首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a part of our studies on the folding of glycoproteins in the ER, we analyzed the fate of viral glycoproteins that have misfolded either spontaneously or through inhibition of N-linked glycosylation. Newly synthesized Semliki Forest virus spike glycoproteins E1 and p62 and influenza hemagglutinin were studied in infected and transfected tissue culture cells. Misfolded proteins aggregated in less than 1 min after release from polysomes and aberrant interchain disulfide bonds were formed immediately. When more than one protein was misfolded, mixed aggregates were generated. This indicated that the formation of complexes was nonspecific, random, and not restricted to products from single polysomes. The size of the aggregates varied from small oligomers to complexes of several million daltons. BiP was associated noncovalently with the aggregates and with some of the nonaggregated products. We conclude that aggregation reflects the poor solubility of incompletely folded polypeptide chains.  相似文献   

2.
Before secretion, newly synthesized thyroglobulin (Tg) folds via a series of intermediates: disulfide-linked aggregates and unfolded monomers-->folded monomers-->dimers. Immediately after synthesis, very little Tg associated with calnexin (a membrane-bound molecular chaperone in the ER), while a larger fraction bound BiP (a lumenal ER chaperone); dissociation from these chaperones showed superficially similar kinetics. Calnexin might bind selectively to carbohydrates within glycoproteins, or to hydrophobic surfaces of secretory proteins while they form proper disulfide bonds (Wada, I., W.-J. Ou, M.-C. Liu, and G. Scheele, J. Biol. Chem. 1994. 269:7464-7472). Because Tg has multiple disulfides, as well as glycans, we tested a brief exposure of live thyrocytes to dithiothreitol, which resulted in quantitative aggregation of nascent Tg, as analyzed by SDS-PAGE of cells lysed without further reduction. Cells lysed in the presence of dithiothreitol under non-denaturing conditions caused Tg aggregates to run as reduced monomers. For cells lysed either way, after in vivo reduction, Tg coprecipitated with calnexin. After washout of dithiothreitol, nascent Tg aggregates dissolved intracellularly and were secreted ultimately. 1 h after washout, > or = 92% of labeled Tg was found to dissociate from calnexin, while the fraction of labeled Tg bound to BiP rose from 0 to approximately 40%, demonstrating a "precursor-product" relationship. Whereas intralumenal reduction was essential for efficient Tg coprecipitation with calnexin, Tg glycosylation was not required. These data are among the first to demonstrate sequential chaperone function involved in conformational maturation of nascent secretory proteins within the ER.  相似文献   

3.
4.
We have characterized a pre-Golgi, proteolytic pathway for rapid degradation of newly synthesized T cell receptor (TCR) subunits which is insensitive to drugs that block lysosomal proteolysis. The site of degradation in this pathway is either part of or closely related to the endoplasmic reticulum (ER). This "ER" degradative pathway very likely plays an important role in many cells in the removal of unassembled or incompletely assembled membrane protein complexes from the secretory pathway. It is the sole pathway followed by TCR alpha chains and alpha-beta complexes in transfected fibroblasts. In T cells treated with ionophores, which disrupt transport of the TCR from the ER to the Golgi, all newly synthesized alpha, beta, and delta chains are destroyed by this pathway. A variety of biochemical and morphological techniques have been used to distinguish the "ER" degradative pathway from an alternative, lysosomal pathway.  相似文献   

5.
The endoplasmic reticulum (ER) is recognized as an important site for regulating cell surface expression of membrane proteins. We recently reported that only a fraction of newly synthesized delta opioid receptors could leave the ER and reach the cell surface, the rest being degraded by proteasomes. Here, we demonstrate that membrane-permeable opioid ligands facilitate maturation and ER export of the receptor, thus acting as pharmacological chaperones. We propose that these ligands stabilize the newly synthesized receptor in the native or intermediate state of its folding pathway, possibly by inducing stabilizing conformational constrains within the hydrophobic core of the protein. The receptor precursors that are retained in the ER thus represent fully competent folding intermediates that can be targets for pharmacological intervention aimed at regulating receptor expression and cellular responsiveness. The pharmacological chaperone action is independent of the intrinsic signaling efficacy of the ligand, since both agonists and antagonists were found to promote receptor maturation. This novel property of G protein-coupled receptor ligands may have important implications when considering their effects on cellular responsiveness during therapeutic treatments.  相似文献   

