首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The objective of this study was to test the hypothesis that incubating equine cumulus-oocyte complexes (COCs) in medium containing 50% or 100% homologous preovulatory follicular fluid would improve cumulus expansion and nuclear maturation. Oocytes were incubated in one of three media: 1) supplemented TCM-199 (control), 2) 50% (v/v) follicular fluid in control medium or 3) 100% follicular fluid. Cumulus expansion was evaluated subjectively, and nuclear maturation was evaluated by staining oocytes with Hoechst 33258. The hypothesis that incubating COCs in medium containing follicular fluid would improve cumulus expansion was supported. More (P < 0.05) compact COCs incubated in 50% or 100% follicular fluid developed a moderately to completely expanded cumulus after 24 and 36 h of incubation and more (P < 0.05) expanded COCs incubated in 100% follicular fluid developed a moderately to completely expanded cumulus after 36 h of incubation compared to control medium. The hypothesis that incubating COCs in medium containing follicular fluid would improve nuclear maturation was not supported. Although more (P < 0.05) compact COCs incubated in 50% follicular fluid reached polar body-stage compared to those in control medium, the nuclear maturation rate in the control medium was lower than it was when the same medium was used in a preliminary experiment (described in main text); therefore, the apparent superiority of 50% follicular fluid must be interpreted cautiously. Based on these results, future studies are warranted to further address the value of adding preovulatory follicular fluid to equine IVM culture systems.  相似文献   

2.
Gable TL  Woods GL 《Theriogenology》2001,55(7):1549-1560
The objective was to test the hypothesis that increasing equine oocyte culture time from 48 to 96 or 144 h increases nucleus maturation of equine oocytes. The hypothesis was not supported because condensed chromatin-stage oocytes decreased (P<0.01) from 33/126 (26.2%) at 48 h or 34/95 (35.8%) at 96 h to 11/117 (9.4%) at 144 h, and polar body-stage oocytes decreased (P<0.01) from 65/126 (51.6%) at 48 h to 25/95 (26.3%) at 96 h and (P<0.01) to 1/117 (0.9%) at 144 h. Negative (non-staining) oocytes increased (P<0.01) from 16/126 (12.7%) at 48 h or 15/95 (15.8%) at 96 h to 39/117 (33.3%) at 144 h. Fragmented oocytes (with and without fluorescent areas) increased (P<0.01) from 4/126 (3.2%) at 48 h to 20/95 (21.1%) at 96 h and increased again to 60/117 (51.3%) at 144 h. When fragmented oocytes having 1 fluorescent area were defined as condensed chromatin-stage and fragmented oocytes having 2 fluorescent areas were defined as polar body-stage, condensed chromatin-stage oocytes increased (P < 0.05) from 34/126 (27.0%) at 48 h to 38/95 (40.0%) at 96 h, but decreased (P<0.05) to 19/117 (16.2%) at 144 h. Polar body-stage oocytes decreased (P<0.01) from 66/126 (52.4%) at 48 h to 27/95 (28.4%) at 96 h and decreased again to 7/117 (6.0%) at 144 h. Fragmented oocytes without any fluorescent areas increased (P<0.01) from 2/126 (1.6%) at 48 h to 14/95 (14.7%) at 96 h and increased again to 46/117 (39.3%) at 144 h. Under the conditions of this experiment, the hypothesis that increasing the culture time of equine oocytes from 48 to 96 or 144 h would increase oocyte maturation was not supported. We propose that the culture system needs to be improved before this hypothesis can be adequately tested, because prolonged culture significantly increased the proportions of negative and fragmented equine oocytes.  相似文献   

