cerevisiae, Klebsiella oxytoca, Escherichia coli, Flammulina velutipes, and Zymomonas mobilis, among others, are highlighted for their potential in consolidated bioprocessing. This review examines the favorable and undesirable qualities of these microorganisms and their enzyme systems, process engineering considerations for particular organisms, characteristics of cellulosomes, enzyme engineering strategies, progress in commercial development, and the impact of these topics on current and future research.  相似文献   

5.
Background, aim and scope  The interest in the use of biomass as a renewable energy resource has rapidly grown over the past few years. In Singapore, biomass resources are mostly from waste wood. This article presents a few technological options, namely carbonization, for the conversion of woody biomass into a solid fuel, charcoal. Materials and methods  In the first stage, a life cycle assessment (LCA) ‘gate-to-gate’ system was developed for a conventional carbonizer system, a modern carbonizer from Japan, and a proposed four-stage partial furnace carbonizer from Tunisia. The potential environmental impacts were generated for global warming potential, acidification, human toxicity and photochemical oxidant potential. Based on the first set of results, the second LCA investigation was carried out comparing the selected carbonizer from Japan and an existing incinerator in Singapore. The second LCA adopted a unique approach combining social costs of pollution with the economic factors of the two biomass conversion technologies. Results  The carbonizer from Japan resulted in approximately 85% less greenhouse gases than the conventional carbonization system and 54% less than the proposed four-stage carbonizer from Tunisia. In terms of acidification and human toxicity, the carbonizers from Japan and Tunisia display nearly similar results—both were considerably lower than the conventional carbonizer. For photochemical oxidant potential, very minimal emissions are generated from the four-stage carbonizer and nearly zero impact is realized for the carbonization technology from Japan. Discussion  From the first set of LCA results, the Japanese carbonizer is favored in terms of its environmental results. The highest environmental impacts from the conventional carbonizer were due to large and uncontrolled emissions of acidic gases, greenhouse gases (particularly CO2 and CH4), particulates, and non-methane volatile organic compounds from both fugitive sources and energy requirements. The second LCA addressed the performance of the carbonizer from Japan against an existing incinerator in terms of environmental as well as cost performances. This unique approach translated pollution emissions into monetary costs to highlight the impacts of social health. Conclusions  For the first LCA, the accumulated impacts from the Japanese carbonizer proved to display significantly lower environmental impacts, especially for global warming potential. The overall environmental performance of the four-stage carbonizer from Tunisia ranked slightly lower than the one from Japan and much higher than the conventional carbonizer. The second LCA results displayed a noteworthy improvement of 90% for human health from the modern Japanese carbonizer technology—when compared against conventional incinerators. Without considering health issues or social costs, the total value per ton of wood treated is nearly similar for both incinerator and carbonizer. Recommendations and perspectives  The interest in biomass as raw material for producing energy has emerged rapidly in many countries. However, careful analysis and comparison of technologies are necessary to ensure favorable environmental outcomes. A full life cycle study, along with costs and the impact of pollution on society, should be performed before any large-scale biomass conversion technology is implemented. LCA can be applied to quantify and verify the overall environmental performance of a particular technology of interest as well as further explore the proposed technology in terms of costs and social implications.  相似文献   

6.
Uruguay is pursuing renewable energy production pathways using feedstocks from its agricultural sector to supply transportation fuels, among them ethanol produced from commercial technologies that use sweet and grain sorghum. However, the environmental performance of the fuel is not known. We investigate the life cycle environmental and cost performance of these two major agricultural crops used to produce ethanol that have begun commercial production and are poised to grow to meet national energy targets for replacing gasoline. Using both attributional and consequential life cycle assessment (LCA) frameworks for system boundaries to quantify the carbon intensity, and engineering cost analysis to estimate the unit production cost of ethanol from grain and sweet sorghum, we determined abatement costs. We found 1) an accounting error in estimating N2O emissions for a specific crop in multiple crop rotations when using Intergovernmental Panel on Climate Change(IPCC) Tier 1 methods within an attributional LCA framework, due to N legacy effects; 2) choice of baseline and crop identity in multiple crop rotations evaluated within the consequential LCA framework both affect the global warming intensity (GWI) of ethanol; and 3) although abatement costs for ethanol from grain sorghum are positive and from sweet sorghum they are negative, both grain and sweet sorghum pathways have a high potential for reducing transport fuel GWI by more than 50% relative to gasoline, and are within the ranges targeted by the US renewable transportation fuel policies.  相似文献   

