首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteriological and serological characteristics of three Bacillus thuringiensis isolates obtained in Japan were investigated. They formed typical rhomboidal parasporal inclusions but flagellar (H) antigens of these isolates were different from those of the known 17 H serotypes of B. thuringiensis. The three isolates were divided into two new serotypes (serotypes 18 and 19). The serotype 18 isolate (3–71) produced thermostable exotoxin and the inclusions of this isolate were toxic to larvae of the silkworm, Bombyx mori, but nontoxic to larvae of the mosquito, Aedes aegypti. The other isolate (119-72) belonging to serotype 18 produced inclusions nontoxic to larvae of B. mori and A. aegypti and did not produce thermostable exotoxin. However, other bacteriological properties of the isolate 119-72 were similar to those of the isolate 3–71. The serotype 19 isolate (117-72) produced inclusions nontoxic to larvae of B. mori and A. aegypti and did not produce thermostable exotoxin. Acid production from saccharose and the production of brownish purple pigment were observed in the two serotype 18 isolates, while neither of them was observed in the serotype 19 isolate. In other 29 biochemical properties tested, there was no difference among the three isolates. Based on these characteristics, the following two subspecies names are proposed: Bacillus thuringiensis subsp. kumamotoensis (serotype 18) for the type strain 3–71 and Bacillus thuringiensis subsp. tochigiensis (serotype 19) for the type strain 117-72.  相似文献   

2.
Among six strains of Bacillus thuringiensis and five other species of Bacillus, only two strains of B. thuringiensis, strains HD-1 and BA-068, were toxic to Aedes aegypti larvae within 24 hr. The LC50s were 5.6 × 104 and 2.4 × 105 spores/ml for strains HD-1 and BA-068, respectively. The toxic factor(s) was heat sensitive and γ ray resistant and preliminary evidences indicated that it was associated with the crystalline body of B. thuringiensis.  相似文献   

3.
This study investigated the potential of Bacillus thuringiensis isolates obtained in the Cerrado region of the Brazilian state of Maranhão for the biological control of Aedes aegypti larvae. The isolates were obtained from soil samples and the identification of the B. thuringiensis colonies was based on morphological characteristics. Bioassays were run to assess the pathogenicity and toxicity of the different strains of the B. thuringiensis against third-instar larvae of A. aegypti. Protein profiles were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Polymerase chain reaction assays were used to detect the toxin genes found in the bacterial isolates. Overall, 12 (4.0%) of the 300 isolates obtained from 45 soil samples were found to present larvicidal activity, with the BtMA-104, BtMA-401 and BtMA-560 isolates causing 100% of mortality. The BtMA-401 isolate was the most virulent, with the lowest median lethal concentration (LC50) (0.004 × 107 spores/mL), followed by the Bacillus thuringiensis var. israelensis standard (0.32 × 107 spores/mL). The protein profiles of BtMA-25 and BtMA-401 isolates indicated the presence of molecular mass consistent with the presence of the proteins Cry4Aa, Cry11Aa and Cyt1, similar to the profile of Bacillus thuringiensis var. israelensis IPS-82. Surprisingly, however, none of the cry and cyt genes analyzed were amplified in the isolate BtMA-401. The results of the present study revealed the larvicidal potential of B. thuringiensis isolates found in the soils of the Cerrado region from Maranhão, although further research will be necessary to better elucidate and describe other genes associated with the production of insecticidal toxins in these isolates.  相似文献   

4.
A local isolate of Bacillus thuringiensis, designated L1-2, that is toxic to Chilo partellus was found to be toxic to the adult tsetse fly, Glossina morsitans morsitans. The δ-endotoxin crystals derived from the isolate gave a major protein band with a molecular weight of Mr 130,000–140,000 on denaturing polyacrylamide gel electrophoresis. The sequence of the cloned gene was found to be similar to that of the B. thuringiensis subsp. kurstaki HD-73 cryIA(c) gene, having one amino acid difference at position 148 and four additional DNA differences. Received: 29 June 1996 / Accepted: 1 August 1996  相似文献   