3.
The aim of this investigation was to determine the relationship between the morphology of the cumulus-oocyte-complexes (COCs) and the meiotic configuration of oocytes as an LH peak mimicked by hCG. Estrus was synchronized in a total of 29 crossbred Landrace gilts by feeding Regumate for 15 d and administering 1000 IU PMSG. The LH peak was simulated by treatment with 500 IU hCG at 80 h after PMSG. Endoscopic oocyte recovery was carried out 2 h before and 10, 22 and 34 h after hCG. Only macroscopically healthy follicles with a diameter of more than 5 mm were punctured. Altogether, 410 follicles from 57 ovaries were punctured and 251 COCs were aspirated. Oocyte recovery rate increased from 48.5% (P < 0.01) of the early, not yet preovulatory follicles (2 h before hCG) to 80.8% of late preovulatory follicles (34 h after hCG). Cumulus morphology in COCs recovered 2 h before and 10 h after hCG was heterogeneous, with most (72.9 to 57.4%; P < 0.01) showing a compact or slightly expanded cumulus. Starting at about 22 h after hCG, COC morphology changed dramatically (86.7% of COCs with expanded cumulus; P < 0.01), and 34 h after hCG, 98.3% of the COCs had only an expanded cumulus. The percentage of oocytes with a mature meiotic configuration increased (11.2; 7.1; 41.4 and 70.2%, respectively, n = 238 oocytes; P < 0.01) as the interval post hCG increased (-2, 10, 22, 34 h, respectively). Meiotic configuration was related to COC morphology: compact COCs--88.9% diplotene, expanded COCs--53.8% metaphase II (M-II), and denuded oocytes--69.2% degenerated chromatin. These results indicate that there is a relationship between oocyte recovery rate, COC morphology, and meiotic configuration and preovulatory follicle maturation after the application of hCG.  相似文献   

4.
Four hypotheses were tested using isolated bovine oocytes. (1) Cumulus oocyte complexes (COCs) or denuded oocytes (DOs) were cultured with the protein kinase A (PKA) inhibitor, H-89, to test if meiotic arrest induced by forskolin or IBMX was due to cAMP-stimulated PKA activity or nonspecific effects of these cAMP elevators. (2) COCs were cultured with a protein kinase C (PKC) stimulator (PDDβ) or inhibitor (GF109203x) to test if PKC modulation altered oocyte maturation. (3) COCs were prestimulated for 15 min with (a) PDDβ followed by cotreatment with forskolin, or (b) with H-89 or H-7 followed by cotreatment with GF109203x, to test for interaction between the PKA and PKC signal transduction pathways. (4) H-89 was added to spontaneously maturing COCs at intervals 0–18 hr to test if H-89 interfered with the transition between meiosis I and II. The results were as follows: H-89 interfered with forskolin or IBMX arrested oocytes in a dose-response manner (IBMX ED50 = 41 μM for COCs; forskolin ED50 = 9 μM for denuded oocytes). Prestimulation with PKC induced meiotic resumption in COCs in spite of the presence of forskolin [PDDβ followed by PDDβ + forskolin: 41–47% germinal vesicle (GV) oocytes; forskolin alone: 90–95% GV], while PKC inhibition induced meiotic arrest to a similar extent as forskolin (GF109230x, 85% GV; forskolin, 67–80% GV). Additionally, pretreatment of COCs with H-89 interfered with GF109203x induced arrest (41% vs. 90% GV, respectively). Finally, H-89 interfered with the timely progression of COCs from meiosis I and II. These results indicate that the PKA and PKC pathways can modulate the maturation of bovine oocytes in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The in vitro ability between fetal and cow oocytes to resume meiosis and progression to metaphase-II (M-II) was compared. Cumulus oocyte complexes (COCs) were harvested from 2 to 6 mm follicles from ovaries of 7.5 month to term fetuses and adult cows. Cumulus cells were removed using 3 mg/ml hyaluronidase and repeated pipetting. Denuded oocytes were fixed in 3% glutaraldehyde, stained with DAPI and evaluated under fluorescent microscopy for nuclear status before in vitro maturation (IVM). COCs from fetal and adult ovaries were also matured in 200 microl droplets of medium 199 supplemented with 10 microg/ml FSH, 10/ml LH, 1.5 microg/ml estradiol, 75 microg/ml streptomycin, 100 IU/ml penicillin, 10 mM hepes and 10% FBS for 24 h at 39 degrees C and 5% CO(2). Matured oocytes were fixed, stained and evaluated as explained above for nuclear status namely stage of germinal vesicle (GV) development and subsequent meiotic competence. Data were analyzed using chi-square analysis. The majority of fetal oocytes (P<0.05) before IVM were at GV stages GV-I (27.7%), GV-II (37.6%) and GV-V (22.8%) compared to cow oocytes, which were at GV stages IV (28.3%) and V (46.7%). After IVM, fewer fetal oocytes were at earlier stages of GV development and majority (P<0.05) were at GV-V (24.0%), premetaphase (17.4%) and metaphase-I (M-I: 7.2%) stages. However, after IVM, more cow oocytes matured to M-II than did fetal oocytes (93.7% versus 26.9%; P<0.05). In conclusion, fetal oocytes do not mature in vitro as well as cow oocytes. Our findings suggest that the low meiotic competence of fetal oocytes can be attributed to their being at earlier stages of GV development before IVM.  相似文献   

