首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lectins as probes to Pneumocystis carinii surface glycocomplexes   总被引:2,自引:0,他引:2  
The binding characteristics of a panel of commercially available FITC-conjugated lectins to Pneumocystis carinii (Pc) were assessed by fluorescence microscopy and flow cytometry. Rat Pc obtained from infected lung homogenates were incubated with FITC-conjugated lectins in a series of concentrations, counterstained with propidium iodide, and analyzed for percent fluorescence and fluorescence intensity. All organisms bound concanavalin A and Wisteria floribunda agglutinin, 2 representatives of the glucose/mannose-binding group. From the lectin group specific for N-acetylglucosamine, Pc reacted more strongly with wheat germ agglutinin than with Solanum tuberosum agglutinin or Griffonia simplicifolia II lectin. Pneumocystis treated with lectins specific for N-acetyl-D-galactosamine and galactose exhibited much variation; the cells reacted moderately well to soybean agglutinin and less to Bauhinia purpurea, Maclura pomifera and Dolichos biflorus agglutinins and Griffonia simplicifolia I lectin. Arachis hypogaea agglutinin, Viscum album agglutinin and Griffonia simplicifolia I-beta 4 lectin had not effect. The organisms reacted weakly with Ulex europeus I agglutinin which is specific for fucose and did not react with Limax flavus lectin, which is specific for sialic acid. Competitive inhibition studies using relevant carbohydrates were performed to indicate that the positive reactions were specific. These studies should help to elucidate the mechanisms of attachment and pathogenesis of this organism.  相似文献   

2.
Pneumocystis carinii obtained from infected rat lung homogenates was incubated with fluorescein isothiocyanate-conjugated lectins, counterstained with the nuclear stain, propidium iodide (PI), and analyzed by dual parameter histograms for lectin-associated green and PI-associated red fluorescence using a fluorescence-activated cell sorter. The presence of glucose/mannose moieties was evidenced by the binding of all organisms to concanavalin A and Wisteria floribunda. From the lectin group specific for N-acetyl-D-glucosamine, P. carinii reacted strongly with wheat germ agglutinin and less intensely with Solanum tuberosum. Reaction with lectins specific for N-acetyl-D-galactosamine/galactose was variable, probably reflecting the secondary binding affinities of the lectins used. Soybean agglutinin, Bauhinia purpurea agglutinin, and Maclura pomifera agglutinin reacted moderately, whereas Dolichos biflorus agglutinin, and Griffonia simplicifolia I reacted less avidly. The organisms reacted partially with Ulex europaeus agglutinin, a lectin specific for fucose, and did not react well with Arachis hypogaea, Viscum album agglutinin, and Griffonia simplicifolia I beta 4, lectins specific for galactose. A very weak fluorescent signal was detected with Limax flavus agglutinin, suggesting little or no sialic acid was present. All lectin-binding reactions were confirmed for specificity by inhibition with the relevant carbohydrates. Flow cytometric analysis of lung-derived Pneumocystis organisms stained with fluorescent surface and nuclear dyes provides a rapid method for characterization of large parasite populations.  相似文献   

3.
Pneumocystis carinii: surface reactive carbohydrates detected by lectin probes   总被引:11,自引:0,他引:11  
Pneumocystis carinii obtained from rat lungs (RLH) and in vitro culture (RTC) were reacted with a panel of 14 fluorescein isothiocyanate conjugated lectins. Percentage fluorescence and fluorescent intensity were determined for both trophic and cyst forms. All RLH and RTC derived organisms bound strongly concanavalin A (Con A), and wheat germ agglutinin (WGA). However, differences in soybean agglutinin (SBA) binding between RLH and RTC organisms was observed. Different subsets of the organism bound lectins from Griffonia simplicifolia I, Maclura pomifera, and Bauhinia purpurea, indicating heterogeneity in the surface carbohydrates within each of the RLH and RTC populations. Eight lectins reacted very weakly or not at all: Dolichos biflorus, Arachis hypogaea, Griffonia simplicifolia I-beta 4, Solanum tuberosum, Ulex europeus, Griffonia simplicifolia II, Viscum album, and Limax flavus. The results indicate that P. carinii trophic and cyst forms have surface constituents containing mannose, N-acetylglucosamine and N-acetylgalactosamine as the predominant carbohydrates. Molecules resembling sialic acid and beta-galactose are absent or inaccessible. The surface glycoconjugates identified in these studies may play a role in the adherent properties of P. carinii.  相似文献   

