首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential for sexual reproduction in Aspergillus oryzae was assessed by investigating the presence and functionality of MAT genes. Previous genome studies had identified a MAT1-1 gene in the reference strain RIB40. We now report the existence of a complementary MAT1-2 gene and the sequencing of an idiomorphic region from A. oryzae strain AO6. This allowed the development of a PCR diagnostic assay, which detected isolates of the MAT1-1 and MAT1-2 genotypes among 180 strains assayed, including industrial tane-koji isolates. Strains used for sake and miso production showed a near-1:1 ratio of the MAT1-1 and MAT1-2 mating types, whereas strains used for soy sauce production showed a significant bias toward the MAT1-2 mating type. MAT1-1 and MAT1-2 isogenic strains were then created by genetic manipulation of the resident idiomorph, and gene expression was compared by DNA microarray and quantitative real-time PCR (qRT-PCR) methodologies under conditions in which MAT genes were expressed. Thirty-three genes were found to be upregulated more than 10-fold in either the MAT1-1 host strain or the MAT1-2 gene replacement strain relative to each other, showing that both the MAT1-1 and MAT1-2 genes functionally regulate gene expression in A. oryzae in a mating type-dependent manner, the first such report for a supposedly asexual fungus. MAT1-1 expression specifically upregulated an α-pheromone precursor gene, but the functions of most of the genes affected were unknown. The results are consistent with a heterothallic breeding system in A. oryzae, and prospects for the discovery of a sexual cycle are discussed.  相似文献   

2.
M. L. Philley  C. Staben 《Genetics》1994,137(3):715-722
The Neurospora crassa mt a-1 gene, encoding the MT a-1 polypeptide, determines a mating type properties: sexual compatibility and vegetative incompatibility with A mating type. We characterized in vivo and in vitro functions of the MT a-1 polypeptide and specific mutant derivatives. MT a-1 polypeptide produced in Escherichia coli bound to specific DNA sequences whose core was 5'-CTTTG-3'. DNA binding was a function of the MT a-1 HMG box domain (a DNA binding motif found in high mobility group proteins and a diverse set of regulatory proteins). Mutation within the HMG box eliminated DNA binding in vitro and eliminated mating in vivo, but did not interfere with vegetative incompatibility function in vivo. Conversely, deletion of amino acids 216-220 of MT a-1 eliminated vegetative incompatibility, but did not affect mating or DNA binding. Deletion of the carboxyl terminal half of MT a-1 eliminated both mating and vegetative incompatibility in vivo, but not DNA binding in vitro. These results suggest that mating depends upon the ability of MT a-1 polypeptide to bind to, and presumably to regulate the activity of, specific DNA sequences. However, the separation of vegetative incompatibility from both mating and DNA binding indicates that vegetative incompatibility functions by a biochemically distinct mechanism.  相似文献   

3.
4.
N. L. Glass  L. Lee 《Genetics》1992,132(1):125-133
In the filamentous fungus, Neurospora crassa, mating type is regulated by a single locus with alternate alleles, termed A and a. The mating type alleles control entry into the sexual cycle, but during vegetative growth they function to elicit heterokaryon incompatibility, such that fusion of A and a hypha results in death of cells along the fusion point. Previous studies have shown that the A allele consists of 5301 bp and has no similarity to the a allele; it is found as a single copy and only within the A genome. The a allele is 3235 bp in length and it, too, is found as a single copy within the a genome. Within the A sequence, a single open reading frame (ORF) of 288 amino acids (mt A-1) is thought to confer fertility and heterokaryon incompatibility. In this study, we have used repeat induced point (RIP) mutation to identify functional regions of the A idiomorph. RIP mutations in mt A-1 resulted in the isolation of sterile, heterokaryon-compatible mutants, while RIP mutations generated in a region outside of mt A-1 resulted in the isolation of mutants capable of mating, but deficient in ascospore formation.  相似文献   

5.
The whole MATA cassette from Yarrowia lipolytica, a dimorphic fungus, was replaced by the URA3 gene through a double homologous recombination. This MAT-less strain lost its mate capacity with A or B Y. lipolytica strains. Introduction of polymerase chain reaction-synthesized idiomorph MATB in a null strain of A locus by double homologous recombination gave rise to a "transsexual" B strain. Mating capacity of this engineered mutant was assayed using Y. lipolytica strains of either A or B mating type. Mating took place only with an A strain, demonstrating the MATB idiomorph functionality in a MATA phenotype. Our data suggest that specific downstream genes are responsible for the final A or B phenotypes present in all Y. lipolytica cells, independent of their MAT idiomorph phenotype.  相似文献   