6.
In the mare only a limited number of oocytes can be successfully collected in vivo, so that when large numbers of oocytes are needed for experimentation, ovaries harvested from slaughtered mares must be used. The resulting temperature changes and time intervals mandated by handling and transport of ovaries from the slaughterhouse to the laboratory adversely affect the rate of oocyte recovery and their quality after IVF and maturation. We chose to study the effect of temperature and time in transit of excised ovaries by evaluating rate of oocyte recovery, nuclear maturation stage reached before, and cleavage rate reached after IVF, following short (1.5 to 4 h) and long (6 to 8 h) storage. Temperatures in the storage container decreased from 37-C to 32 degrees and 27.5 degrees C during the short and long interval, respectively. The cumulus-oocytes complexes (COCs) were classified as having a compact cumulus, completely or partially surrounding the oocyte (compact); those having only a corona radiata surrounding the oocyte (corona); those having a completely or partially expanded cumulus, showing a cellular or sparsely cellular, gelatinous cloud around the oocyte (expanded); and those that were completely denuded of both cumulus and corona cells (denuded). All COCs, except the denuded ones, which were discarded, were matured in vitro for 30 h at 38.5 degrees C in 5% CO2. The recovery rate of oocytes was significantly higher after long vs short storage (48 vs 35%; P < 0.01), but the distribution of the collected COCs into the 4 classes was not affected by the storage time. After in vitro maturation nuclear maturity was not affected by the storage time, but oocytes with intact cytoplasmic membranes were more frequently found after short than after long storage (54 vs 34%; P = 0.07), and fully matured oocytes were more often seen with intact membrane (P < 0.01). Moreover, oocytes with intact membranes in metaphase II (MII) were associated with short storage intervals and the corona COC class, while damaged membranes and incomplete maturation were associated with the long storage and the compact COC class.  相似文献   

7.
Khatir H  Anouassi A  Tibary A 《Theriogenology》2004,62(7):1175-1185
The general objective of this work was to produce dromedary embryos from cumulus-oocyte complexes (COCs) that were matured, fertilized and co-cultured in vitro. A total of 1598 COCs were recovered from 457 ovaries; 1308 were deemed suitable for IVM and were cultured at 38.5 degrees C, 5% CO2, and >95% humidity for 36 h in TCM-199 supplemented with 10% heat-treated fetal calf serum (FCS), 10 ng/ml epidermal growth factor (EGF), 1 microg/ml FSH, and 500 microM cysteamine. Matured COCs (n = 88) were denuded, fixed, and stained to determine nuclear status; 63% (56/88) had reached metaphase II (MII) at 36 h. Overall, 1135 COCs were inseminated with ejaculated fresh semen (0.5 x 10(6)spermatozoa/ml in modified TALP-solution). Inseminated oocytes (n = 155) were examined for evidence of fertilization; 68% (106/155) were penetrated by spermatozoa, including 52% (55/106) with two pronuclei and 34% (36/106) with polyspermy. Inseminated, denuded oocytes (n = 819) were co-cultured with dromedary oviductal epithelial or granulosa cells in TCM-199 supplemented with 10% heat-treated FCS. Although the rate of first cleavage (two to eight cells) was similar for the two co-culture systems (32 versus 33%, respectively), more embryos (two-cell to blastocyst stage) were obtained from oocytes co-cultured with oviductal versus granulosa cells (61 versus 45%; P < 0.05). The proportions of fertilized oocytes developing to the early morula stage were 19% (80/417) and 12% (48/402) for oocytes co-cultured for 7 days with oviductal or granulosa cells, respectively (P > 0.05). However, development to the blastocyst stage (10% of fertilized oocytes) occurred only in oocytes co-cultured with oviductal cells. In conclusion, dromedary embryos were produced in vitro using abattoir-derived oocytes, fresh (ejaculated) semen, and oviductal cell co-culture.  相似文献   