7.
Conventionally, production of methyl ester fuels from microalgae occurs through an energy-intensive two-step chemical extraction and transesterification process. To improve the energy efficiency, we performed in situ enzymatic conversion of whole algae biomass from an oleaginous heterokont microalga Nannochloropsis oceanica IMET1 with the immobilized lipase from Candida antarctica. The fatty acid methyl ester yield reached 107.7% for dry Nannochloropsis biomass at biomass to t-butanol to methanol weight ratio of 1:2:0.5 and a reaction time of 12 h at 25 °C, representing the first report of efficient whole algae biomass conversion into fatty acid methyl esters at room temperature. Different forms of algal biomass including wet Nannochloropsis biomass were tested. The maximum yield of wet biomass was 81.5%. Enzyme activity remained higher than 95% after 55 days of treatment (equal to 110 cycles of reaction) under the conditions optimized for dry algae biomass conversion. The low reaction temperature, high enzyme stability, and high yield from this study indicate in situ enzymatic conversion of dry algae biomass may potentially be used as an energy-efficient method for algal methyl ester fuel production while allowing co-product recovery.  相似文献   

8.

Purpose

The aim of this paper is to highlight the challenges that face the use of life cycle assessment (LCA) for the development of emerging technologies. LCA has great potential for driving the development of products and processes with improved environmental credentials when used at the early research stage, not only to compare novel processing with existing commercial alternatives but to help identify environmental hotspots. Its use in this way does however provide methodological and practical difficulties, often exacerbated by the speed of analysis required to enable development decisions to be made. Awareness and understanding of the difficulties in such cases is vital for all involved with the development cycle.

Methods

This paper employs three case studies across the diverse sectors of nanotechnology, lignocellulosic ethanol (biofuel), and novel food processes demonstrating both the synergy of issues across different sectors and highlighting the challenges when applying LCA for early research. Whilst several researchers have previously highlighted some of the issues with use of LCA techniques at an early stage, most have focused on a specific product, process development, or sector. The use of the three case studies here is specifically designed to highlight conclusively that such issues are prevalent to use of LCA in early research irrespective of the technology being assessed.

Results and discussion

The four focus areas for the paper are system boundaries, scaling issues, data availability, and uncertainty. Whilst some of the issues identified will be familiar to all LCA practitioners as problems shared with standard LCAs, their importance and difficulty is compounded by factors distinct to novel processes as emerging technology is often associated with unknown future applications, unknown industrial scales, and wider data gaps that contribute to the level of LCA uncertainty. These issues, in addition with others that are distinct to novel applications, such as the challenges of comparing laboratory scale data with well-established commercial processing, are exacerbated by the requirement for rapid analysis to enable development decisions to be made.

Conclusions

Based on the challenges and issues highlighted via illustration through the three case studies, it is clear that whilst transparency of information is paramount for standard LCAs, the sensitivities, complexities, and uncertainties surrounding LCAs for early research are critical. Full reporting and understanding of these must be established prior to utilising such data as part of the development cycle.  相似文献   

9.

Life cycle assessment (LCA) of indigenous freshwater microalgae, Scenedesmus dimorphus, cultivation in open raceway pond and its conversion to biodiesel and biogas were carried out. The LCA inventory inputs for the biogas scenario was entirely based on primary data obtained from algal cultivation (in pilot scale raceway pond), harvesting, and biogas production; while only the downstream processing involved in biodiesel production namely drying, reaction and purification were based on secondary data. Overall, eight scenarios were modeled for the integrated process involving: algae-based CO2 capture and downstream processing scenarios for biodiesel and biogas along with impact assessment of nutrient addition and extent of recycling in a life cycle perspective. The LCA results indicated a huge energy deficit and net CO2 negative in terms of CO2 capture for both the biodiesel and biogas scenarios, majorly due to lower algal biomass productivity and higher energy requirements for culture mixing. The sensitivity analysis indicated that variability in the biomass productivity has predominant effect on the primary energy demand and global warming potential (GWP, kg CO2 eq.) followed by specific energy consumption for mixing algal culture. Furthermore, the LCA results indicated that biogas conversion route from microalgae was more energy efficient and sustainable than the biodiesel route. The overall findings of the study suggested that microalgae-mediated CO2 capture and conversion to biodiesel and biogas production can be energy efficient at higher biomass productivity (> 10 g m−2 day−1) and via employing energy-efficient systems for culture mixing (< 2 W m−3).