6.
Most proteins in the secretory pathway are translated, folded, and subjected to quality control at the endoplasmic reticulum (ER). These processes must be flexible enough to process diverse protein conformations, yet specific enough to recognize when a protein should be degraded. Molecular chaperones are responsible for this decision making process. ER associated chaperones assist in polypeptide translocation, protein folding, and ER associated degradation (ERAD). Nevertheless, we are only beginning to understand how chaperones function, how they are recruited to specific substrates and assist in folding/degradation, and how unique chaperone classes make quality control "decisions".  相似文献   

7.
An interaction map of endoplasmic reticulum chaperones and foldases   总被引:1,自引:0,他引:1  
Chaperones and foldases in the endoplasmic reticulum (ER) ensure correct protein folding. Extensive protein-protein interaction maps have defined the organization and function of many cellular complexes, but ER complexes are under-represented. Consequently, chaperone and foldase networks in the ER are largely uncharacterized. Using complementary ER-specific methods, we have mapped interactions between ER-lumenal chaperones and foldases and describe their organization in multiprotein complexes. We identify new functional chaperone modules, including interactions between protein-disulfide isomerases and peptidyl-prolyl cis-trans-isomerases. We have examined in detail a novel ERp72-cyclophilin B complex that enhances the rate of folding of immunoglobulin G. Deletion analysis and NMR reveal a conserved surface of cyclophilin B that interacts with polyacidic stretches of ERp72 and GRp94. Mutagenesis within this highly charged surface region abrogates interactions with its chaperone partners and reveals a new mechanism of ER protein-protein interaction. This ability of cyclophilin B to interact with different partners using the same molecular surface suggests that ER-chaperone/foldase partnerships may switch depending on the needs of different substrates, illustrating the flexibility of multichaperone complexes of the ER folding machinery.  相似文献   

8.
9.
Treatment of developing bean cotyledons with the inhibitor of N-glycosylation tunicamycin enhanced the synthesis of at least two polypeptides with molecular mass 78 kDa and 97 kDa. Pulse-chase experiments and subcellular fractionation indicated that these are endoplasmic reticulum (ER) residents. The 78 kDa protein is a major component of the ER protein fraction and, by N-terminal sequencing, was identified as a bean homolog of the mammalian 78 kDa glucose-regulated protein (GRP78). This is a molecular chaperone that is probably involved in the folding and oligomerization of several animal and yeast proteins in the ER. When newly synthesized storage glycoproteins phaseolin, phytohemagglutinin or alpha-amylase inhibitor were immunoprecipitated from an ER preparation of tunicamycin-treated tissue, the GRP78 homolog was always co-precipitated. Bound GRP78 homolog could be released by ATP treatment. These results suggest that, at least when glycosylation is inhibited, this protein plays a role in the early stages of the synthesis of vacuolar storage proteins.  相似文献   

10.
Glycinin (11S) and beta-conglycinin (7S) are major storage proteins in soybean (Glycine max L.) seeds and accumulate in the protein storage vacuole (PSV). These proteins are synthesized in the endoplasmic reticulum (ER) and transported to the PSV by vesicles. Electron microscopic analysis of developing soybean cotyledons of the wild type and mutants with storage protein composition different from that of the wild type showed that there are two transport pathways: one is via the Golgi and the other bypasses it. Golgi-derived vesicles were observed in all lines used in this study and formed smooth dense bodies with a diameter of 0.5 to several micrometers. ER-derived protein bodies (PBs) with a diameter of 0.3-0.5 microm were observed at high frequency in the mutants containing higher amount of 11S group I subunit than the wild type, whereas they were hardly observed in the mutants lacking 11S group I subunit. These indicate that pro11S group I may affect the formation of PBs. Thus, the composition of newly synthesized proteins in the ER is important in the selection of the transport pathways.  相似文献   