8.
Cumulus cells (CCs), the granulosa cells surrounding the oocytes, play critical roles in oocytes maturation through intercellular communication by extending trans-zonal projections (TZPs) to contact oocytes via gap junctions (GJs). The adverse effect of heat stress (HS) on oocyte maturation has been well documented, whereas the HS responses of CCs and the oocytes in association with GJ/TZP colocalization remain unclear. In this study, porcine cumulus-oocyte complexes (COCs) were subjected to HS at 41.5°C for 24 hr during in vitro maturation. Cumulus expansion was impaired and oocyte quality was reduced with lower survival rate, polar body extrusion rate, and early embryo developmental potentials. CCs and oocytes isolated from COCs demonstrated distinct responses to HS. The messenger RNA abundance of heat shock protein-related genes and mitochondrial DNA-encoded genes, together with ATP content, were significantly increased in CCs, yet decreased in oocytes, despite activation of caspase 3 detected in both CCs and oocytes. Similar changes were observed when denuded oocytes and isolated CCs subjected to HS separately, except mitochondria reactive oxygen species (mROS). In heat-stressed COCs, mROS was significantly increased only in oocytes. However, when isolated CCs and denuded oocytes were heat-stressed separately, mROS was significantly increased only in CCs. Moreover, F-actin, a TZP marker, and its colocalization with a GJ protein connexin-45, were significantly reduced in heat-exposed COCs. These results indicate that HS induces distinct responses in porcine CCs and oocytes in association with disrupted GJ and TZP colocalization.  相似文献   

9.
Experiments were conducted to investigate kinetics of in vitro nuclear maturation and the effect of storing ovaries at room temperature on initial chromatin configuration and in vitro maturation of dromedary camel oocytes. Cumulus oocyte complexes (COCs) were collected from slaughterhouse ovaries and matured in vitro for 4-48h. At every 4h interval (starting from 0 to 48 h), groups of oocytes were fixed, stained and evaluated for the status of nuclear chromatin. Oocytes were categorized as germinal vesicle (GV), diakinesis (DK), metaphase-I (M-I), anaphase-I (A-I), metaphase-II (M-II) stage and those with degenerated, fragmented, activated or without a visible chromatin as others. At the start of culture, 74% (66/89) oocytes were at GV stage, 13% (12/89) at DK and 12% (11/89) were classified as others. Germinal vesicle breakdown started spontaneously in culture and at 20 h of culture 97% oocytes had already completed this process. After 8 and 16 h of maturation the highest proportion of oocytes (42%, 48/114 and 41%, 51/123) were at DK and M-I stage, respectively. The proportions of oocytes reaching M-II stage at 32 (42%, 50/118), 36 (45%, 47/104), 40 (49%, 57/117), 44 (52%, 103/198) and 48 h (46%, 55/120) of culture were not different from each other (P>0.05). The proportion of oocytes categorized as others, however, increased after 40 h of culture and was higher (P<0.05) at 48 h compared with other maturation periods. There was no difference (P>0.05) in the proportion of oocytes reaching M-II stage from the ovaries collected and stored in normal saline solution (NSS) at room temperature for 12h (43%, 64/148) and those collected in warm NSS (37 degrees C) and processed immediately after arrival in laboratory (49%, 57/117). However, low number of oocytes reached M-II stage from ovaries collected in warm NSS but stored at room temperature (29%, 37/128) compared with other two groups (P<0.05). It may be concluded that dromedary oocytes require 32-44h of in vitro culture to have an optimum number of oocytes in M-II stage. However, further studies are required to find out the most appropriate maturation period, which will result in the further development of these oocytes after IVF, ICSI, parthenogenetic activation or nuclear transfer. Ovaries can be collected and stored in normal saline solution at room temperature for 12h without any appreciable effect on the nuclear maturation of the oocytes.  相似文献   

