首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The molecular mechanisms of cholesterol absorption in the intestine are poorly understood. With the goal of defining candidate genes involved in these processes a fluorescence-activated cell sorter-based, retroviral-mediated expression cloning strategy has been devised. SCH354909, a fluorescent derivative of ezetimibe, a compound which blocks intestinal cholesterol absorption but whose mechanism of action is unknown, was synthesized and shown to block intestinal cholesterol absorption in rats. Pools of cDNAs prepared from rat intestinal cells enriched in enterocytes were introduced into BW5147 cells and screened for SCH354909 binding. Several independent clones were isolated and all found to encode the scavenger receptor class B, type I (SR-BI), a protein suggested by others to play a role in cholesterol absorption. SCH354909 bound to Chinese hamster ovary (CHO) cells expressing SR-BI in specific and saturable fashion and with high affinity (K(d) approximately 18 nM). Overexpression of SR-BI in CHO cells resulted in increased cholesterol uptake that was blocked by micromolar concentrations of ezetimibe. Analysis of rat intestinal sections by in situ hybridization demonstrated that SR-BI expression was restricted to enterocytes. Cholesterol absorption was determined in SR-B1 knockout mice using both an acute, 2-h, assay and a more chronic fecal dual isotope ratio method. The level of intestinal cholesterol uptake and absorption was similar to that seen in wild-type mice. When assayed in the SR-B1 knockout mice, the dose of ezetimibe required to inhibit hepatic cholesterol accumulation induced by a cholesterol-containing 'western' diet was similar to wild-type mice. Thus, the binding of ezetimibe to cells expressing SR-B1 and the functional blockade of SR-B1-mediated cholesterol absorption in vitro suggest that SR-B1 plays a role in intestinal cholesterol metabolism and the inhibitory activity of ezetimibe. In contrast studies with SR-B1 knockout mice suggest that SR-B1 is not essential for intestinal cholesterol absorption or the activity of ezetimibe.  相似文献   

2.
Papale GA  Hanson PJ  Sahoo D 《Biochemistry》2011,50(28):6245-6254
Scavenger receptor class B type I (SR-BI) binds high-density lipoprotein (HDL) and mediates the selective uptake of cholesteryl esters (CE). Although the extracellular domain of SR-BI is critical for function, the structural characteristics of this region remain elusive. Using sulfhydryl labeling strategies, we report the novel finding that all six cysteine (Cys) residues in the extracellular domain of SR-BI are involved in disulfide bond formation that is intramolecular by nature. We hypothesized that an SR-BI conformation stabilized by extracellular disulfide bonds is a prerequisite for SR-BI-mediated cholesterol transport. Thus, single-Cys mutant SR-BI receptors (C251S-, C280S-, C321S-, C323S-, C334S-, and C384S-SR-BI), as well as Cys-less SR-BI, a mutant SR-BI receptor void of all Cys residues, were created, and plasma membrane localization was confirmed. Functional assays revealed that C280S-, C321S-, C323S-, and C334S-SR-BI and Cys-less SR-BI mutant receptors displayed weakened HDL binding and subsequent selective uptake of HDL-CE. However, only C323S-SR-BI and Cys-less SR-BI were unable to mediate wild-type levels of efflux of free cholesterol (FC) to HDL. None of the Cys mutations disrupted SR-BI's ability to redistribute plasma membrane FC. Taken together, the intramolecular disulfide bonds in the extracellular domain of SR-BI appear to maintain the receptor in a conformation integral to its cholesterol transport functions.  相似文献   

3.
There is now a general consensus that the intestinal absorption of water-insoluble, dietary lipids is protein-mediated, but the assignment of protein(s) to this function is still a matter of debate. To address this issue, we measured beta-carotene and cholesterol absorption in wild-type and SR-BI knockout mice and the uptake of these lipids in vitro using brush border membrane (BBM) vesicles. From the comparison of the in vivo and in vitro results we conclude that both BBM-resident class B scavenger receptors, SR-BI and CD36, can facilitate the absorption of beta-carotene and cholesterol. SR-BI is essential for beta-carotene absorption, at least in mice on a high fat diet. This is due to the fact that the absorption of beta-carotene is restricted to the duodenum and SR-BI is the predominant receptor in the mouse duodenum. In contrast, SR-BI may be involved but is not essential for cholesterol absorption in the small intestine. The question of whether SR-BI contributes to cholesterol absorption in vivo is still unresolved. Transfection of COS-7 cells with SR-BI or CD36 confers on these cells lipid uptake properties closely resembling those of enterocytes and BBM vesicles. Both scavenger receptors facilitate the uptake of dietary lipids such as beta-carotene, free and esterified cholesterol, phospholipids, and fatty acids into COS-7 cells. This lipid uptake is effected from three different lipid donor particles: mixed bile salt micelles, phospholipid small unilamellar vesicles, and trioleoylglycerol emulsions which are all likely to be present in the small intestine. Ezetimibe, a representative of a new class of drugs that inhibit intestinal cholesterol absorption, blocks SR-BI- and CD36-facilitated uptake of cholesterol into COS-7 cells.  相似文献   

