共查询到20条相似文献,搜索用时 0 毫秒
1.
Misfolding and aggregation of newly synthesized proteins in the endoplasmic reticulum 总被引:9,自引:3,他引:9
下载免费PDF全文

As a part of our studies on the folding of glycoproteins in the ER, we analyzed the fate of viral glycoproteins that have misfolded either spontaneously or through inhibition of N-linked glycosylation. Newly synthesized Semliki Forest virus spike glycoproteins E1 and p62 and influenza hemagglutinin were studied in infected and transfected tissue culture cells. Misfolded proteins aggregated in less than 1 min after release from polysomes and aberrant interchain disulfide bonds were formed immediately. When more than one protein was misfolded, mixed aggregates were generated. This indicated that the formation of complexes was nonspecific, random, and not restricted to products from single polysomes. The size of the aggregates varied from small oligomers to complexes of several million daltons. BiP was associated noncovalently with the aggregates and with some of the nonaggregated products. We conclude that aggregation reflects the poor solubility of incompletely folded polypeptide chains. 相似文献
2.
Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum 总被引:14,自引:2,他引:14
《The Journal of cell biology》1995,128(1):29-38
Before secretion, newly synthesized thyroglobulin (Tg) folds via a series of intermediates: disulfide-linked aggregates and unfolded monomers-->folded monomers-->dimers. Immediately after synthesis, very little Tg associated with calnexin (a membrane-bound molecular chaperone in the ER), while a larger fraction bound BiP (a lumenal ER chaperone); dissociation from these chaperones showed superficially similar kinetics. Calnexin might bind selectively to carbohydrates within glycoproteins, or to hydrophobic surfaces of secretory proteins while they form proper disulfide bonds (Wada, I., W.-J. Ou, M.-C. Liu, and G. Scheele, J. Biol. Chem. 1994. 269:7464-7472). Because Tg has multiple disulfides, as well as glycans, we tested a brief exposure of live thyrocytes to dithiothreitol, which resulted in quantitative aggregation of nascent Tg, as analyzed by SDS-PAGE of cells lysed without further reduction. Cells lysed in the presence of dithiothreitol under non-denaturing conditions caused Tg aggregates to run as reduced monomers. For cells lysed either way, after in vivo reduction, Tg coprecipitated with calnexin. After washout of dithiothreitol, nascent Tg aggregates dissolved intracellularly and were secreted ultimately. 1 h after washout, > or = 92% of labeled Tg was found to dissociate from calnexin, while the fraction of labeled Tg bound to BiP rose from 0 to approximately 40%, demonstrating a "precursor-product" relationship. Whereas intralumenal reduction was essential for efficient Tg coprecipitation with calnexin, Tg glycosylation was not required. These data are among the first to demonstrate sequential chaperone function involved in conformational maturation of nascent secretory proteins within the ER. 相似文献
3.
4.
Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins 总被引:69,自引:0,他引:69
We have characterized a pre-Golgi, proteolytic pathway for rapid degradation of newly synthesized T cell receptor (TCR) subunits which is insensitive to drugs that block lysosomal proteolysis. The site of degradation in this pathway is either part of or closely related to the endoplasmic reticulum (ER). This "ER" degradative pathway very likely plays an important role in many cells in the removal of unassembled or incompletely assembled membrane protein complexes from the secretory pathway. It is the sole pathway followed by TCR alpha chains and alpha-beta complexes in transfected fibroblasts. In T cells treated with ionophores, which disrupt transport of the TCR from the ER to the Golgi, all newly synthesized alpha, beta, and delta chains are destroyed by this pathway. A variety of biochemical and morphological techniques have been used to distinguish the "ER" degradative pathway from an alternative, lysosomal pathway. 相似文献
5.
