首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Osteoclasts are macrophage-derived polykaryons that degrade bone in an acidic extracellular space. This differentiation includes expression of proteinases and acid transport proteins, cell fusion, and bone attachment, but the sequence of events is unclear. We studied two proteins expressed at high levels only in the osteoclast, cathepsin K, a thiol proteinase, and tartrate-resistant acid phosphatase (TRAP), and compared this expression with acid transport and bone degradation. Osteoclastic differentiation was studied using human apheresis macrophages cocultured with MG63 osteosarcoma cells, which produce cytokines including RANKL and CSF-1 that mediate efficient osteoclast formation. Immunoreactive cathepsin K appeared at 3-5 days. Cathepsin K activity was seen on bone substrate but not within cells, and cathepsin K increased severalfold during further differentiation and multinucleation from 7 to 14 days. TRAP also appeared at 3-5 d, independently of cell fusion or bone attachment, and TRAP activity reached much higher levels in osteoclasts attached to bone fragments. Two proteinases that occur in the precursor macrophages, cathepsin B, a thiol proteinase related to cathepsin K, and an unrelated lysosomal aspartate proteinase, cathepsin D, were also studied to determine the specificity of the differentiation events. Cathepsin B occurred at all times, but increased two- to threefold in parallel with cathepsin K. Cathepsin D activity did not change with differentiation, and secreted activity was not significant. In situ acid transport measurements showed increased acid accumulation after 7 days either in cells on osteosarcoma matrix or attached to bone, but bone pit activity and maximal acid uptake required 10-14 days. We conclude that TRAP and thiol proteinase expression begin at essentially the same time, and precede cell fusion and bone attachment. However, major increases in acid secretion and proteinases expression continue during cell fusion and bone attachment from 7 to 14 days.  相似文献   

2.
Summary In steroid target tissues, the presence of the corresponding hormone receptors is indicative of hormone dependence. In an attempt to assess the possible role of steroid hormones in the mechanism of growth and/or differentiation of cancerous pancreatic duct cells, the expression of estrogen receptor (ERα) was evaluated in human cancerous pancreatic duct cells (Capan-1) maintained in culture. These cells were selected as they acquire progressively a high degree of differentiation during growth in culture. In the present study, we showed that Capan-1 cells during growth in steroid-free medium associate spontaneously, become polarized, and form duct-like structures, features that are indicative of a high degree of differentiation. Capan-1 cells were also found to express ERα and progesterone receptor (PR). Immunoenzymatic assay showed maximal expression of ERα (236 ± 55 fmol/mg protein) on the first day of the exponential growth phase, followed by a marked fall in expression (76.3%). At the onset of the stationary phase (Day 5), ERα levels were below 10 fmol/mg protein, becoming undetectable by Day 7. A similar time course was observed for PR: 18 ± 0.9 fmol/mg protein at the onset of the exponential growth phase and no expression during the stationary phase. Addition of estradiol to 1-d-old cultures resulted in a twofold increase in PR expression, suggesting an induction of PR expression by estrogen. Immunocytochemical analysis with anti-ERα-1D5 antibodies showed nuclear and cytoplasmic localization of ERα in Capan-1 cells in the first 24 h of culture followed by a progressive disappearance thereafter. We also showed that cellular multiplication was increased by estradiol and progesterone during the exponential growth phase, pointing to the involvement of steroid hormones in the proliferation of nonpolarized Capan-1 cells. These results indicate that the expression of ERα is linked to the state of differentiation of the cells and make Capan-1 cells a model of choice to study ER regulation in nontarget tissues.  相似文献   

3.
Expression of estrogen receptor alpha and beta during mouse embryogenesis.   总被引:2,自引:0,他引:2  
In adult mammals numerous target tissues and organs for estrogens exist. Little is known about possible target organs during embryogenesis other than the reproductive tract and the gonads. This is the first report on the expression of estrogen receptor beta (ERbeta) in comparison with ERalpha mRNA during mouse embryogenesis. We found expression of estrogen receptor mRNA in the reproductive tract, but also in the atrial wall, brain, kidney, urethra, bladder neck, mammary gland primordium, midgut, cartilage primordia and perichondria.  相似文献   

4.
5.