  相似文献   

10.
Life cycle assessment (LCA) has only had limited application in the geotechnical engineering discipline, though it has been widely applied to civil engineering systems such as pavements and roadways. A review of previous geotechnical LCAs showed that most studies have tracked a small set of impact categories, such as energy and global warming potential. Accordingly, currently reported environmental indicators may not effectively or fully capture important environmental impacts and tradeoffs associated with geotechnical systems, including those associated with land and soil resources. This research reviewed previous studies, methods, and models for assessment of land use and soil‐related impacts to understand their applicability to geotechnical LCA. The results of this review show that critical gaps remain in current knowledge and practice. In particular, further development or refinement of environmental indicators, impact categories, and cause–effect pathways is needed as they pertain to geotechnical applications—specifically those related to soil quality, soil functions, and the ecosystem services soils provide. In addition, many existing methods emerge from research on land use and land use change related to other disciplines (e.g., agriculture). For applicability to geotechnical projects, the resolution of many of these methods and resulting indicators need to be downscaled from the landscape/macro scale to the project scale. In the near term, practitioners of geotechnical LCA should begin tracking changes to soil properties and report impacts to land and soil resources qualitatively.  相似文献   

11.
Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.  相似文献   

12.
Photo‐electrochemical (PEC) solar energy conversion offers the promise of low‐cost renewable fuel generation from abundant sunlight and water. In this Review, recent developments in photo‐electrochemical water splitting are discussed with respect to this promise. State‐of‐the‐art photo‐electrochemical device performance is put in context with the current understanding of the necessary requirements for cost‐effective solar hydrogen generation (in terms of solar‐to‐hydrogen conversion efficiency and system durability, in particular). Several important studies of photo‐electrochemical hydrogen generation at p‐type photocathodes are highlighted, mostly with protection layers (for enhanced durability), but also a few recent examples where protective layers are not needed. Recent work with the widely studied n‐type BiVO4 photoanode is detailed, which highlights the needs and necessities for the next big photoanode material yet to be discovered. The emerging new research direction of photo‐electrocatalytic upgrading of biomass substrates toward value‐added chemicals is then discussed, before closing with a commentary on how research on PEC materials remains a worthwhile endeavor.  相似文献   

13.
14.
The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world’s energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.  相似文献   

15.
Energy production from biomass (Part 2): Conversion technologies   总被引:27,自引:0,他引:27  
The use of biomass to provide energy has been fundamental to the development of civilisation. In recent times pressures on the global environment have led to calls for an increased use of renewable energy sources, in lieu of fossil fuels. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. A brief review of the main conversion processes is presented, with specific regard to the production of a fuel suitable for spark ignition gas engines.  相似文献   

16.
The production of methane (CH4) via the anaerobic digestion of microalgae biomass residues from the biodiesel production process has the potential to meet some of the energy requirements of the primary biomass to fuel conversion process. This paper investigates the practical CH4 yields achievable from the anaerobic conversion of the microalgae residues (as well as codigestion with glycerol) after biodiesel production using both the conventional and in situ transesterification methods. Results demonstrate that the type of lipid extraction solvent utilized in the conventional transesterification process could inhibit subsequent CH4 production. On the basis of actual CH4 production, a recoverable energy of 8.7–10.5 MJ kg?1 of dry microalgae biomass residue was obtained using the lipid extracted and transesterified microalgae samples. On codigesting the microalgae residues with glycerol, a 4–7% increase in CH4 production was observed.  相似文献   

17.

Purpose

There has been lively debate, especially in Finland and Sweden, on the climate impacts of peat fuel. Previous studies of peat fuel's life-cycle climate impacts were controversial in their interpretation. The aim of this paper is conclusive examination of the issues of LCA methodology, derived from critical review of previous studies and recalculation based on the latest knowledge of greenhouse gas balances related to peat fuel’s utilisation and the radiative forcing impacts of greenhouse gases.