Ligands act as pharmacological chaperones and increase the efficiency of delta opioid receptor maturation 总被引:5,自引:0,他引:5
Petäjä-Repo UE Hogue M Bhalla S Laperrière A Morello JP Bouvier M 《The EMBO journal》2002,21(7):1628-1637
The endoplasmic reticulum (ER) is recognized as an important site for regulating cell surface expression of membrane proteins. We recently reported that only a fraction of newly synthesized delta opioid receptors could leave the ER and reach the cell surface, the rest being degraded by proteasomes. Here, we demonstrate that membrane-permeable opioid ligands facilitate maturation and ER export of the receptor, thus acting as pharmacological chaperones. We propose that these ligands stabilize the newly synthesized receptor in the native or intermediate state of its folding pathway, possibly by inducing stabilizing conformational constrains within the hydrophobic core of the protein. The receptor precursors that are retained in the ER thus represent fully competent folding intermediates that can be targets for pharmacological intervention aimed at regulating receptor expression and cellular responsiveness. The pharmacological chaperone action is independent of the intrinsic signaling efficacy of the ligand, since both agonists and antagonists were found to promote receptor maturation. This novel property of G protein-coupled receptor ligands may have important implications when considering their effects on cellular responsiveness during therapeutic treatments. 相似文献
6.
Most proteins in the secretory pathway are translated, folded, and subjected to quality control at the endoplasmic reticulum (ER). These processes must be flexible enough to process diverse protein conformations, yet specific enough to recognize when a protein should be degraded. Molecular chaperones are responsible for this decision making process. ER associated chaperones assist in polypeptide translocation, protein folding, and ER associated degradation (ERAD). Nevertheless, we are only beginning to understand how chaperones function, how they are recruited to specific substrates and assist in folding/degradation, and how unique chaperone classes make quality control "decisions". 相似文献
7.
8.
Leone D'Amico Barbara Valsasina M. Gloria Daminati M. Serena Fabbrini Gianpaolo Nitti Roberto Bollini Aldo Ceriotti Alessandro Vitale 《The Plant journal : for cell and molecular biology》1992,2(4):443-455
Treatment of developing bean cotyledons with the inhibitor of N-glycosylation tunicamycin enhanced the synthesis of at least two polypeptides with molecular mass 78 kDa and 97 kDa. Pulse-chase experiments and subcellular fractionation indicated that these are endoplasmic reticulum (ER) residents. The 78 kDa protein is a major component of the ER protein fraction and, by N-terminal sequencing, was identified as a bean homolog of the mammalian 78 kDa glucose-regulated protein (GRP78). This is a molecular chaperone that is probably involved in the folding and oligomerization of several animal and yeast proteins in the ER. When newly synthesized storage glycoproteins phaseolin, phytohemagglutinin or alpha-amylase inhibitor were immunoprecipitated from an ER preparation of tunicamycin-treated tissue, the GRP78 homolog was always co-precipitated. Bound GRP78 homolog could be released by ATP treatment. These results suggest that, at least when glycosylation is inhibited, this protein plays a role in the early stages of the synthesis of vacuolar storage proteins. 相似文献
9.
10.
Chemical chaperones reduce endoplasmic reticulum stress and prevent mutant HFE aggregate formation 总被引:1,自引:0,他引:1
de Almeida SF Picarote G Fleming JV Carmo-Fonseca M Azevedo JE de Sousa M 《The Journal of biological chemistry》2007,282(38):27905-27912
HFE C282Y, the mutant protein associated with hereditary hemochromatosis (HH), fails to acquire the correct conformation in the endoplasmic reticulum (ER) and is targeted for degradation. We have recently shown that an active unfolded protein response (UPR) is present in the cells of patients with HH. Now, by using HEK 293T cells, we demonstrate that the stability of HFE C282Y is influenced by the UPR signaling pathway that promotes its degradation. Treatment of HFE C282Y-expressing cells with tauroursodeoxycholic acid (TUDCA), a bile acid derivative with chaperone properties, or with the chemical chaperone sodium 4-phenylbutyrate (4PBA) impeded the UPR activation. However, although TUDCA led to an increased stability of the mutant protein, 4PBA contributed to a more efficient disposal of HFE C282Y to the degradation route. Fluorescence microscopy and biochemical analysis of the subcellular localization of HFE revealed that a major portion of the C282Y mutant protein forms intracellular aggregates. Although neither TUDCA nor 4PBA restored the correct folding and intracellular trafficking of HFE C282Y, 4PBA prevented its aggregation. These data suggest that TUDCA hampers the UPR activation by acting directly on its signal transduction pathway, whereas 4PBA suppresses ER stress by chemically enhancing the ER capacity to cope with the expression of misfolded HFE, facilitating its degradation. Together, these data shed light on the molecular mechanisms involved in HFE C282Y-related HH and open new perspectives on the use of orally active chemical chaperones as a therapeutic approach for HH. 相似文献
11.