6.
Mating type and mating strategies in Neurospora   总被引:12,自引:0,他引:12  
In the heterothallic species Neurospora crassa, strains of opposite mating type, A and a, must interact to give the series of events resulting in fruiting body formation, meiosis, and the generation of dormant ascospores. The mating type of a strain is specified by the DNA sequence it carries in the mating type region; strains that are otherwise isogenic can mate and produce ascospores. The DNA of the A and a regions have completely dissimilar sequences. Probing DNA from strains of each mating type with labelled sequences from the A and the a regions has shown that, unlike in Saccharomyces cerevisiae, only a single copy of a mating type sequence is present in a haploid genome. The failure to switch is explainable by the physical absence of DNA sequences characteristic of the opposite mating type. While the mating type sequences must be of the opposite kind for mating to occur in the sexual cycle, two strains of opposite mating type cannot form a stable heterokaryon during vegetative growth; instead, they fuse abortively to give a heterokaryon incompatibility reaction, which results in death of the cells along the fusion line. The DNA sequences responsible for this reaction are coextensive with those sequences in the A and a regions which are necessary to initiate fruiting body formation. The genus Neurospora also includes homothallic species--ones in which a single haploid nucleus carries all the information necessary to form fruiting bodies, undergo meiosis, and produce new haploid spores. One such species, N. terricola, contains one copy each of the A and the a sequences within each haploid genome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The smut fungi are obligately parasitic during the sexual phase of their life cycle, and the mating-type genes of these fungi play key roles in both sexual development and pathogenicity. Among species of smut fungi it is common to find a bipolar mating system in which one locus with two alternate alleles is believed to control cell fusion and establishment of the infectious cell type. Alternatively, several species have a tetrapolar mating system in which two different genetic loci, one of which has multiple alleles, control fusion and subsequent development of the infection hyphae. Cloned sequences from the a and b mating-type loci of the tetrapolar smut fungus Ustilago maydis were used as hybridization probes to DNAs from 23 different fungal strains, including smut fungi with both tetrapolar and bipolar mating systems. In general, all of the smut fungi hybridized with the mating-type genes from U. maydis, suggesting conservation of the sequences involved in mating interactions. A selection of DNAs from other ascomycete and basidiomycete fungi failed to hybridize with the U. maydis mating-type sequences. Exceptions to this finding include hybridization of DNA from the a1 idiomorph of U. maydis to DNA from one strain of U. violacea and hybridization of both a idiomorphs to DNA from Saccharomyces cerevisiae.  相似文献   

8.
9.
10.
A V Ferreira  Z An  R L Metzenberg  N L Glass 《Genetics》1998,148(3):1069-1079
The mating-type locus of Neurospora crassa regulates mating identity and entry into the sexual cycle. The mat A idiomorph encodes three genes, mat A-1, mat A-2, and mat A-3. Mutations in mat A-1 result in strains that have lost mating identity and vegetative incompatibility with mat a strains. A strain containing mutations in both mat A-2 and mat A-3 is able to mate, but forms few ascospores. In this study, we describe the isolation and characterization of a mutant deleted for mat (deltamatA), as well as mutants in either mat A-2 or mat A-3. The deltamatA strain is morphologically wild type during vegetative growth, but it is sterile and heterokaryon compatible with both mat A and mat a strains. The mat A-2 and mat A-3 mutants are also normal during vegetative growth, mate as a mat A strain, and produce abundant biparental asci in crosses with mat a, and are thus indistinguishable from a wild-type mat A strain. These data and the fact that the mat A-2 mat A-3 double mutant makes few asci with ascospores indicate that MAT A-2 and MAT A-3 are redundant and may function in the same pathway. Analysis of the expression of two genes (sdv-1 and sdv-4) in the various mat mutants suggests that the mat A polypeptides function in concert to regulate the expression of some sexual development genes.  相似文献   

11.
A large number of molds serve as producer strains for the industrial production of pharmaceuticals, foods, or organic chemicals. To optimize strains for production processes, conventional strain development programs use random mutagenesis and, more recently, recombinant technologies to generate microbial strains with novel and advantageous properties. The recent detection of mating type genes in fungal production strains and the discovery of cryptic sexuality in presumably asexual fungi open up novel strategies for generating progeny with new, as yet unobserved properties. Mating type genes, which can be considered as “sex genes,” not only direct sexual development but also regulate a broad range of fungal secondary metabolites. In addition, they control hyphal morphology, which has a direct impact on production processes that are often conducted in huge fermenter tanks. Here, we survey the occurrence and function of mating type genes that have been discovered in a wide range of industrial fungal producer strains. The possibility to obtain progeny from industrial producers by sexual mating provides an exciting alternative to conventional strain improvement programs aiming to generate optimized recombinant production strains.  相似文献   