4.
Y Okamura 《Histochemistry》1990,94(5):489-496
Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Summary Cytochemical localization of blood group ABH antigens was examined in secretory cells of human cervical glands by application of a post-embedding lectin-gold as well as immuno-gold labeling procedure using monoclonal antibodies. Blood group specific lectins such as Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Griffonia simplicifolia agglutinin I-B4 (GSAI-B4) and Ulex europaeus agglutinin-I (UEA-I) reacted with secretory granules but not with other cytoplasmic organellae such as nucleus and cell membrane. The reactivity of secretory granules with these lectins showed strict dependence on the blood group and secretor status of tissue donors. The binding patterns with these lectins were not homogeneous, but exhibited marked cellular and subcellular heterogeneity. Thus, for example, in blood group A individuals, some granules were stained strongly with DBA and others were weakly or not at all with the lectin. Such a heterogenous labeling with the lectin was observed even in the same cells. Similar results were obtained with UEA-I and GSAI-B4 staining in blood group O and B secretor individuals, respectively. Monoclonal antibodies likewise reacted specifically with the granules but they occasionally bound to some nucleus. The labeling pattern of the antibodies with the granules was essentially the same as those of lectins. However, difference was also observed between monoclonal antibody and lectin staining, that is, monoclonal anti-A antibody reacted weakly but consistently with granules from blood group A nonsecretors but DBA (HPA) did not; staining with UEA-I was observed in granules from the secretor individuals of any blood groups whereas monoclonal anti-H antibody reacted with granules from blood group O and some A secretor individuals but not from B and AB secretor individuals; GSAI-B4 reacted uniformly with granules throughout the cells whereas monoclonal anti-B antibody bound to limited number of granules in the same cells. This was confirmed by the double labeling experiments with the lectin and the antibody. These results suggest that the different types of antigens as to the binding ability for monoclonal antibodies and lectins are expressed on different granules in the same cell.  相似文献   

6.
Summary Eleven different fluorescent lectin-conjugates were used to reveal the location of carbohydrate residues in frozen sections of the anterior segment of bovine eyes. The lectins were specific for the following five major carbohydrate groups: (1) glucose/mannose group (Concanavalin A (Con A)); (2)N-acetylglucosamine group (wheat germ agglutinin (WGA)); (3) galactose/N-acetylgalactosamine group (Dolichos biflorus agglutinin (DBA),Helix pomatia agglutinin (HPA),Helix aspersa agglutinin (HAA),Psophocarpus tetragonolobus agglutinin (PTA),Griffonia simplicifolia agglutinin-I-B4 (GSA-I-B4),Artocarpus integrifolia agglutinin (JAC), peanut agglutinin (PNA) andRicinus communis agglutinin (RCA-I)); (4)l-fucose group (Ukex europaeus agglutinin (UEA-I)); (5) sialic acid group (wheat germ agglutinin (WGA)). All the studied lectins except UEA-I reacted widely with different structures and the results suggest that there are distinct patterns of expression of carbohydrate residues in the anterior segment of the bovine eye. UEA-I bound only to epithelial structures. Some of the lectins reacted very intensely with apical cell surfaces of conjunctival and corneal epithelia suggesting a different glycosylation at the glycocalyx of the epithelia. Also, the binding patterns of conjunctival and corneal epithelia differed with some of the lectins: PNA and RCA-I did not bind at all, and GSA-I-B4 bound only very weakly to the epithelium of the cornea, whereas they bound to the epithelium of the conjunctiva. In addition, HPA, HAA, PNA and WGA did not bind to the corneal basement membrane, but bound to the conjunctiva and vascular basement membranes. This suggests that corneal basement membrane is somehow different from other basement membranes. Lectins with the same carbohydrate specificity (DBA, HPA, HAA and PTA) reacted with the sections almost identically, but some differences were noticed: DBA did not bind to the basement membrane of the conjunctiva and the sclera and did bind to the basement membrane of the cornea, whereas other lectins with same carbohydrate specificities reacted vice versa. Also, the binding of PTA to the trabecular meshwork was negligible, whereas other lectins with the same carbohydrate specificities reacted with the trabecular meshwork. GSA-I-B4 reacted avidly with the endothelium of blood vessels and did not bind to the stroma, so that it made blood vessels very prominent and it might be used as an endothelial marker. This lectin also reacted avidly with the corneal endothelium. Therefore, GSA-I-B4 appears to be a specific marker in bovine tissues for both blood vessel and corneal endothelium cells.  相似文献   