In this study we used new nitrogen compounds obtained by organic synthesis whose structure predicted an antioxidant potential and then an eventual development as molecules of pharmacological interest in diseases involving oxidative stress. The compounds, identified as FMA4, FMA5, FMA7 and FMA8 differ in the presence of hydroxyl groups located in the C-3 and/or C-4 position of a phenolic unit, which is possibly responsible for their free radicals' buffering capacity. Data from the DPPH discoloration method confirm the high antiradical efficiency of the compounds. The results obtained with cellular models (L929 and PC12) show that they are not toxic and really protect from membrane lipid peroxidation induced by the ascorbate-iron oxidant pair. The level of protection correlates with the drug's lipophilic profile and is sometimes superior to trolox and equivalent to that observed for alpha-tocopherol. The compounds FMA4 and FMA7 present also a high protection from cell death evaluated in the presence of a staurosporine apoptotic stimulus. That protection results in a significant reduction of caspase-3 activity induced by staurosporine which by its turn seems to result from a protection observed in the membrane receptor pathway (caspase-8) together with a protection observed in the mitochondrial pathway (caspase-9). Taken together the results obtained with the new compounds, with linear chains, open up perspectives for their use as therapeutical agents, namely as antioxidants and protectors of apoptotic pathways. On the other hand the slight pro-oxidant profile obtained with the cyclic structures suggests a different therapeutic potential that is under current investigation. 相似文献
12.
We examined interactions between the endoplasmic reticulum (ER) chaperones calnexin (CN), ERp57, and immunological heavy chain-binding protein (BiP) and nicotinic acetylcholine receptor (nAChR) subunits. The three chaperones rapidly associate with newly synthesized nAChR subunits. Interactions between nAChR subunits and ERp57 occur via transient intermolecular disulfide bonds and do not require subunit N-linked glycosylation. The associations of ERp57 or CN with AChR subunits are long lived and prolong subunit lifetime approximately 10-fold. Coexpression of CN or ERp57 alone does not affect nAChR assembly or trafficking, but together they cause a significant decrease in nAChR expression and assembly. In contrast, associations with BiP are shorter lived and do not alter nAChR expression and assembly. However, a mutated BiP that slows its dissociation significantly increases its associations and decreases nAChR expression and assembly. Our results suggest that interactions with the chaperones regulate the levels of nAChRs assembled in the ER by stabilizing and sequestering subunits during assembly. 相似文献
13.
Endoplasmic reticulum (ER)-associated degradation (ERAD) is the process by which aberrant proteins in the ER lumen are exported back to the cytosol and degraded by the proteasome. Although ER molecular chaperones are required for ERAD, their specific role(s) in this process have been ill defined. To understand how one group of interacting lumenal chaperones facilitates ERAD, the fates of pro-alpha-factor and a mutant form of carboxypeptidase Y were examined both in vivo and in vitro. We found that these ERAD substrates are stabilized and aggregate in the ER at elevated temperatures when BiP, the lumenal Hsp70 molecular chaperone, is mutated, or when the genes encoding the J domain-containing proteins Jem1p and Scj1p are deleted. In contrast, deletion of JEM1 and SCJ1 had little effect on the ERAD of a membrane protein. These results suggest that one role of the BiP, Jem1p, and Scj1p chaperones is to maintain lumenal ERAD substrates in a retrotranslocation-competent state. 相似文献
14.