12.
13.
14.
Invasive aspergillosis (IA) due to Aspergillus fumigatus is a major cause of mortality in immunocompromised patients. The discovery of highly fertile strains of A. fumigatus opened the possibility to merge classical and contemporary genetics to address key questions about this pathogen. The merger involves sexual recombination, selection of desired traits, and genomics to identify any associated loci. We constructed a highly fertile isogenic pair of A. fumigatus strains with opposite mating types and used them to investigate whether mating type is associated with virulence and to find the genetic loci involved in azole resistance. The pair was made isogenic by 9 successive backcross cycles of the foundational strain AFB62 (MAT1-1) with a highly fertile (MAT1-2) progeny. Genome sequencing showed that the F9 MAT1-2 progeny was essentially identical to the AFB62. The survival curves of animals infected with either strain in three different animal models showed no significant difference, suggesting that virulence in A. fumigatus was not associated with mating type. We then employed a relatively inexpensive, yet highly powerful strategy to identify genomic loci associated with azole resistance. We used traditional in vitro drug selection accompanied by classical sexual crosses of azole-sensitive with resistant isogenic strains. The offspring were plated under varying drug concentrations and pools of resulting colonies were analyzed by whole genome sequencing. We found that variants in 5 genes contributed to azole resistance, including mutations in erg11A (cyp51A), as well as multi-drug transporters, erg25, and in HMG-CoA reductase. The results demonstrated that with minimal investment into the sequencing of three pools from a cross of interest, the variation(s) that contribute any phenotype can be identified with nucleotide resolution. This approach can be applied to multiple areas of interest in A. fumigatus or other heterothallic pathogens, especially for virulence associated traits.  相似文献   

15.
16.
Mating propensity and fertility were studied in five laboratory strains of Drosophila ananassae which were established from single females collected from different geographical localities. The results show statistically significant variation among different isofemale lines with respect to mating propensity and fertility. The strains showing greater sexual activity produce more progeny. Thus, there is a positive correlation between mating activity and fertility in D. ananassae. The comparison of mating frequencies of strains and their hybrids reveals the existence of heterosis and reciprocal effects. The data suggest that the males are more subject to intrasexual selection.  相似文献   

17.
Direct and indirect gene replacements in Aspergillus nidulans.   总被引:35,自引:8,他引:27       下载免费PDF全文
We performed three sets of experiments to determine whether cloned DNA fragments can be substituted for homologous regions of the Aspergillus nidulans genome by DNA-mediated transformation. A linear DNA fragment containing a heteromorphic trpC+ allele was used to transform a trpC- strain to trpC+. Blot analysis of DNA from the transformants showed that the heteromorphic allele had replaced the trpC- allele in a minority of the strains. An A. nidulans trpC+ gene was inserted into the argB+ gene, and a linear DNA fragment containing the resultant null argB allele was used to transform a trpC- argB+ strain to trpC+. Approximately 30% of the transformants were simultaneously argB-. The null argB allele had replaced the wild-type allele in a majority of these strains. The A. nidulans SpoC1 C1-C gene was modified by removal of an internal restriction fragment and introduced into a trpC- strain by transformation with a circular plasmid. A transformant containing a tandem duplication of the C1-C region separated by plasmid DNA was self-fertilized, and trpC- progeny were selected. All of these had lost the introduced plasmid DNA sequences, whereas about half had retained the modified C1-C gene and lost the wild-type copy. Thus, it is possible with A. nidulans to replace chromosomal DNA sequences with DNA fragments that have been cloned and modified in vitro by using either one- or two-step procedures similar to those developed for Saccharomyces cerevisiae.  相似文献   

18.
In heterothallic Ascomycota, two opposite but distinct mating types control all sexual processes. Using mating crosses, mating types were assigned to ten isolates of the heterothallic fungal species Ophiostoma quercus. Primers were subsequently designed to target the MAT1-1-1, MAT1-1-3 (of the mating type 1 idiomorph), and MAT1-2-1 (of the mating type 2 idiomorph) genes in these isolates. Results showed that all isolates contained the full gene sequence for the MAT1-2-1 gene. In addition, fragments of the MAT1-1-1 and MAT1-1-3 genes were sequenced from all isolates. These results were unexpected, as each isolate from a heterothallic species would typically contain only one of the two possible MAT idiomorphs.  相似文献   

19.
Amoebae of the acellular slime mold Physarum polycephalum convert to plasmodia both asexually and sexually. Genetic analysis of a mutant that exhibits enhanced asexual plasmodium formation is reported. The mutant carries a single lesion (gad-11) located 12.3 map units from mt, a gene that controls mating specificity in sexual plasmodium formation. The mutation, which was isolated in an mt3 strain, is also expressed in mth and mt4 strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号