Background

Aside from its importance in reproduction, estrogen (E2) is known to regulate the proliferation and differentiation of hematopoietic stem cells in rodents. However, the regulatory role of E2 in human hematopoietic system has not been investigated. The purpose of this study is to investigate the effect of E2 on hematopoietic differentiation using human pluripotent stem cells (hPSCs).

Results

E2 improved hematopoietic differentiation of hPSCs via estrogen receptor alpha (ER-α)-dependent pathway. During hematopoietic differentiation of hPSCs, ER-α is persistently maintained and hematopoietic phenotypes (CD34 and CD45) were exclusively detected in ER-α positive cells. Interestingly, continuous E2 signaling is required to promote hematopoietic output from hPSCs. Supplementation of E2 or an ER-α selective agonist significantly increased the number of hemangioblasts and hematopoietic progenitors, and subsequent erythropoiesis, whereas ER-β selective agonist did not. Furthermore, ICI 182,780 (ER antagonist) completely abrogated the E2-induced hematopoietic augmentation. Not only from hPSCs but also from human umbilical cord bloods, does E2 signaling potentiate hematopoietic development, suggesting universal function of E2 on hematopoiesis.

Conclusions

Our study identifies E2 as positive regulator of human hematopoiesis and suggests that endocrine factors such as E2 influence the behavior of hematopoietic stem cells in various physiological conditions.
  相似文献   

6.
To characterize the role of epidermal growth factor (EGF) and fibroblast growth factor (FGF) in regulating neuroepithelial stem cells differentiation, we have examined the expression of FGF, EGF, and their receptors by neuroepithelial (NEP) cells and their derivatives. Our results indicate that undifferentiated NEP cells express a subset of FGF receptor (FGFR) isoforms, but do not express platelet-derived growth factor receptors (PDGFRs) or epidermal growth factor receptor (EGFR). The FGFR pattern of expression by differentiated neuron and glial cells differs from that found on NEP stem cells. FGFR-4 is uniquely expressed on NEP cells, while FGFR-1 is expressed by both NEP cells and neurons, and FGFR-2 is down-regulated during neuronal differentiation. FGFRs present on astrocytes and oligodendrocytes also represent a subset of those present on NEP cells. Expression of FGF and EGF by NEP cells and their progeny was also examined. NEP cells synthesize detectable levels of both FGF-1 and FGF-2, and EGF. FGF-1 and FGF-2 synthesis is likely to be biologically relevant, as cells grown at high density do not require exogenous FGF for their survival and cells grown in the presence of neutralizing antibodies to FGF show a reduction in cell survival and division. Thus, neuroepithelial cells synthesize and respond to FGF, but not to EGF, and are therefore distinct from other neural stem cells (neurospheres). The unique pattern of expression of FGF isoforms may serve to distinguish NEP cells from their more differentiated progeny.  相似文献   

7.
8.
1. Estrogen receptors in lactating mammary glands and uteri of rats which were 10 and 19 days postpartum exhibited molecular heterogeneity based on their surface charge properties. 2. The polymorphism of estrogen receptors detected by high-performance ion exchange chromatography may be monitored in-line with a radioisotope detector. 3. Estrogen receptors from the mammary gland and uterus of rats at 10 days of lactation exhibited primarily two receptor isoforms eluting at 200-250 mM and 250-300 mM phosphate, whereas three ionic isoforms (eluting at 50-150, 200-250 and 325-375 mM phosphate) were found in the mammary glands of rats at 19 days of lactation. Similar changes in the profiles of estrogen receptor isoforms were observed in uterine cytosol preparations at each stage of postpartum differentiation. 4. The elution pattern of receptor-associated radioactivity was not altered by the addition of diisopropylphosphate, a potent inhibitor of trypsin-like proteases, either before, during or immediately after homogenization. This indicates that the differences observed in the receptor elution profile of 10 and 19 day postpartum lactating mammary glands were not due to artifactual proteolysis. 5. In summary, our data indicate that the differentiation stage of lactating mammary glands may dictate the final profile of receptor isoforms detected.  相似文献   