10.
The aim of this study is to identify the effect of cumulus cells removal prior to the in vitro fertilization of matured bovine oocytes on cleavage rate. Denuded, matured oocytes were fertilized in presence or absence of loose cumulus cells, cumulus cell conditioned IVF medium (CCCM), charcoal-treated CCCM and charcoal-treated CCCM supplemented with progesterone at a final concentration of 150 ng/ml. After 18 h of incubation with sperm, the presumptive embryos were cultured on a BRL monolayer and the percentage of cleaved embryos was evaluated on Day 4. Removal of cumulus cells prior to IVF significantly reduced the cleavage rate (25% for denuded oocytes versus 56% for cumulus-oocyte complexes (COCs)). The addition of loose cumulus cells partially restored the effect of denudation (cleavage rate: 37% for denuded oocytes supplemented with loose cumulus cells versus 27% for denuded oocytes and 58% for COCs). CCCM also had a positive effect on the cleavage rate of oocytes denuded prior to IVF (36% for denuded oocytes fertilized in CCCM versus 14% for denuded oocytes). Treating the CCCM with charcoal resulted in complete loss of its effect on cleavage rate (18% for denuded oocytes fertilized in charcoal-treated CCCM versus 34% for denuded oocytes fertilized in CCCM). The addition of progesterone to charcoal-treated CCCM partially restored the reduction of the cleavage rate caused by charcoal treatment (27% for denuded oocytes fertilized in charcoal-treated CCCM supplemented with progesterone versus 14% for denuded oocytes fertilized in charcoal-treated CCCM and 36% for denuded oocytes fertilized in CCCM). In conclusion, removal of cumulus cells prior to IVF adversely affects the cleavage rate through loss of a factor secreted by these cells. This factor probably is progesterone.  相似文献   

11.
《Theriogenology》1996,45(8):1479-1489
The objective of this study was to examine the effect of cumulus cell removal from cumulusoocyte complexes (COCs) on meiotic progression. In Experiments 1, 2 and 3, pig COCs were cultured for 16, 20 and 24 h, respectively. The cumulus cells were then removed, and the denuded oocytes were incubated in fresh medium for another 32 h in Experiment 1, for 28 h in Experiment 2 and for 24 h in Experiment 3. In Experiment 4, the denuded oocytes and COCs were co-cultured in a drop of fresh medium from 24 h of cultivation to the end of the culture period (48 h). Removal of the cumulus cells after 16 h of cultivation had no effect on the proportions of oocytes both undergoing germinal vesicle breakdown (GVBD) and reaching MII. When the denuded oocytes were further cultured for 24 h, following the removal of their cumulus cells after 24 h of cultivation, the proportion of oocytes undergoing GVBD was significantly higher (90%, P < 0.05) than that of oocytes that were continuously cultured for 48 h without removing the cumulus cells (80%). Removal of the cumulus cells after 20 and 24 h of incubation produced a significant increase in the proportion of oocytes reaching the MII stage (84%, P < 0.05 and 76%, P < 0.01, respectively) as compared with COCs cultured continuously for 48 h without removing cumulus cells (71% and 55%, respectively). The maturation rate of denuded oocytes co-cultured with COCs for the second 24 h of cultivation was comparable to that of denuded oocytes cultured without COCs (77 and 74%, respectively). From these results, it was concluded that cumulus cells surrounding oocytes suppressed meiosis of both the GVBD process and progression from GVBD to MII in pig oocytes cultured in vitro, and that the suppressive factor in meiotic progression produced by the cumulus cells might be transferred to the oocytes through gap junctions rather than through the medium.  相似文献   