4.
5.
6.
To learn more about how the step of cholesterol uptake into the brush border membrane (BBM) of enterocytes influences overall cholesterol absorption, we measured cholesterol absorption 4 and 24 h after administration of an intragastric bolus of radioactive cholesterol in mice with scavenger receptor class B, type 1 (SR-BI) and/or cluster determinant 36 (CD36) deleted. The cholesterol absorption efficiency is unaltered by deletion of either one or both of the receptors. In vitro determinations of the cholesterol uptake specific activity of the BBM from the mice reveal that the scavenger receptors facilitate cholesterol uptake into the proximal BBM. It follows that cholesterol uptake into the BBM is not normally rate-limiting for the cholesterol absorption process in vivo; a subsequent step, such as NPC1L1-mediated transfer from the BBM into the interior of the enterocyte, is rate-limiting. The absorption of dietary cholesterol after 4 h in mice lacking SR-BI and/or CD36 and fed a high-fat/high-cholesterol diet is delayed to more distal regions of the small intestine. This effect probably arises because ATP binding cassette half transporters G5 and G8-mediated back flux of cholesterol from the BBM to the lumen of the small intestine limits absorption and causes the local cholesterol uptake facilitated by SR-BI and CD36 to become rate-limiting under this dietary condition.  相似文献   

7.
8.
9.
10.
The cellular biology of scavenger receptor class B type I   总被引:10,自引:0,他引:10  
The HDL receptor scavenger receptor class B type I plays an important role in meditating the uptake of HDL-derived cholesterol and cholesteryl ester in the liver and steroidogenic tissues. However, the mechanism by which scavenger receptor class B type I mediates selective cholesterol uptake is unclear. In hepatocytes scavenger receptor class B type I mediates the transcytosis of cholesterol into bile, appears to be expressed on both basolateral and apical membranes, and directly interacts with a PDZ domain containing protein that may modulate the activity of scavenger receptor class B type I. This suggests the involvement of scavenger receptor class B type I in higher order complexes in polarized cells. Scavenger receptor class B type I expression has been shown to alter plasma membrane cholesterol distribution and induce the formation of novel membrane structures, suggesting multiple roles for scavenger receptor class B type I in the cell. A close examination of scavenger receptor class B type I function in polarized cells may yield new insights into the mechanism of scavenger receptor class B type I-mediated HDL selective uptake and the effects of scavenger receptor class B type I on cellular cholesterol homeostasis.  相似文献   

11.
The function of scavenger receptor class B type I (SR-BI) in mediating the selective uptake of HDL cholesteryl esters is well established. In SR-BI-deficient mice, we recently observed a delayed postprandial triglyceride (TG) response, suggesting an additional role for SR-BI in facilitating chylomicron (CM) metabolism. Here, we assessed the effect of adenovirus-mediated hepatic overexpression of SR-BI (Ad.SR-BI) in C57BL/6J mice on serum lipids and CM metabolism. Infection of 5 x 10(8) plaque-forming units per mouse of Ad.SR-BI significantly decreases serum cholesterol (>90%), phospholipids (>90%), and TG levels (50%), accompanied by a 41.4% reduction (P < 0.01) in apolipoprotein B-100 levels. The postprandial TG response is 2-fold lower in mice treated with Ad.SR-BI compared with control mice (area under the curve = 31.4 +/- 2.4 versus 17.7 +/- 3.2; P < 0.05). Hepatic mRNA expression levels of genes known to be involved in serum cholesterol and TG clearance are unchanged and thus could not account for the decreased plasma TG levels and the change in postprandial response. We conclude that overexpression of SR-BI accelerates CM metabolism, possibly by mediating the initial capture of CM remnants by the liver, whereby the subsequent internalization can be exerted by additional receptor systems such as the LDL receptor (LDLr) and LDLr-related protein 1.  相似文献   

12.
13.
14.
15.
Sterol regulation of scavenger receptor class B type I in macrophages   总被引:3,自引:0,他引:3  
Scavenger receptor class B type I (SR-BI) is expressed in macrophages, but its role in sterol trafficking in these cells remains controversial. We examined the effect of sterol loading on SR-BI expression in human monocytes/macrophages, mouse peritoneal macrophages, and a cultured mouse macrophage cell line (J774 cells). Sterol loading using either acetylated LDL or 25-hydroxycholesterol resulted in a time- and concentration-dependent decrease in SR-BI protein and mRNA levels. Treatment of lipid-loaded J774 cells with cyclodextrin or HDL to promote cellular sterol efflux was associated with an increase in SR-BI expression. Studies were performed to determine if the sterol-associated downregulation of SR-BI in macrophages was mediated by either sterol regulatory element binding proteins (SREBPs) or the liver X receptor (LXR). Expression of constitutively active SREBPs failed to alter the expression of a luciferase reporter placed downstream of a 2556 bp 5' flanking sequence from the mouse SR-BI gene. Reduction in SR-BI expression was also seen in sterol-loaded peritoneal macrophages from mice expressing no LXRalpha and LXRbeta. We conclude that SR-BI levels in macrophages are responsive to changes in intracellular sterol content and that these sterol-associated changes are not mediated by LXR and are unlikely to be mediated by an SREBP pathway.  相似文献   