Biogenesis of the crystalloid endoplasmic reticulum in UT-1 cells: evidence that newly formed endoplasmic reticulum emerges from the nuclear envelope 总被引:9,自引:9,他引:9
下载免费PDF全文

The crystalloid endoplasmic reticulum (ER), a specialized smooth ER of the compactin-resistant UT-1 cell, is composed of multiple membrane tubules packed together in a hexagonal pattern. This membrane contains large amounts of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, an integral membrane protein that enzymatically regulates endogenous cholesterol biosynthesis. Using morphological and immunocytochemical techniques, we have traced the sequence of events in the biogenesis of this ER when compactin-withdrawn UT-1 cells, which do not have a crystalloid ER, are incubated in the presence of compactin. After 15 h of incubation in the presence of compactin, many cells had profiles of ER cisternae that were juxtaposed to the nuclear envelope and studded with ribosomes on their outer membrane. Both the outer nuclear membrane and the ER membrane contained HMG CoA reductase; however, there was little or no detectable enzyme in rough ER that was free in the cytoplasm. With longer times of incubation in the presence of compactin, these cells had lamellar stacks of smooth ER next to the nuclear envelope that contained HMG CoA reductase. Coordinate with the appearance of the smooth ER, crystalloid ER appeared in the same cell. Often regions of continuity were found between the membrane of the smooth ER and the membrane of the crystalloid ER tubules. These studies suggest that HMG CoA reductase is synthesized along the outer nuclear membrane and in response to increased enzyme synthesis, a membrane emerges from the outer nuclear membrane as smooth ER cisternae, which then transforms into crystalloid ER tubules. 相似文献
15.
Calcium is required for folding of newly made subunits of the asialoglycoprotein receptor within the endoplasmic reticulum. 总被引:21,自引:0,他引:21
By resolving immunoprecipitates on nonreducing sodium dodecyl sulfate gels, we have detected several disulfide-bonded intermediates in folding within the endoplasmic reticulum of newly made H1 subunits of the asialoglycoprotein receptor. H1 in the endoplasmic reticulum (ER) can be partially unfolded by treatment of cells with dithiothreitol, but H1 in Golgi or post-Golgi organelles is resistant to such unfolding. This defines a late step in H1 folding that occurs just prior to exit from the ER. Depletion of calcium from the endoplasmic reticulum, either by treatment with A23187 or thapsigargin, has no effect on folding or secretion of newly made albumin, but totally blocks H1 maturation from the ER. No ER intermediates in H1 folding are formed in cells treated with A23187 or thapsigargin, indicating that at least an early step in H1 folding requires a high Ca2+ concentration in the ER lumen. As judged by cross-linking experiments, formation of H1 dimers and trimers occurs immediately after biosynthesis of the peptide chain, before monomer folding, and occurs normally in cells in which ER Ca2+ is reduced and where the monomer never folds properly. Calcium is essential for the asialoglycoprotein receptor to bind galactose, and our results suggest that Ca2+ is also essential for the receptor polypeptides to fold in the ER. 相似文献
16.
Solveig A. Krumins 《Neurochemical research》1987,12(3):231-235
The interaction of various radioligands with spinal opioid receptors has been characterized under variable experimental conditions. Binding to , , and sites was measured in all (cervical, thoracic, lumbar) segments. The apparent affinity constant (K) of [3H]Ethylketocyclazocine (EKC) was similar in Tris, 2.09 (±1.06)×108 M–1, and phosphate buffer, 2.16 (±0.02)×108 M–1, when its interaction with and sites was blocked. Without blocking ligands, EKC binding was resolved in two components:K
1=1.01 (±0.21)×109 M–1 andK
2=0.95 (±0.61)×107 M–1. Likewise, the binding of [D-Ala2, MePhe4, Gly(ol)5]enkephalin (DAGO) or [D-Ala2, D-Leu5]-enkephalin (DADLE) alone was represented by a 2-site model. By adjusting the radioligand and receptor concentration or by the addition of blocking ligands, binding was represented by a 1-site model for DAGO,K=4.35 (±1.41)×108 M–1, and DADLE,K=2.44 (±0.08)×108 M–1.The abbreviations used are DADLE
[D-Ala2, D-Leu5]enkephalin
- DAGO
[D-Ala2, MePhe4, Gly(ol)5]enkephalin
- EKC
ethylketocyclazocine
- DYN
dynorphin (1–17) 相似文献
17.