9.
Functional domains of the human estrogen receptor   总被引:116,自引:0,他引:116  
V Kumar  S Green  G Stack  M Berry  J R Jin  P Chambon 《Cell》1987,51(6):941-951
  相似文献   

10.
During the period around parturition, cows experience an increased susceptibility to inflammatory disorders in the mammary gland and uterus. This increased susceptibility has been correlated with a decreased functionality of neutrophils, major components in the innate immune defence. As sex steroid levels vary extensively in the period around parturition, an influence of these changes on the functionality of neutrophils has been suggested. Indeed, it has been shown that 17beta-estradiol affects some functions of bovine neutrophils. In spite of these observations, receptors for 17beta-estradiol have not yet been demonstrated in these cells. The investigation of the presence of estrogen receptors in bovine neutrophils was therefore the main objective of this study. The expression of estrogen receptors was evaluated at the protein level by flow cytometry, and at the mRNA level by polymerase chain reaction. A clear positive signal was obtained using flow cytometry for the estrogen receptor protein in bovine neutrophils. Further discrimination between the estrogen receptor subtypes alpha and beta revealed the expression of the estrogen receptor beta, whereas for the estrogen receptor alpha no reproducible positive signal could be obtained with the available antibodies. Both subtypes were found at the mRNA level. Subsequently, the estrogen receptor protein expression level in neutrophils obtained from cows in early lactation was compared with those from cows in late pregnancy. Additionally, the influence of endogenous 17beta-estradiol and progesterone levels was assessed. No difference was found for the estrogen receptor protein expression in neutrophils from cows in early lactation compared with late gestation neither were the endogenous 17beta-estradiol and progesterone levels correlated with the protein expression.  相似文献   

11.
《Cancer epidemiology》2014,38(3):291-297
Astrocytic tumors are the most common primary brain tumors. It has been reported that androgen receptor (AR), estrogen receptors alpha (ERα) and beta (ERβ) and their coactivator SRC-1 and SRC-3 are involved in the regulation of the growth and development of many tumors, but their expression profiles and significances in the astrocytic tumors remain largely unknown. In this study, the expression of AR, ERs, and SRCs, and the possible roles of them in astrocytic neoplasm were evaluated and compared to normal brain tissues by nickel-intensified immunohistochemistry with tissue microarrays. The results showed that there were no age- or gender-differences regarding to the levels of these receptors or coactivators in astrocytic or normal brain tissues. In the high-grade astrocytic tissue, the levels of AR, ERs and SRC-3 were significantly decreased when compared to the low-grade astrocytic tissues, but the levels of SRC-1 remain unchanged. Correlation analysis revealed that the levels of AR, ERs and SRC-3 were negatively correlated to tumor differentiation, and the levels of SRC-3 were positively correlated to that of ERα. Furthermore, the decreased levels of SRC-3 were associated with an increase of ERβ in astrocytic tumors when compared to that of normal brain tissues. These above results indicate a combination of decreased expression of ERs, AR and SRC-3 but not SRC-1 may be involved in the tumorigenesis of gliomas, ERα/SRC-3 axis may play central role in the regulation these tumors.  相似文献   

12.
The expressions of the calcitonin receptor (CTR), the calcitonin receptor-like receptor (CLR), the receptor activity-modifying proteins (RAMP) 1-3, and of the receptor component protein (RCP) have been studied in mouse bone marrow macrophages (BMM) during osteoclast differentiation, induced by treatment with M-CSF and RANKL. Analyses of mRNA showed that CLR and RAMP1-3, but not CTR, were expressed in M-CSF stimulated BMM. RANKL gradually increased CTR mRNA, transiently enhanced CLR and transiently decreased RAMP1 mRNA, but did not affect RAMP2, RAMP3, or RCP mRNA. However, RANKL did not affect protein levels of CLR or RAMP1-3 as assessed by Western blots or FACS analyses, whereas immunocytochemistry showed enhanced CTR protein. Analyses of cAMP production showed that BMM cells expressed functional receptors for calcitonin gene-related peptide (CGRP), amylin, adrenomedullin, and intermedin, but not for calcitonin and calcitonin receptor stimulating peptide (CRSP), but that RANKL induced the expression of receptors for calcitonin and CRSP as well. Calcitonin, CGRP, amylin, adrenomedullin, intermedin, and CRSP all down regulated the CTR mRNA, but none of the peptides caused any effects on the expression of CLR or any of the RAMPs. Our data show that BMM cells express receptors for CGRP, amylin, adrenomedullin, and intermedin and that RANKL induces the formation of receptors for calcitonin and CRSP in these cells. We also show, for the first time, that the CTR is not only down regulated by signaling through the CTR but also by the peptides signaling through CLR/RAMPs.  相似文献   