5.
Three structural domains of mosquitocidal Cry11Aa and Cry11Ba from Bacillus thuringiensis were exchanged to produce interdomain chimeras [BAA (11Ba/11Aa/11Aa), ABA (11Aa/11Ba/11Aa), AAB (11Aa/11Aa/11Ba), ABB (11Aa/11Ba/11Ba), BAB (11Ba/11Aa/11Ba), BBA (11Ba/11Ba/11Aa]. Chimeras BAB, BAA, BBA, and AAB formed inclusion bodies in the crystal-negative B. thuringiensis host and produced expected protein bands on SDS-PAGE gel. However, no inclusion body or target protein could be found for chimeras ABA and ABB. In bioassays using the fourth-instar larvae of Culex quinquefasciatus and Aedes aegypti, AAB had ~50 % lethal concentrations of 4.8 and 2.2 μg ml?1, respectively; however, the rest of chimeras were not toxic. This study thus helps to understand the domain-function relationships of the Cry11Aa and Cry11Ba toxins. The toxic chimera, AAB, might be a candidate for mosquito control as its amino acid sequence is different from the two parental toxins.  相似文献   

6.
An isolate of Bacillus thuringiensis designated as PG-14 obtained from the Philippines was highly toxic to the mosquitoes Aedes aegypti and Culex molestus but nontoxic to the silkworm, Bombyx mori, and adults of a daphnid. The degree of toxicity to mosquito larvae was the same as that of the reference strain of Bacillus thuringiensis subsp. israelensis (serotype 14). Parasporal inclusion produced by the isolate PG-14 was spherical or irregular in shape and morphologically similar to that produced by the reference strain of subsp. israelensis. The H antigenic structure of the isolate was identical to that of the reference strain of B. thuringiensis subsp. morrisoni (serotype 8a:8b). Differences were shown in the O antigenic structures and in the production of lecithinase. Thermostable exotoxin was not produced by the isolate PG-14. The results indicate the isolation of a B. thuringiensis strain which shows the same toxicity as that of subsp. israelensis.  相似文献   

7.
Pest control in Saudi Arabia depends on applying chemical insecticides, which have many undesirable considerations and impacts on the environment. Therefore, the aim of this study was to isolate Bacillus thuringiensis from different rhizosphere soil samples in the Jazan region for the biological control of Spodoptera littoralis and Aedes aegypti larvae. The samples were collected from the rhizosphere of different plants located in eight agricultural areas in Jazan, Saudi Arabia. Out of 100 bacterial isolates, four bacterial isolates belonging to Bacillus species were selected namely JZ1, JZ2, JZ3, and JZ4, and identified using classical bacteriological and molecular identification using 16S rRNA. JZ1 and JZ2 isolates were identified as Bacillus thuringiensis. SDS-PAGE analysis and the detection of the Cry1 gene were used to describe the two isolates JZ1 and JZ2 in comparison to Bacillus thuringiensis reference strain Kurstaki HD1 (BTSK) were revealed that slightly different from each other due to the place of their isolation and namely Khlab JZ1 and Ayash JZ2. The EC50 of JZ1 and JZ2 isolates, BTSK, and the commercial biopesticide DiPEL 6.4 DF against the second-instar larvae of Aedes aegypti were 207, 932, 400, and 500 ppm respectively, while EC50 against first-instar larvae of Spodoptera littoralis were 193.93, 589.7, 265.108, and 342.9, ppm respectively. Isolate JZ1 recorded the highest mortality while JZ2 isolate gave the lowest mortality. It can be concluded that the local isolate of JZ1 and JZ2 can be developed for bio formulations to be used in Spodoptera littoralis and Aedes aegypti biological control programs.  相似文献   