11.
RU 38486, a newly synthesized molecule, reversed glucocorticoid mediated enzyme induction and gluconeogenesis in the liver, and RNA synthesis in rat thymocytes. The transfer of radiolabelled dexamethasone from the cytoplasm to the nucleus was also opposed by RU 38486 in intact thymocytes. Although RU 38486 saturated the same molecular species of the receptor as the hormone in the liver, differences seemed to appear when thymus was taken into account. Along with the ongoing clinical trials, an important new tool thus appears at hand to understand and harness the molecular action of glucocorticoid hormones in mammalian systems.  相似文献   

12.
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates a signaling network known as the unfolded protein response (UPR). Here we characterize how ER stress and the UPR inhibit insulin signaling. We find that ER stress inhibits insulin signaling by depleting the cell surface population of the insulin receptor. ER stress inhibits proteolytic maturation of insulin proreceptors by interfering with transport of newly synthesized insulin proreceptors from the ER to the plasma membrane. Activation of AKT, a major target of the insulin signaling pathway, by a cytosolic, membrane-bound chimera between the AP20187-inducible FV2E dimerization domain and the cytosolic protein tyrosine kinase domain of the insulin receptor was not affected by ER stress. Hence, signaling events in the UPR, such as activation of the JNK mitogen-activated protein (MAP) kinases or the pseudokinase TRB3 by the ER stress sensors IRE1α and PERK, do not contribute to inhibition of signal transduction in the insulin signaling pathway. Indeed, pharmacologic inhibition and genetic ablation of JNKs, as well as silencing of expression of TRB3, did not restore insulin sensitivity or rescue processing of newly synthesized insulin receptors in ER-stressed cells.  相似文献   

13.
Folding in the endoplasmic reticulum is the limiting step for the biogenesis of most secretory pathway cargo proteins; proteins which fail to fold are initially retained in the endoplasmic reticulum and subsequently often degraded. Mutations that affect secretory protein folding have profound phenotypes irrespective of their direct impact on protein function, because they prevent secretory proteins from reaching their final destination. When unicellular organisms are stressed by fluctuation of temperature or ionic strength, they synthesize high concentrations of small molecules such as trehalose or glycerol to prevent protein denaturation. These osmolytes can also stabilize mutant secretory proteins and allow them to pass secretory protein quality control in the endoplasmic reticulum. Specific ligands and cofactors such as ions, sugars, or peptides have similar effects on specific defective proteins and are beginning to be used as therapeutic agents for protein trafficking diseases.  相似文献   

14.
15.
Protein folding within the endoplasmic reticulum occurs in conjunction with a complex array of molecular chaperones and folding catalysts that assist the folding process as well as function in quality control processes to monitor the outcome. In this review, we summarize recent advances in the calnexin/calreticulin chaperone system that is directed primarily toward Asn-linked glycoproteins, as well as the protein disulfide isomerase family of enzymes that catalyze disulfide formation, reduction, and isomerization. We highlight issues related to function and substrate specificity as well as the functional interplay between the two systems.  相似文献   

16.
MHC class I molecules assemble with peptides in the endoplasmic reticulum (ER). To ensure that only peptide-loaded MHC molecules leave the ER, empty molecules are retained by ER-resident chaperones, most notably the MHC-specific tapasin. ER exit of class I MHC is also controlled by viruses, but for the opposite purpose of preventing peptide presentation to T cells. Interestingly, some viral proteins are able to retain MHC class I molecules in the ER despite being transported. By contrast, other viral proteins exit the ER only upon binding to class I MHC, thereby rerouting newly synthesized class I molecules to intracellular sites of proteolysis. Thus, immune escape can be achieved by reversing, inhibiting or redirecting the chaperone-assisted MHC class I folding, assembly and intracellular transport.  相似文献   