13.
14.
The high number (>10(8-10)) of primary human pro-erythroblasts (CD36high/CD235alow) obtainable in HEMA culture (Migliaccio et al., 2002) is exploited here to analyse the expression of proteins implicated in erythropoietin (EPO)-signalling (STATs, PI-3K, and PLCs) during the process of erythroid maturation. Human pro-erythroblasts progressed in 4 days of culture with EPO into basophilic- (CD36high/CD235amedium, 24 h), polychromatic-(CD36high/CD235ahigh, 48 h), and, finally, orthochromatic-(CD36low/CD235ahigh, 72-96 h) erythroblasts. During this maturation, STAT-1 was expressed up to the orthochromatic stage, expression of STAT-5, as well as of its target proteins BclxL and IRF1, remained constant up to 48 h (polychromatic-erythroblasts) but decreased by 96 h (orthochromatic-erythroblasts), while that of STAT-3 decreased constantly from 24 h on and became undetectable by 96 h. Expression of PI-3K rapidly decreased with differentiation since only 50% of original protein levels were detected by 48 h. On the other hand, among the members of PLC families investigated, PLC beta4 was not expressed, PLC beta2, delta1, and gamma2 were expressed at constant levels throughout the maturation process, while expression of PLC beta3 and of PLC gamma1 decreased, as PI-3K, by 24 h and that of PLC beta1 was induced by 6 h and became undetectable by 24 h. In conclusion, these data depict the dynamic signalling scenario associated with the maturation of erythroid cells and provide the first indication that members of PLC families (PLC beta1, beta3, and gamma1) might be involved in the control of erythroid differentiation in humans.  相似文献   

15.
16.
Although osteoblasts have been shown to respond to estrogens and express both isoforms of the estrogen receptor (ER alpha and ER beta), the role each isoform plays in osteoblast cell function and differentiation is unknown. The two ER isoforms are known to differentially regulate estrogen-inducible promoter-reporter gene constructs, but their individual effects on endogenous gene expression in osteoblasts have not been reported. We compared the effects of 17 beta-estradiol (E) and tamoxifen (TAM) on gene expression and matrix formation during the differentiation of human osteoblast cell lines stably expressing either ER alpha (hFOB/ER alpha 9) or ER beta (hFOB/ER beta 6). Expression of the appropriate ER isoform in these cells was confirmed by northern and western blotting and the responses to E in the hFOB/ER beta 6 line were abolished by an ER beta-specific inhibitor. The data demonstrate that (1) in both the hFOB/ER cell lines, certain responses to E or TAM (including alkaline phosphatase, IL-6 and IL-11 production) are more pronounced at the late mineralization stage of differentiation compared to earlier stages, (2) E exerted a greater regulation of bone nodule formation and matrix protein/cytokine production in the ER alpha cells than in ER beta cells, and (3) the regulated expression of select genes differed between the ER alpha and ER beta cells. TAM had no effect on nodule formation in either cell line and was a less potent regulator of gene/protein expression than E. Thus, both the ER isoform and the stage of differentiation appear to influence the response of osteoblast cells to E and TAM.  相似文献   