8.
Comparative bacteriological and serological studies of three isolates and the reference strain of Bacillus thuringiensis subsp. darmstadiensis (serotype 10) were conducted. No difference was shown in the flagellar antigenic structure between the three isolates and the reference strain. Differences were observed in the O antigenic structures and in the following biochemical properties: lecithinase production, DNase production, arginine decarboxylase production, acid production from inulin, and malonate utilization. β-Exotoxin production was not detected in these three isolates. The reference strain produced parasporal inclusions toxic to the lepidopterous larvae but nontoxic to mosquito larvae. On the contrary, two among the three isolates, which produced spherical parasporal inclusions, were not toxic to the lepidopterous larvae but highly toxic to larvae of the mosquitoes, Culex tritaenlorhynchus, Culex molestus, and Aedes aegypti. Another isolate produced large irregular-shaped inclusions nontoxic to the insects of both orders. Accordingly, B. thuringiensis serotype 10 was divided into three groups from the viewpoint of toxicity against lepidopterous and mosquito larvae.  相似文献   

9.
Degradation products of the parasporal crystals of Bacillus thuringiensis var. kurstaki obtained by treatment with alkali, gut juice from larvae of Bombyx mori, and various plant and mammalian enzymes were compared for elution pattern, approximate molecular weight (MW), and toxicity. The results indicated that with alkaline treatment the most toxic extract was obtained with 0.05–0.1 M NaOH. Toxicity was found associated mainly with a protein peak of 230,000 MW although other toxic peaks were found in the tailing. Heat-treated midgut juice from larval B. mori gave similar results. After digestion of parasporal crystals with clarified midgut juice, five peaks causing toxicity and having MW of approximately 235,000, 67,000, 30,200, 5000, and 1000, respectively, were identified. Treatment of B. thuringiensis δ-endotoxin with α-chymotrypsin gave peaks causing mortality of approximate MW 235,000, 34,000, 5000, and 1000. Trypsin, pronase, carboxypeptidase, and enterokinase digests of the B. thuringiensis δ-endotoxin gave toxic components ranging from 235,000 to 30,000 MW. The protein protoxin molecules are digested to give small toxic subunits that may be of practical value for structural determinations and for molecular mode of action studies.  相似文献   

10.
Applications to combat non-lepidopteran insects are not as common as applications against lepidopteran insects. The aim of the present work was to isolate and identify Bacillus thuringiensis isolates from soil samples using five approaches, viz., analysis of crystal protein production by microscopy; detection of cry gene content by PCR, SDS-PAGE profiling; cloning and sequencing; phylogenetic analysis; and toxicity testing. Two hundred soil samples were used for isolation of B. thuringiensis and a total of 69 putative isolates of B. thuringiensis that produce parasporal crystalline inclusions were isolated from 5,267 Bacillus-like colonies. A bipyramidal inclusion was predominant in 32.2 % of the B. thuringiensis isolates compared to other shapes. Crystal protein profiling of B. thuringiensis isolates by SDS-PAGE analysis showed the presence of bands of 130, 73, 34, 25 and 13 kDa, among which 50–60 kDa bands were present abundantly. PCR analysis revealed the predominance of Coleopteran-active cry genes in these isolates. Variation in nucleotide sequences, crystal morphology and mass of crystal protein(s) purified from the isolates of B. thuringiensis revealed genetic and molecular diversity. Four strains containing Coleopteran-active cry genes showed higher toxicity against Myllocerus undecimpustulatus undatus Marshall (Coleoptera: Curculionidae) adults when compared with B. thuringiensis subsp. morrisoni pathovar tenebrionis. These results are useful in emphasizing the distribution of cry genes and for prognostication of toxicity, and may contribute to the identification of novel candidate genes for bioengineered crop protection.  相似文献   

11.
The current investigation describes the isolation and characterization of toxic Bt. local isolates harboring 99% homology with Bti. prototoxin Bacillus thuringiensis (AXJ97553.1 and novel OUB27301.1) which contains full length cry11 gene (1.9 kb). Initially, it was cloned in pTZ57R/T and then sub-cloned in pET30a(+) for expression. The optimized conditions for good expression were found 1 mM IPTG, 3.5–4 h incubation time, and 37 °C. Toxicological assays were determined against 3rd instar larvae of Aedes aegypti with expressed partially purified and crude recombinant protein using recombinant E. coli BL21, DE3 transformed with cry11 gene. It was found that partially purified Bt. protein is highly toxic against A. aegypti larvae with LC50 value of 42.883 ± 6 µg/ml. B. thuringiensis strains producing Cry 11 toxic protein can be used as biopesticide to control resistance in insects.  相似文献   