7.
Lectin binding to parietal cells of human gastric mucosa   总被引:1,自引:0,他引:1  
A light microscopic and ultrastructural analysis of lectin receptors on parietal cells from human gastric mucosa was performed utilizing 12 biotinylated lectins in conjunction with an avidin-biotin-peroxidase complex. Peanut agglutinin conjugated directly to peroxidase was also used. Several fixatives and fixation regimens were evaluated for optimal preservation of parietal cell saccharide moieties. Formalin proved to be the most practical fixative for light microscopic studies. A periodate-lysine-paraformaldehyde (PLP) combination provided good preservation of lectin binding capacity but yielded relatively poor ultrastructure. Conversely, glutaraldehyde provided excellent preservation of ultrastructure but a somewhat diminished lectin binding activity, which was overcome by using long incubation times and high concentrations of reagents. Parietal cells reacted strongly with Bandieraea simplicifolia, Dolichos biflorus, peanut agglutinin, and soybean agglutinin (all specific for galactosyl/galactosaminyl groups) and weakly with Ulex europaeus (specific for fucose). At the light microscopic level a beaded, perinuclear staining pattern was observed which, ultrastructurally, corresponded to an intense staining of intracytoplasmic canaliculi. The membranes of the intracytoplasmic canaliculi were characterized by an abundance of galactosyl residues, a paucity of fucosyl groups, and a lack of mannosyl and glucosyl residues. The biochemical and physiological significance of these findings is discussed.  相似文献   

8.
M F Notter  J F Leary 《Cytometry》1987,8(5):518-525
Cell surface glycoproteins of mitotic neuroblastoma cells and cells differentiated by prostaglandin cyclic adenosine monophosphate treatment were quantified by flow cytometric analysis and specific fluorescent lectins. No differences in fluorescent lectin binding were seen between suspensions of mitotically active and differentiated N2AB-1 cells following exposure to either fluorescein (FL)-labeled soy bean agglutinin (FL-SBA) specific for N acetyl galactosamine or FL-concanavalin A (FL-CON A) which binds to mannose residues. These lectins, however, were shown to bind specifically to these cells as revealed by competitive blocking studies with hapten sugars. When FL Ulex europaeus (FL-UEA) specific for fucose was reacted with control or differentiated cells, no binding was seen even with an increased dose of lectin before or after enzyme treatment. However, differentiated N2AB-1 cells, reacted with FL-wheat germ agglutinin (FL-WGA) specific for N acetyl glucosamine, bound more FL-WGA than that seen for control cultures. Furthermore, specific sites for FL-WGA were shown to be saturable and were lost upon pretreatment of cells with neuraminidase. Neuraminidase pretreatment revealed masked sites for FL-CON A and FL-SBA since binding was increased at least twofold for these lectins on mitotic and differentiated cells. These data indicate that single cell measurements of surface glycoproteins can be made on living neural cells and that differentiation induces an increase in cell surface N-acetyl glucosamine residues.  相似文献   