12.
The 5'AMP-activated protein kinase (AMPK) activation is involved in the meiotic maturation of oocytes in the ovaries of mice and pigs. However, its effects on the oocyte appear to be species-specific. We investigated the patterns of AMPK and mitogen-activated protein kinases (MAPK3/1) phosphorylation during bovine in vitro maturation (IVM) and the effects of metformin, an AMPK activator, on oocyte maturation in cumulus-oocyte complexes (COCs) and denuded bovine oocytes (DOs). In bovine COCs, PRKAA Thr172 phosphorylation decreased, whereas MAPK3/1 phosphorylation increased in both oocytes and cumulus cells during IVM. Metformin (5 and 10 mM) arrested oocytes at the GV stage in COCs but not in DOs. In COCs, this arrest was associated with the inhibition of cumulus cell expansion, an increase in PRKAA Thr172 phosphorylation, and a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. However, the addition of compound C (10 muM), an inhibitor of AMPK, accelerated the initiation of the GV breakdown (GVBD) process without any alteration of MAPK3/1 phosphorylation in oocytes from bovine COCs. Metformin decreased AURKA and CCNB1 protein levels in oocytes. Moreover, after 1 h of IVM, metformin decreased RPS6 phosphorylation and increased EEF2 phosphorylation, suggesting that protein synthesis rates were lower in oocytes from metformin-treated COCs. Most oocytes were arrested after the GVBD stage following the treatment of COCs with the MEK inhibitor, U0126 (100 micromoles). Thus, in bovine COCs, metformin blocks meiotic progression at the GV stage, activates PRKAA, and inhibits MAPK3/1 phosphorylation in both the oocytes and cumulus cells during IVM. Moreover, cumulus cells were essential for the effects of metformin on bovine oocyte maturation, whereas MAPK3/1 phosphorylation was not.  相似文献   

13.
Mayes MA  Sirard MA 《Theriogenology》2001,55(4):911-922
This study evaluated whether pre-established morphological classes of bovine cumulus oocyte complex (COCs) differ in their kinetics of meiosis resumption after 4 h of incubation and whether the timing of COCs resumption of meiosis differed after a period of maintained meiotic arrest. Bovine COCs were aspirated from 2- to 5- mm follicles and classified according to the state of their cumulus cells and cytoplasm (Classes 1 to 3). Groups of 15 to 20 COCs were fixed at 0 h or after an incubation period of 4 h. In addition, COCs from Class 1 were first incubated for 4 h on a theca cell monolayer or in the presence of 2 microg/mL of cycloheximide, rinsed and then incubated in cycloheximide and theca cell-free medium for another 4 h. Oocytes then were fixed and evaluated for state of nuclear maturation. Results show that at 0 h, COCs from Class 3 have fewer oocytes at the GV stage than COCs from Class 1 and Class 2 (respectively 69.3+/-3.2 vs 88.8+/-3.4% and 86.9% GV+/-4.3% SEM; P < 0.05). After 4 h of incubation, all COCs classes show a significant decrease in the number of COCs at the GV stage. The COCs maintained in meiotic arrest and then incubated for 4 h resume meiosis faster than COCs incubated in cycloheximide and theca cell-free medium (19.4+/-2.5, 33.3+/-7.3 and 59.9+/-6.5% GV SEM, respectively). The COCs of Class 3 have fewer oocytes at the GV stage at the beginning of incubation than all other classes. The number of COCs at the GV stage after 4 h of incubation in cycloheximide and theca cell-free medium is not significantly different than those COCs incubated in the presence of theca cell monolayers for 24 h (58.8+/-6.5 vs. 56.4+/-6.4% SEM; respectively). Our results indicate that the ability of theca cells to maintain oocytes at the GV stage could be limited to those oocytes that were not committed or primed in vivo to resume maturation as indicated by their faster maturation kinetics.  相似文献   