Formation of the alpha-bungarotoxin binding site and assembly of the nicotinic acetylcholine receptor subunits occur in the endoplasmic reticulum 总被引:20,自引:0,他引:20
During the process by which newly synthesized subunits of the nicotinic acetylcholine receptor (stoichiometry = alpha 2 beta gamma delta) mature and acquire the properties of the fully functional cell surface receptor, they undergo numerous covalent and noncovalent modifications. Using ligand-mediated and subunit-specific immunoprecipitation, four forms in the maturation of the alpha subunit can be detected: the primary translation product; alpha subunit that can bind alpha-bungarotoxin; alpha subunit assembled with the other subunits; and surface receptor. The alpha subunit acquires the ability to bind alpha-bungarotoxin with a t1/2 of approximately 40 min after translation and becomes assembled with a t1/2 of 80 min after translation. Using metabolic labeling and sucrose gradient fractionation, we have determined the subcellular location of alpha subunit when it acquires the ability to bind alpha-bungarotoxin and when it is assembled. Golgi membranes were identified across the gradient by the enzymatic activities UDP-galactose:N-acetylglucosamine galactosyltransferase and alpha-mannosidase. Endoplasmic reticulum membranes were identified by the enzymatic activity glucose-6-phosphatase and by the presence of newly synthesized alpha and beta subunits. Pulse-labeled alpha subunit that bound alpha-bungarotoxin was first detected co-migrating in the gradient with the glucose-6-phosphatase activity. Therefore, the capacity to bind alpha-bungarotoxin was acquired while the alpha subunit was in the endoplasmic reticulum. Assembled alpha subunit was detected by immunoprecipitating with an anti-beta subunit-specific monoclonal antibody. By this method, assembled receptor was first detected 15 min after translation in both the endoplasmic and Golgi portions of the gradient. To validate this method of detecting assembled receptor, we determined the sedimentation coefficient of the receptor subunits in the endoplasmic reticulum. Both unassembled subunits with sedimentation coefficients of 5 S and assembled receptor with a sedimentation coefficient of 9 S were recovered from the endoplasmic reticulum portion of the gradient. Thus, our data concerning the subcellular site of assembly are consistent with assembly occurring in the endoplasmic reticulum followed by rapid transport to the Golgi. 相似文献
18.
Petaja-Repo UE Hogue M Laperriere A Bhalla S Walker P Bouvier M 《The Journal of biological chemistry》2001,276(6):4416-4423
We have previously shown that only a fraction of the newly synthesized human delta opioid receptors is able to leave the endoplasmic reticulum (ER) and reach the cell surface (Pet?j?-Repo, U. E, Hogue, M., Laperrière, A., Walker, P., and Bouvier, M. (2000) J. Biol. Chem. 275, 13727-13736). In the present study, we investigated the fate of those receptors that are retained intracellularly. Pulse-chase experiments revealed that the disappearance of the receptor precursor form (M(r) 45,000) and of two smaller species (M(r) 42,000 and 39,000) is inhibited by the proteasome blocker, lactacystin. The treatment also promoted accumulation of the mature receptor form (M(r) 55,000), indicating that the ER quality control actively routes a significant proportion of rescuable receptors for proteasome degradation. In addition, degradation intermediates that included full-length deglycosylated (M(r) 39,000) and ubiquitinated forms of the receptor were found to accumulate in the cytosol upon inhibition of proteasome function. Finally, coimmunoprecipitation experiments with the beta-subunit of the Sec61 translocon complex revealed that the receptor precursor and its deglycosylated degradation intermediates interact with the translocon. Taken together, these results support a model in which misfolded or incompletely folded receptors are transported to the cytoplasmic side of the ER membrane via the Sec61 translocon, deglycosylated and conjugated with ubiquitin prior to degradation by the cytoplasmic 26 S proteasomes. 相似文献
19.