9.
The physicochemical and binding properties of succinylated wheat germ agglutinin are described in comparison with these of unmodified wheat germ agglutinin. Succinylated wheat germ agglutinin is an acidic protein with a pI of 4.0 +/- 0.2 while the native lectin is basic, pI of 8.5. The solubility of succinylated wheat germ agglutinin is about 100 times higher than that of the unmodified lectin at neutral pH. Both lectins are dimeric at pH down to 5, and the dissociation occurs at pH lower than 4.5. The binding of oligosaccharides of N-acetylglucosamine to both lectins is very similar on the basis of fluorescence and phosphorescence studies. The minimal concentration required to agglutinate rabbit red blood cells is about 2 microgram/ml with both lectins and the concentrations of N-acetylglucosamine and di-N-acetylchitobiose which inhibit agglutination are similar with both lectins. The number of succinylated wheat germ agglutinin molecules bound to the surface of mouse thymocytes was ten times lower than that of the unmodified lectin although the apparent binding constant was only slightly different between the two lectins. The dramatic decrease of the apparent number of cell surface receptors upon succinylation of the lectin is discussed on the basis of the decrease of the isoelectric point and of the acidic properties of the cell surface.  相似文献   

10.
Binding of 12 lectins to bull sperm was analyzed to select a lectin that bound preferentially to the acrosomal region. Peanut agglutinin (PNA) and Pisum sativum agglutinin (PSA) were suitably specific for intracellular, acrosome-associated glycoconjugates. Peanut agglutinin exhibited almost no detectable binding to sperm surface receptors, but intense binding to the area of the acrosome anterior to the equatorial segment. In contrast, PSA bound intensely to anterior and equatorial acrosomal regions, and weakly to the other regions of the sperm. Acrosomal labeling by both lectins decreased when sperm were induced to acrosome-react with calcium ionophore. To determine if these lectins could be used to assess acrosomal status, we compared the percentage of acrosome-reacted sperm that were detected by staining with naphthol yellow and erythrosin B with the percentage that were detected by lectin labeling. The incidence of reacted sperm detected by PSA labeling was not significantly different from that detected by naphthol yellow/ erythrosin B (P = 0.46). The incidence of reacted sperm detected by PNA was correlated with the incidence detected by naphthol yellow/erythrosin B, but was significantly lower (P = 0.003). We conclude that labeling permeabilized sperm with fluoresceinated PSA can serve as a rapid assay for acrosomal status.  相似文献   

11.
Parasite surface glycoconjugates are frequently involved in cellular recognition and colonization of the host. This study reports on the identification of Perkinsus marinus surface carbohydrates by flow cytometric analyses of fluorescein isothiocyanate-conjugated lectin binding. Lectin-binding specificity was confirmed by sugar inhibition and Kolmogorov-Smirnov statistics. Clear, measurable fluorescence peaks were discriminated, and no parasite autofluorescence was observed. Parasites (GTLA-5 and Perkinsus-1 strains) harvested during log and stationary phases of growth in a protein-free medium reacted strongly with concanavalin A and wheat germ agglutinin, which bind to glucose-mannose and N-acetyl-D-glucosamine (GlcNAc) moieties, respectively. Both P. marinus strains bound with lower intensity to Maclura pomifera agglutinin, Bauhinia purpurea agglutinin, soybean agglutinin (N-acetyl-D-galactosamine-specific lectins), peanut agglutinin (PNA) (terminal galactose specific), and Griffonia simplicifolia II (GlcNAc specific). Only background fluorescence levels were detected with Ulex europaeus agglutinin I (L-fucose specific) and Limulus polyphemus agglutinin (sialic acid specific). The lectin-binding profiles were similar for the 2 strains except for a greater relative binding intensity of PNA for Perkinsus-1 and an overall greater lectin-binding capacity of Perkinsus-1 compared with GTLA-5. Growth stage comparisons revealed increased lectin-binding intensities during stationary phase compared with log phase of growth. This is the first report of the identification of surface glycoconjugates on a Perkinsus spp. by flow cytometry and the first to demonstrate that differential surface sugar expression is growth phase and strain dependent.  相似文献   

12.
The cell surface of Azospirillum brasilense was probed by using fluorescein isothiocyanate (FITC)-labeled lectins, with binding determined by fluorescence-activated flow cytometry. Cells from nitrogen-fixing or ammonium-assimilating cultures reacted similarly to FITC-labeled lectins, with lectin binding in the following order: Griffonia simplicifolia II agglutinin > Griffonia simplicifolia I agglutinin > Triticum vulgaris agglutinin > Glycine max agglutinin > Canavalia ensiformis agglutinin > Limax flavus agglutinin > Lotus tetragonolobus agglutinin. The fluorescence intensity of cells labeled with FITC-labeled G. simplicifolia I, C. ensiformis, T. vulgaris, and G. max agglutinins was influenced by lectin concentration. Flow cytometry measurements of lectin binding to cells was consistent with measurements of agglutination resulting from lectin-cell interaction. Capsules surrounding nitrogen-fixing and ammonium-assimilating cells were readily demonstrated by light and transmission electron microscopies.  相似文献   