16.
Scavenger receptor class B type I (SR-BI) mediates selective uptake of cholesteryl esters from HDL as well as efflux of cellular free cholesterol to HDL. It is unclear whether the receptor is involved in intestinal cholesterol absorption. We addressed this issue by studying [3H]cholesterol flux in differentiated CaCo-2 cells incubated at their apical side with mixed taurocholate/phosphatidylcholine/cholesterol micelles. Biotinylation and HDL binding experiments showed predominant apical expression of endogenous and overexpressed SR-BI. Mixed micellar cholesterol saturation affected the magnitude and direction of cholesterol flux with significant net uptake only from supersaturated micelles and net efflux from unsaturated micelles. Incubation with micelles that depleted cellular cholesterol resulted in a decrease of SR-BI protein, whereas incubation with cholesterol-loading micelles resulted in a significant increase of SR-BI protein. Apical cholesterol uptake by CaCo-2 cells was increased in the presence of a SR-BI-blocking antibody and by partial inhibition of SR-BI expression with small inhibitory RNA. Adenovirus-mediated overexpression of apical SR-BI did not affect cholesterol uptake but stimulated apical cholesterol efflux, even to supersaturated mixed micelles. Partial inhibition of SR-BI with small inhibitory RNA reduced apical cholesterol efflux. Our data argue against a direct role for SR-BI in micellar cholesterol uptake. However, SR-BI might be involved in cholesterol absorption by facilitating cholesterol efflux to micelles.  相似文献   

17.
18.
Recent studies have indicated that the scavenger receptor class B type I (SR-BI) may play an important role in the uptake of high density lipoprotein (HDL) cholesteryl ester in liver and steroidogenic tissues. To investigate the in vivo effects of liver-specific SR-BI overexpression on lipid metabolism, we created several lines of SR-BI transgenic mice with an SR-BI genomic construct where the SR-BI promoter region had been replaced by the apolipoprotein (apo)A-I promoter. The effect of constitutively increased SR-BI expression on plasma HDL and non-HDL lipoproteins and apolipoproteins was characterized. There was an inverse correlation between SR-BI expression and apoA-I and HDL cholesterol levels in transgenic mice fed either mouse chow or a diet high in fat and cholesterol. An unexpected finding in the SR-BI transgenic mice was the dramatic impact of the SR-BI transgene on non-HDL cholesterol and apoB whose levels were also inversely correlated with SR-BI expression. Consistent with the decrease in plasma HDL and non-HDL cholesterol was an accelerated clearance of HDL, non-HDL, and their major associated apolipoproteins in the transgenics compared with control animals. These in vivo studies of the effect of SR-BI overexpression on plasma lipoproteins support the previously proposed hypothesis that SR-BI accelerates the metabolism of HDL and also highlight the capacity of this receptor to participate in the metabolism of non-HDL lipoproteins.  相似文献   

19.
20.
The clearance of free cholesterol from plasma lipoproteins by tissues is of major quantitative importance, but it is not known whether this is passive or receptor-mediated. Based on our finding that scavenger receptor BI (SR-BI) promotes free cholesterol (FC) exchange between high density lipoprotein (HDL) and cells, we tested whether SR-BI would effect FC movement in vivo using [(14)C]FC- and [(3)H]cholesteryl ester (CE)-labeled HDL in mice with increased (SR-BI transgenic (Tg)) or decreased (SR-BI attenuated (att)) hepatic SR-BI expression. The initial clearance of HDL FC was increased in SR-BI Tg mice by 72% and decreased in SR-BI att mice by 53%, but was unchanged in apoA-I knockout mice compared with wild-type mice. Transfer of FC to non-HDL and esterification of FC were minor and could not explain differences. The hepatic uptake of FC was increased in SR-BI Tg mice by 34% and decreased in SR-BI att mice by 22%. CE clearance and uptake gave similar results, but with much slower rates. The uptake of HDL FC and CE by SR-BI Tg primary hepatocytes was increased by 2.2- and 2.6-fold (1-h incubation), respectively, compared with control hepatocytes. In SR-BI Tg mice, the initial biliary secretion of [(14)C]FC was markedly increased, whereas increased [(3)H]FC appeared after a slight delay. Thus, in the mouse, a major portion of the clearance of HDL FC from plasma is mediated by SR-BI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号