12.
We investigated the distribution, toxicity, morphology, and protein profiles of Bacillus thuringiensis isolates from forests in Korea to isolate naturally occurring novel B. thuringiensis. A total of 170 B. thuringiensis isolates were obtained from 832 samples producing spore and parasporal inclusion bodies. In toxicity tests for lepidopteran, dipteran, and coleopteran insects, 57.6% isolates were toxic only to Lepidoptera, 5.3% were toxic only to Diptera, and 24.1% were toxic to both Diptera and Lepidoptera. The remaining collections (13.0%) were not toxic to the tested insects. The shapes of the parasporal crystals produced in B. thuringiensis isolates were bipyramidal, spherical, ovoid, or irregular. As their toxicities varied with parasporal crystal shape, B. thuringiensis isolates possessing bipyramidal or irregular parasporal crystals were largely toxic to lepidopteran species whereas those producing spherical parasporal crystals were mainly toxic to dipteran species. B. thuringiensis toxic to both dipteran and lepidopteran insects contained 130- and 70-kDa parasporal crystals, whereas B. thuringiensis toxic to lepidopteran insects expressed 130-kDa parasporal crystals. The results suggest that forest areas in Korea are a rich source of B. thuringiensis and need to be further explored to discover novel B. thuringiensis isolates.  相似文献   

13.
Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein Cyt1A from Bacillus thuringiensis subsp. israelensis to enhance the toxicity of B. sphaericus toward A. aegypti. Various combinations of these two materials were evaluated, and all were highly toxic. A ratio of 10:1 of B. sphaericus to Cyt1A was 3,600-fold more toxic to A. aegypti than B. sphaericus alone. Statistical analysis showed this high activity was due to synergism between the Cyt1A toxin and B. sphaericus. These results suggest that Cyt1A could be useful in expanding the host range of B. sphaericus.  相似文献   

14.
Throughout the vegetative life of Bacillus thuringiensis, vegetative insecticidal proteins (Vip) are produced and secreted. In the present study, the vip3 gene isolated from Bacillus thuringiensis, an Egyptian isolate, was successfully amplified (2.4 kbp) and expressed using bacterial expression system. The molecular mass of the expressed protein was verified using SDS-PAGE and western blot analysis. Whiteflies were also screened for susceptibility to the expressed Vip3 protein (LC50). In addition, ST50 was determined to assess the kill speed of the expressed Vip3 protein against whiteflies compared to the whole vegetative proteins. The results showed that the potency of whole B. thuringiensis vegetative proteins against whiteflies was slightly higher than the expressed Vip3 protein with 4.7-fold based on LC50 value. However, the ST50 parameter showed no significant difference between both the B. thuringiensis vegetative proteins and the expressed Vip3 alone. The results showed that the vip3 gene was successfully expressed in an active form which showed high susceptibility to whiteflies based on the virulence parameters LC50 and ST50. To our knowledge, this study showed for the first time the high toxicity of the expressed Vip3 proteins of B. thuringiensis toward whiteflies as a hopeful and promising bio-control agent.  相似文献   

15.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.  相似文献   

16.
We have developed a strategy for isolating cry genes from Bacillus thuringiensis. The key steps are the construction of a DNA library in an acrystalliferous B. thuringiensis host strain and screening for the formation of crystal through optical microscopy observation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses. By this method, three cry genes—cry55Aa1, cry6Aa2, and cry5Ba2—were cloned from rice-shaped crystals, producing B. thuringiensis YBT-1518, which consists of 54- and 45-kDa crystal proteins. cry55Aa1 encoded a 45-kDa protein, cry6Aa2 encoded a 54-kDa protein, and cry5Ba2 remained cryptic in strain YBT-1518, as shown by SDS-PAGE or microscopic observation. Proteins encoded by these three genes are all toxic to the root knot nematode Meloidogyne hapla. The two genes cry55Aa1 and cry6Aa2 were found to be located on a plasmid with a rather small size of 17.7 kb, designated pBMB0228.  相似文献   