13.
Distribution of lectin binding sites in Xenopus laevis egg jelly.   总被引:1,自引:0,他引:1  
Eggs from the anuran Xenopus laevis are surrounded by a thick jelly coat that is required during fertilization. The jelly coat contains three morphologically distinct layers, designated J1, J2, and J3. We examined the lectin binding properties of the individual jelly coat layers as a step in identifying jelly glycoproteins that may be essential in fertilization. The reactivity of 31 lectins with isolated jelly coat layers was examined with enzyme-linked lectin-assays (ELLAs). Using ELLA we found that most of the lectins tested showed some reactivity to all three jelly layers; however, two lectins showed jelly layer selectivity. The lectin Maackia amurensis (MAA) reacted only with J1 and J2, while the lectin Trichosanthes kirilowii (TKA) reacted only with J2 and J3. Some lectins were localized in the jelly coat using confocal microscopy, which revealed substantial heterogeneity in lectin binding site distribution among and within jelly coat layers. Wheat germ agglutinin (WGA) bound only to the outermost region of J3 and produced a thin, but very intense, band of fluorescence at the J1/J2 interface while the remainder of J2 stained lightly. The lectin MAA produced an intense fluorescence-staining pattern only at the J1/J2 interface. Several lectins were also tested for the ability to inhibit fertilization. WGA, MAA, and concanavalin A significantly inhibited fertilization and WGA was found to block fertilization by preventing sperm from penetrating the jelly. Using Western blotting, we identified high-molecular-weight components in J1 and J2 that may be important in fertilization.  相似文献   

14.
Dolichos biflorus agglutinin (DBA) binds to N-acetyl-D-galactosamine (GalNAc) residues in glycoconjugates and agglutinates erythrocytes carrying blood group antigen A. In cryostat sections of various tissues from blood group-specified humans, fluorochrome-coupled DBA bound preferentially to fusiform connective tissue cells and to certain epithelial cells. The connective tissue cells were identified as mast cells by their typical metachromasia in consecutive staining with toluidine blue. Double labeling with DBA and conjugated avidin revealed two distinct populations of mast cells. In several tissues the DBA-reactive cells likewise displayed uniform avidin reactivity. In intestinal mucosa, however, morphologically distinct DBA-binding mast cells were found, which were labeled with the avidin conjugates only in specially fixed paraffin sections. DBA did not bind to vascular endothelial cells, which could be identified by double staining with antibodies to factor VIII-related antigen. Labeling with Helix pomatia agglutinin (HPA), another blood group A-reactive lectin, resulted in distinct blood group-dependent fluorescence of the endothelia. Sophora japonica agglutinin (SJA), a blood group B-reactive lectin, labeled vascular endothelial cells in tissues from blood group A, AB, and B donors. HPA and SJA reacted with small mast cells in the gastrointestinal mucosa but failed to label large mast cells in any of the tissues. These results indicate that the blood group reactivity of lectins, as determined by erythroagglutination, is not necessarily consistent with their reactivity with blood group determinants in tissue sections. Moreover, DBA conjugates appear to be a reliable probe for detection of mast cells in various human connective tissues.  相似文献   

15.
The membrane glycoconjugates of 8 different species of Leishmania were compared by lectin blotting. Five different lectins with various sugar specificities were examined: concanavalin A, Lens culinaris, Ricinus communis, soybean agglutinin, and peanut agglutinin. Concanavalin A and Lens culinaris reacted with every Leishmania tested. The patterns observed for these 2 lectins, as well as the various species of parasites, were different. However, a common 41,000-52,000 and a 160,000-185,000 Mr component was present in almost all the parasite isolates examined. Ricinus communis only recognized a nondiscrete galactose-containing glycoconjugate similar to Leishmania-excreted factor. Soybean and peanut agglutinins reacted with a few low molecular weight parasite components. Soybean agglutinin reacted with all the Leishmania species tested, whereas peanut lectin only recognized 3 isolates. The latter lectin bound to discrete components migrating with the dye front and with Mr's of 35,000 and 52,000. Increased glycosylation was noted on avirulent L. major promastigotes and was associated with the appearance of several new peanut agglutinin-binding glycoproteins.  相似文献   