Cathepsin D and beta-hexosaminidase synthesized in the presence of 1-deoxynojirimycin accumulate in the endoplasmic reticulum 总被引:9,自引:0,他引:9
P Lemansky V Gieselmann A Hasilik K von Figura 《The Journal of biological chemistry》1984,259(16):10129-10135
Biosynthesis, transport, and maturation of cathepsin D and beta-hexosaminidase was examined in fibroblasts exposed to 1-deoxynojirimycin, a glucose analogue known to inhibit trimming glucosidases (Saunier, B., Kilker, R. D., Jr., Tkacz, J. S., Quaroni, A., and Herscovics, A. (1982) J. Biol. Chem. 257, 14155-14161; Hettkamp, H., Bause, E., and Legler, G. (1982) Biosci. Rep. 2, 899-906). Cells treated with 1-deoxynojirimycin contained precursors of cathepsin D and beta-hexosaminidase larger by about 1-2 kDa than control cells. The shift in molecular size was probably due to glucose residues that were rapidly removed from the precursors in the absence but not in the presence of 1-deoxynojirimycin. In addition, 1-deoxynojirimycin inhibited the glycosylation of the beta-chain precursor of beta-hexosaminidase and the synthesis of glycoproteins, including that of cathepsin D. The proteolytic processing of the larger precursors was retarded by several hours. The delay in proteolytic maturation was secondary to the accumulation of the larger precursors in organelles, which fractionated with membranes of the endoplasmic reticulum and Golgi complex. The accumulated cathepsin D precursor contained neither mannose 6-phosphate residues nor complex type oligosaccharides, which are formed in the cis and trans aspects of the Golgi complex. Cathepsin D precursors eventually released from the site of accumulation were apparently deglucosylated, acquired mannose 6-phosphate residues and complex type oligosaccharides, and were transferred into lysosomes as efficiently as in control cells. Our results suggest that transport of cathepsin D from the endoplasmic reticulum to the Golgi complex depends on removal of glucose residues from its carbohydrate. 相似文献
20.
Nakatsukasa K Okada S Umebayashi K Fukuda R Nishikawa S Endo T 《The Journal of biological chemistry》2004,279(48):49762-49772
The protein quality control system in the endoplasmic reticulum (ER) ensures that only properly folded proteins are deployed throughout the cells. When nonnative proteins accumulate in the ER, the unfolded protein response is triggered to limit further accumulation of nonnative proteins and the ER is cleared of accumulated nonnative proteins by the ER-associated degradation (ERAD). In the yeast ER, aberrant nonnative proteins are mainly directed for the ERAD, but a distinct fraction of them instead receive O-mannosylation. In order to test whether O-mannosylation might also be a mechanism to process aberrant proteins in the ER, here we analyzed the effect of O-mannosylation on two kinds of model aberrant proteins, a series of N-glycosylation site mutants of prepro-alpha-factor and a pro-region-deleted derivative of Rhizopus niveus aspartic proteinase-I (Deltapro) both in vitro and in vivo. O-Mannosylation increases solubilities of the aberrant proteins and renders them less dependent on the ER chaperone, BiP, for being soluble. The release from ER chaperones allows the aberrant proteins to exit out of the ER for the normal secretory pathway transport. When the gene for Pmt2p, responsible for the O-mannosylation of these aberrant proteins, and that for the ERAD were simultaneously deleted, the cell exhibited enhanced unfolded protein response. O-Mannosylation may therefore function as a fail-safe mechanism for the ERAD by solubilizing the aberrant proteins that overflowed from the ERAD pathway and reducing the load for ER chaperones. 相似文献