17.
Bacillus thuringiensis (Bt) strains were isolated from soil samples of Great Nicobar Islands, one of the “hottest biodiversity hotspots,” where no collection has been characterized previously. The 36 new Bt isolates were obtained from 153 samples analyzed by crystal protein production with light/phase-contrast microscopy, determination of cry gene profile by SDS-PAGE, evaluation of toxicity against Coleopteran, and Lepidopteran insect pests, finally cloning and sequencing. Majority of the isolates showed the presence of 66–35 kDa protein bands on SDS-PAGE while the rest showed >130, 130, 73, and 18 kDa bands. The variations in crystal morphology and mass of crystal protein(s) purified from the isolates of Bt revealed genetic and molecular diversity. Based on the toxicity test, 50 % of isolates were toxic to Ash weevils, 16 % isolates were toxic to cotton bollworm, 38 % isolates were toxic both to ash weevil as well as cotton bollworm, while 11 % of the isolates did not exhibit any toxicity. PCR analysis unveiled prepotency of cry1B- and cry8b-like genes in these isolates. This study appoints the first isolation and characterization of local B. thuringiensis isolates in Great Nicobar Islands. Some of these isolates display toxic potential and, therefore, could be adopted for future applications to control some agriculturally important insect pests in the area of integrated pest management for sustainable agriculture.  相似文献   

18.
Two novel crystal protein genes, cry30Ba and cry44Aa, were cloned from Bacillus thuringiensis subsp. entomocidus INA288 and expressed in an acrystalliferous strain. Cry44Aa crystals were highly toxic to second-instar Culex pipiens pallens (50% mortality concentration [LC50] = 6 ng/ml) and Aedes aegypti (LC50 = 12 ng/ml); however, Cry30Ba crystals were not toxic.  相似文献   

19.
Bacillus sphaericus strain 1593 and B. thuringiensis serotype H-14 were evaluated for persistence of toxicity against two species of mosquito larvae, Culex quinquefasciatus and Aedes aegypti, in a selected simulating plot in Bangkok. Both strains of bacteria demonstrated larvicidal activity towards both species of mosquito larvae. In tap water, the toxicity of B. sphaericus strain 1593 was found to be greater towards C. quinquefasciatus larvae than A. aegypti larvae, whereas the toxicity of B. thuringiensis serotype H-14 was found to be greater towards A. aegypti larvae than C. quinquefasciatus larvae. The persistence of toxicity of these two bacteria was found to be different. The lethal concentration of B. thuriengiensis H-14 against A. aegypti decreased from LC90 to below LC50 in about 15 weeks when tested in tap water. The decrease was faster in polluted water. The toxicity of B. sphaericus 1593 towards C. quinquefasciatus larvae persisted for at least 9 months in tap water and 6 months in polluted water. The multiplication of bacteria was indicated only in populations of B. sphaericus 1593 tested with C. quinquefasciatus larvae.  相似文献   

20.
Parasporal inclusions of Bacillus thuringlensis H-14 strains M1 and S128 were characterized by solubilization, electron microscopy, polyacrylamide gel electrophoresis, amino acid analysis and insecticidal activity. Inclusions of both strains are composed largely of protein with 8 to 9% carbohydrate. Amino acid analysis of the purlfied inclusions revealed that the two strains produce inclusions that are closely related to each other but significantly different from lepidopteran-toxic B. thuringiensis parasporal crystals. The LC50 values of the purlfied inclusions of strains M1 and S128 were 3.4 and 2.9 ng/ml, respectively, for fourth instar larvae of Aedes aegypti. Inclusions from strain M1 were resolved into two inclusion bands on the basis of their densities possibly formed as a result of disruption of some envelopes during sonication. Both inclusion types contained proteins of approximately 27, 38 and 66 kDa. The heavlest and more predominant type had an envelope and was either spherical or irregular being composed of several subunits which varied in shape, size and staining densities. The LC50 value was 2.2 ng/ml and the major protein was of approximately 27 kDa. The lightest inclusions type did not have an envelope and showed clear crystal lattices. They were 10 times less toxic to A. aegypti larvae, as compared to the heavy-type inclusions and contained major protein of approximately 66 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号