Methods

The most recent findings on emissions and the gas fluxes between soil, vegetation and atmosphere were used in calculation of the life-cycle climate impacts of the various peat fuel utilisation chains by means of LCA methodology. In the main, the calculation methods and rules were the same as in the previous studies, with the aim being to distinguish the impact of peat fuel’s utilisation from that of the natural or semi-natural situation. A dynamic method was employed for assessing changes in radiative forcing. The results of alternative peat fuel utilisation chains were compared to the corresponding result for coal.

Results

There are many steps in peat fuel LCA, where different assumptions lead to different outcomes. Determining the functional unit, reference situations and system boundaries, as well as the emission calculation methods, is important from this point of view. Determination of the initial reference situation emerged as one of the critical points in the calculations. Time scale can strongly affect the final outcomes in a study where effects of long-term land-use change are considered.

Conclusions

Each peatland area is unique. The higher the greenhouse gas emissions in the initial reference situation, the greater is the climate impact of the area and the more suitable the area is for peat extraction. The study showed that more greenhouse gas flux measurements are needed, for better assessment of the climate impacts of different potential peat extraction sites. Climate change mitigation requires quick actions, and uncertainties related to emissions are higher for longer time spans. Therefore, it can be concluded that a perspective spanning more than 100 years is inappropriate in peat fuel's life-cycle climate impact assessments.  相似文献   

18.
Biodiesel outperforms diesel in emissions and engine performance. They burn efficiently in diesel engines and are eco-friendly. Since cashew nut shell liquid (CNSO) is waste, commercial biodiesel production from it should be profitable. CNSO is cheap and can reduce cashew processing factory waste. From cashew kernels, CNSL is extracted using various mechanical, thermal, and solvent extraction techniques. This article examines current research into using cashew nutshell liquid biodiesel (CNSLBD) in diesel engines. The work also discusses Indian biodiesel demand, availability, export information, life cycle cost analysis, cost economics of per hectare yield, Indian government initiative of CNSO. This review also evaluates the viability of this fuel as an alternative energy source. CNSLBD is a prospective alternative fuel that has the potential to benefit both the cashew nut industry and the energy industry. In addition to this, the study examines the procedures for extracting CNSO. According to the findings of the study, CNSO is a prospective alternative fuel that has the potential to benefit both the cashew nut industry and the energy industry.  相似文献   

19.
Lignocellulosic biomass has been proposed as an option for reducing global dependence on nonrenewable energy sources, such as oil. Selection and development of biomass feedstocks that efficiently yield the maximum fuel or biomaterial requires the availability of reliable methods for compositional and structural characterization of plant material. Many standard methods for biomass analysis are laborious and slow, and employ a variety of harsh reagents requiring some degree of remediation. The use of simpler and more rapid spectroscopic methods has proved invaluable in analyzing biomass. In the twenty-first century, researchers have employed techniques such as Raman, mid-infrared, and near-infrared spectroscopy for a wide range of applications in endeavors to further understand biofuel feedstocks. While many methods remain time consuming and expensive, a growing interest in high-throughput spectroscopic techniques has provided faster and larger scale feedstock screening for desirable traits. This review seeks to provide an overview of both high-throughput techniques and those requiring longer analysis times but still providing abundant qualitative and quantitative data. While applications of these instrumental methods have been researched for decades, more recent developments will be discussed here.  相似文献   

20.
The effect of microwave irradiation on the simultaneous extraction and transesterification (in situ transesterification) of dry algal biomass to biodiesel was investigated. A high degree of oil/lipid extraction from dry algal biomass and an efficient conversion of the oils/lipids to biodiesel were demonstrated in a set of well-designed experimental runs. A response surface methodology (RSM) was used to analyze the influence of the process variables (dry algae to methanol (wt/vol) ratio, catalyst concentration, and reaction time) on the fatty acid methyl ester conversion. Based on the experimental results and RSM analysis, the optimal conditions for this process were determined as: dry algae to methanol (wt/vol) ratio of around 1:12, catalyst concentration about 2 wt.%, and reaction time of 4 min. The algal biodiesel samples were analyzed with GC-MS and thin layer chromatography (TLC) methods. Transmission electron microscopy (TEM) images of the algal biomass samples before and after the extraction/transesterification reaction are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号