17.
Estrogen and androgen are both critical for the maintenance of bone, but the target cells, mechanisms, and responses could be sex-specific. To compare sex-specific actions of estrogen and androgen on osteoclasts, human peripheral blood mononuclear precursor cells from adult Caucasian males (n = 3) and females (n = 3) were differentiated into osteoclasts and then treated for 24 h with 17β-estradiol (10 nM) or testosterone (10 nM). Gene expression was studied with a custom designed qPCR-based array containing 94 target genes related to bone and hormone action. In untreated osteoclasts, 4 genes showed significant gender differences. 17β-estradiol significantly affected 12 genes in osteoclasts from females and 6 genes in osteoclasts from males. Fifteen of the 18 17β-estradiol-responsive genes were different in the cells from the two sexes; 2 genes affected by 17β-estradiol in both sexes were regulated oppositely in the two sexes. Testosterone significantly affected 6 genes in osteoclasts from females and 2 genes in osteoclasts from males; all except one were different in the two sexes. 17β-estradiol and testosterone largely affected different genes, suggesting that conversion of testosterone to 17β-estradiol had a limited role in the responses. The findings indicate that although osteoclasts from both sexes respond to 17β-estradiol and testosterone, the effects of both 17β-estradiol and testosterone differ in the two sexes, highlighting the importance of considering gender in the design of therapy.  相似文献   

18.
The serine protease thrombin has been proposed to be involved in neuromuscular plasticity. Its specific receptor "protease activated receptor-1" (PAR-1), a G protein-coupled receptor, has been shown to be expressed in myoblasts but not after fusion (Suidan et al., 1996 J Biol Chem 271:29162-29169). In the present work we have investigated the expression of PAR-1 during rat skeletal muscle differentiation both in vitro and in vivo. Primary cultures of rat foetal skeletal muscle, characterized by their spontaneous contractile activity, were used for exploration of PAR-1 by RT-PCR, immunocytochemistry and Western blotting. Our results show that PAR-1 mRNA and protein are both present in myoblasts and myotubes. Incubation of myotubes loaded with fluo-3-AM in presence of thrombin (200 nM) or PAR-1 agonist peptide (SFLLRN, 500 microM), induced the intracellular release of calcium indicating the activation of PAR-1. Blockade of contractile activity by tetrodotoxin (TTX, 6 nM) did not modify either PAR-1 synthesis or its cellular localization. Investigation of PAR-1 on rat muscle cryostat sections at Day 18 of embryogenesis and postnatal Days 1, 5, and 10 indicated that this protein is first expressed in the cytoplasm and that it later localizes to the membrane. Moreover, its expression correlates with myosin heavy chain transitions occurring during post-natal period and is restricted to primary fibers. Taken together, these results suggest that PAR-1 expression is not related to contractile activity but to myogenic differentiation.  相似文献   

19.
目的:检测雌激素受体β(ERβ)在胃组织的存在状况并研究其在人胃腺癌中的作用。方法:使用免疫组化方法,在蛋白水平对配对的原发性胃腺癌患者的癌组织及其癌旁非癌组织的ERB亚型进行检测,采用20例正常胃粘膜作为对照。结果:ERβ蛋白在部分胃腺癌及其癌旁非癌组织表达,但ERβ阳性率及表达模式不同。与配对的非癌组织相比,部分癌组织发生了ERβ表达减少或丢失,而且ERβ表达减少与低分化程度相关(P=0.041),丢失的ERβ仅见于低分化癌。结论:ERβ可作为识别某些进展期胃腺癌发生发展的标志物,ERβ表达改变在低分化癌中更常见,也提示ERβ阳性胃腺癌可能比ERp表达丢失者预后更好;另外,在非癌组织腺上皮存在E邢的表达提示在正常胃组织中ERB很可能具有一种保护性作用。  相似文献   

20.
The present study was aimed at investigating effects of hypochlorite (HOCl) modification of high density lipoproteins subclass 3 (HDL3) on their ability for cellular cholesterol removal from permanent J774 macrophages. Our findings indicate that HOCl (added as reagent or generated enzymatically by the myeloperoxidase/H2O2/Cl- system) damages apolipoprotein A-I, the major protein component of HDL3. Fatty acid analysis of native and HOCl-modified HDL3 revealed that unsaturated fatty acids in both major lipid subclasses (phospholipids and cholesteryl esters) are targets for HOCl attack. HOCl modification resulted in impaired HDL3-mediated cholesterol efflux from J774 cells, regardless of whether reagent or enzymatically generated HOCl was used to modify the lipoprotein. Decreased cholesterol efflux was also observed after HOCl modification of reconstituted HDL particles. Impairment of cholesterol efflux from macrophages was noticed at low and physiologically occurring HOCl concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号