16.
Eggs from the anuran Xenopus laevis are surrounded by a thick jelly coat that is required during fertilization. The jelly coat contains three morphologically distinct layers, designated J1, J2, and J3. We examined the lectin binding properties of the individual jelly coat layers as a step in identifying jelly glycoproteins that may be essential in fertilization. The reactivity of 31 lectins with isolated jelly coat layers was examined with enzyme-linked lectin-assays (ELLAs). Using ELLA we found that most of the lectins tested showed some reactivity to all three jelly layers; however, two lectins showed jelly layer selectivity. The lectin Maackia amurensis (MAA) reacted only with J1 and J2, while the lectin Trichosanthes kirilowii (TKA) reacted only with J2 and J3. Some lectins were localized in the jelly coat using confocal microscopy, which revealed substantial heterogeneity in lectin binding site distribution among and within jelly coat layers. Wheat germ agglutinin (WGA) bound only to the outermost region of J3 and produced a thin, but very intense, band of fluorescence at the J1/J2 interface while the remainder of J2 stained lightly. The lectin MAA produced an intense fluorescence-staining pattern only at the J1/J2 interface. Several lectins were also tested for the ability to inhibit fertilization. WGA, MAA, and concanavalin A significantly inhibited fertilization and WGA was found to block fertilization by preventing sperm from penetrating the jelly. Using Western blotting, we identified high-molecular-weight components in J1 and J2 that may be important in fertilization.  相似文献   

17.

Background

Lactoferrin is an iron-binding protein belonging to the transferrin family. In addition to iron homeostasis, lactoferrin is also thought to have anti-microbial, anti-inflammatory, and anticancer activities. Previous studies showed that all lactoferrins are glycosylated in the human body, but the recognition roles of their carbohydrate glycotopes have not been well addressed.

Methods

The roles of human and bovine lactoferrins involved in lectin–N-glycan recognition processes were analyzed by enzyme-linked lectinosorbent assay with a panel of applied and microbial lectins.

Results and conclusions

Both native and asialo human/bovine lactoferrins reacted strongly with four Man-specific lectins — Concanavalia ensiformis agglutinin, Morniga M, Pisum sativum agglutinin, and Lens culinaris lectin. They also reacted well with PA-IIL, a LFuc>Man-specific lectin isolated from Pseudomonas aeruginosa. Both human and bovine lactoferrins also recognized a sialic acid specific lectin-Sambucus nigra agglutinin, but not their asialo products. Both native and asialo bovine lactoferrins, but not the human ones, exhibited strong binding with a GalNAc>Gal-specific lectin-Wisteria floribunda agglutinin. Human native lactoferrins and its asialo products bound well with four Gal>GalNAc-specific type-2 ribosome inactivating protein family lectins-ricin, abrin-a, Ricinus communis agglutinin 1, and Abrus precatorius agglutinin (APA), while the bovine ones reacted only with APA.

General significance

This study provides essential knowledge regarding the different roles of bioactive sites of lactoferrins in lectin–N-glycan recognition processes.  相似文献   

18.
Glycophorin A (GPA), the major sialoglycoprotein of the human erythrocyte membrane, was isolated from erythrocytes of healthy individuals of blood groups A, B and O using phenol-water extraction of erythrocyte membranes. Interaction of individual GPA samples with three lectins (Psathyrella velutina lectin, PVL; Triticum vulgaris lectin, WGA and Sambucus nigra I agglutinin SNA-I) was analyzed using a BIAcore biosensor equipped with a surface plasmon resonance (SPR) detector. The experiments showed no substantial differences in the interaction between native and desialylated GPA samples originating from erythrocytes of either blood group and each of the lectins. Desialylated samples reacted weaker than the native ones with all three lectins. PVL reacted about 50-fold more strongly than WGA which, similar to PVL, recognizes GlcNAc and Neu5Ac residues. SNA-I lectin, recognizing alpha2-6 linked Neu5Ac residues, showed relatively weak reaction with native and only residual reaction with desialylated GPA samples. The data obtained show that SPR is a valuable method to determine interaction of glycoproteins with lectins, which potentially can be used to detect differences in the carbohydrate moiety of individual glycoprotein samples.  相似文献   