17.
HFE C282Y, the mutant protein associated with hereditary hemochromatosis (HH), fails to acquire the correct conformation in the endoplasmic reticulum (ER) and is targeted for degradation. We have recently shown that an active unfolded protein response (UPR) is present in the cells of patients with HH. Now, by using HEK 293T cells, we demonstrate that the stability of HFE C282Y is influenced by the UPR signaling pathway that promotes its degradation. Treatment of HFE C282Y-expressing cells with tauroursodeoxycholic acid (TUDCA), a bile acid derivative with chaperone properties, or with the chemical chaperone sodium 4-phenylbutyrate (4PBA) impeded the UPR activation. However, although TUDCA led to an increased stability of the mutant protein, 4PBA contributed to a more efficient disposal of HFE C282Y to the degradation route. Fluorescence microscopy and biochemical analysis of the subcellular localization of HFE revealed that a major portion of the C282Y mutant protein forms intracellular aggregates. Although neither TUDCA nor 4PBA restored the correct folding and intracellular trafficking of HFE C282Y, 4PBA prevented its aggregation. These data suggest that TUDCA hampers the UPR activation by acting directly on its signal transduction pathway, whereas 4PBA suppresses ER stress by chemically enhancing the ER capacity to cope with the expression of misfolded HFE, facilitating its degradation. Together, these data shed light on the molecular mechanisms involved in HFE C282Y-related HH and open new perspectives on the use of orally active chemical chaperones as a therapeutic approach for HH.  相似文献   

18.
In this study we used new nitrogen compounds obtained by organic synthesis whose structure predicted an antioxidant potential and then an eventual development as molecules of pharmacological interest in diseases involving oxidative stress. The compounds, identified as FMA4, FMA5, FMA7 and FMA8 differ in the presence of hydroxyl groups located in the C-3 and/or C-4 position of a phenolic unit, which is possibly responsible for their free radicals' buffering capacity. Data from the DPPH discoloration method confirm the high antiradical efficiency of the compounds. The results obtained with cellular models (L929 and PC12) show that they are not toxic and really protect from membrane lipid peroxidation induced by the ascorbate-iron oxidant pair. The level of protection correlates with the drug's lipophilic profile and is sometimes superior to trolox and equivalent to that observed for alpha-tocopherol. The compounds FMA4 and FMA7 present also a high protection from cell death evaluated in the presence of a staurosporine apoptotic stimulus. That protection results in a significant reduction of caspase-3 activity induced by staurosporine which by its turn seems to result from a protection observed in the membrane receptor pathway (caspase-8) together with a protection observed in the mitochondrial pathway (caspase-9). Taken together the results obtained with the new compounds, with linear chains, open up perspectives for their use as therapeutical agents, namely as antioxidants and protectors of apoptotic pathways. On the other hand the slight pro-oxidant profile obtained with the cyclic structures suggests a different therapeutic potential that is under current investigation.  相似文献   

19.
Procollagen assembly occurs within the endoplasmic reticulum, where the C-propeptide domains of three polypeptide alpha-chains fold individually, and then interact and trimerise to initiate folding of the triple helical region. This highly complex folding and assembly pathway requires the co-ordinated action of a large number of endoplasmic reticulum-resident enzymes and molecular chaperones. Disease-causing mutations in the procollagens disturb folding and assembly and lead to prolonged interactions with molecular chaperones, retention in the endoplasmic reticulum, and intracellular degradation. This review focuses predominantly on prolyl 1-hydroxylase, an essential collagen modifying enzyme, and HSP47, a collagen-specific binding protein, and their proposed roles as molecular chaperones involved in fibrillar procollagen folding and assembly, quality control, and secretion.  相似文献   

20.
We examined interactions between the endoplasmic reticulum (ER) chaperones calnexin (CN), ERp57, and immunological heavy chain-binding protein (BiP) and nicotinic acetylcholine receptor (nAChR) subunits. The three chaperones rapidly associate with newly synthesized nAChR subunits. Interactions between nAChR subunits and ERp57 occur via transient intermolecular disulfide bonds and do not require subunit N-linked glycosylation. The associations of ERp57 or CN with AChR subunits are long lived and prolong subunit lifetime approximately 10-fold. Coexpression of CN or ERp57 alone does not affect nAChR assembly or trafficking, but together they cause a significant decrease in nAChR expression and assembly. In contrast, associations with BiP are shorter lived and do not alter nAChR expression and assembly. However, a mutated BiP that slows its dissociation significantly increases its associations and decreases nAChR expression and assembly. Our results suggest that interactions with the chaperones regulate the levels of nAChRs assembled in the ER by stabilizing and sequestering subunits during assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号