19.
Summary Twelve different kinds of blood group-specific lectins have been used along with monoclonal anti-A,-B and-H antibodies for detecting the corresponding antigens in selected human tissues. Although most of the lectins recognized the antigens in the tissue sections examined, they displayed marked differences in their recognition patterns in certain tissues.Helix asparsa agglutinin (HAA),Helix pomatia agglutinin (HPA) and monoclonal anti-A antibody recognized A antigens in the mucous cells of salivary glands from blood group A or AB nonsecretor as well as secretor individuals, whereasDolichos biflorus agglutinin (DBA).Griffonia simplicifolia agglutinin-I (GSA-I),Sophora japonica agglutinin (SJA) andVicia villosa agglutinin (VVA) did not bind to them from nonsecretors. A antigens in endothelial cells, lateral membrane of pancreatic acinar cells and small mucous-like cells of submandibular glands from some individuals were likewise recognized by HAA and HPA but not by other blood group A-specific lections. In contrast, both HAA and HPA did not recognize the A antigens in mucous cells of Brunner's glands while other A-specific lectins and monoclonal anti-A antibody reacted specifically with the antigens. Such a difference was not observed with lectins specific for blood group B. However, the B antigens in Brunner's glands were recognized by these lectins but not with monoclonal anti-B antibody. The difference in labelling ability was also noted among the blood group H-specific lectins and monoclonal anti-H antibody in endothelial cells of blood vessels.Ulex europaeus agglutinin-I reacted with these cells irrespective of ABO and the secretor status of the individuals, whileAnguilla anguilla agglutinin and monoclonal anti-H antibody reacted only with those cells from blood group O individuals. No reaction was observed withLotus tetragonolobus agglutinin in these tissue sites. These results suggest a great diversity of blood group antigens in different human tissues.  相似文献   

20.
By sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis the plasma membranes from porcine lymphocytes contain at least 30--35 glycopolypeptides and one or more glycolipids to which one or more of 12 purified lectins bind. The specificities of binding generally followed the same pattern as those of the reaction of the lectin with intact pig lymphocytes. Some lectins (e.g., the isolectin pair, Agaricus bisporus lectins A and B and a group consisting of the Lens culinaris A and B isolectins and the closely related Pisum sativum lectins) bind to almost identical populations of plasma membrane components and compete with each other for all their binding sites. Others (e.g., Concanavalin A and the Lens culinaris-Pisum sativum group and a group consisting of phytohemagglutinin-L, Ricinus communis lectin-60 and Ricinus communis lectin-120 bind in a cross reactive manner to some common binding moieties but, in addition, to certain nonshared ones. Still others (e.g., soybean agglutinin, peanut agglutinin and wheat germ agglutinin) do not share any common binding moieties with the other lectins. The amount of lectin binding and the number of membrane components to which a lectin binds is directly related to the Ka of binding of the lectin to the intact lymphocyte. Those with high Ka (Cocanavalin A Lens culinaris lectins, Pisum sativum lectins, phytohemagglutinin-L), bind to 20-30 different components giving very complex binding patterns while those with lower Ka (Agaricus bisporus lectins, wheat germ agglutinin, peanut agglutinin, and soybean agglutinin) bind to 8--13 components with easily distinguishable patterns. Soybean agglutinin binds almost exclusively to a glycolipid fraction while for the others one or more glycopolypeptides served as the major lectin-binding molecule. The Ricinus lectins, two lymphocyte toxins, bind to essentially every plasma membrane component to which the mitogen phytohemagglutinin-L binds, in fact competing for most of those plasma membrane moieties which bind phytohemagglutinin-L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号