14.
Cumulus oocyte complexes (COCs) and cumulus oocyte complexes connected to a piece of the membrane granulosa (COCGs) were isolated from bovine antral follicles with a diameter of 2 to 8 mm. After culture of COCGs without gonadotrophic hormones for 22 hr approximately 50% of the oocytes were still in the germinal vesicle (GV) stage Histology of the COCGs showed that the pieces of the membrana granulosa were free of thecal cells and parts of the basal membrane. This indicates that the membrana granulosa solely inhibits the progression of meiosis. To investigate the effect of gonadotropins on the resumption of meiosis of oocytes from small and medium sized antral follicles, COCs and COCGs were cultured with or without rec-hFSH or hCG. Addition of 0.05 IU rec-hFSH to the culture medium of COCGs resulted in germinal vesicle breakdown in 97.8% of the oocytes compared to 46% in the control group, and an increase of the diameter of the COCs (479 μm vs. 240 μm in the control group). Addition of 0.05 IU hCG to the culture medium had no effect on nuclear maturation (47.2% GV vs. 48.5% GV in the control group nor on cumulus expansion (246 μm vs. 240 μm in the control group). RT-PCR on cDNA of the follicular wall, cumulus cells, granulosa cells, COCs, and oocytes revealed that mRNA for FSH receptor was present in all cell types except oocytes. mRNA of the LH receptor was detected exclusively in thecal cells. Nucleotide sequence analysis and alignment of the cloned PCR products showed the presence of two isoforms of the FSH receptor mRNA and two isoforms of the LH receptor mRNA. It is concluded that, in vitro, resumption of meiosis of oocytes, originating from small and medium sized antral follicles and meiotically arrested by the membrana granulosa, is triggered by FSH and not by LH. This is supported by the fact that receptors for FSH, but not for LH, are transcribed in the cumulus and granulosa cells of these follicles. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Oocyte nutritional metabolism changes during maturation in order to increase the energy available to support metabolic requirements. The aim of this work was to study pyruvate and lactate utilization as oxidative substrates on IVM and lactate dehydrogenase (LDH) activity and localization of their isoenzymes in bovine oocytes. Immature cumulus-oocyte complexes (COCs) were recovered by aspiration of antral follicles in ovaries obtained from slaughtered cows. The COCs and denuded oocytes were separately cultured in TCM-199 with steer serum (controls) and were supplemented with pyruvate, lactate or lactate plus NAD for 24 h at 39 degrees C in 5% CO2:95% humidified air. No significant differences were found in IVM rates of COCs matured according to the various treatments (P>0.05). The IVM rate in denuded oocytes without supplementation was 47.8%. The presence of pyruvate in the culture medium resulted in an increased number of matured denuded oocytes (59.4%; P<0.05), but the addition of lactate failed to improve the IVM rate of matured denuded oocytes (47.6%, P>0.05). When the medium was supplemented with lactate plus NAD, the IVM rate of denuded oocytes likewise failed to differ from that obtained with the addition of pyruvate (59.9%, P>0.05). The LDH activity in immature and matured COCs and denuded oocytes was (3.1+/-1.6) 10(-3), (3.3+/-1.6) 10(-3) U/COC, (5.2+/-2.0) 10(-5), (5.4+/-3.5) 10(-5) U/oocyte with pyruvate as substrate, and (1.2+/-0.5) 10(-3), (1.0+/-0.5) 10(-3) U/COC, (2.2+/-0.1) 10(-5), (2.5+/-1.4) 10(-5) U/oocyte respectively, with lactate; no significant differences due to maturation status were observed (P>0.05; n = 9 for each LDH activity). Electrophoresis disclosed that the principal band corresponded to the LDH-1 isoenzyme in oocytes, while there was no predominance of any isoenzyme in cumulus cells. Due to the fact that LDH-1 is the main oocyte isoenzyme, the pyruvate used during oocyte maturation could be partly produced from lactate when the NAD supply is adequate. Cumulus cells would be responsible for providing pyruvate and/or lactate as oxidative substrates to be used by the bovine oocyte and this supply would be regulated by the LDH activity in these cells.  相似文献   

16.
Germinal vesicle (GV) breakdown in mammalian oocytes is regulated by the activation of maturation promoting factor (MPF). We investigated a specific cdc2 kinase inhibitor, roscovitine, to maintain pig oocytes in the GV stage. Cumulus-oocyte complexes (COCs) were aspirated from slaughterhouse ovaries and cultured for 44 hr in NCSU#23 medium containing different levels of roscovitine (0, 10, 20, 30, 40, 50 microM in Experiment 1 and 0, 40, 60, 80, 100, 120 microM in Experiment 2). The COCs were cultured for another 44 hr after removal of the chemical. Twenty oocytes in each group were fixed at 44 hr for immunocytochemical labeling of the cytoskeleton and the rest (approximately 20/group) were fixed at the end of 88 hr after culture. Results showed that the inhibition of the oocyte in the GV stage was not effective when 10-50 microM (Experiment 1) of roscovitine were used (19-34%). When oocytes were released from the inhibitor, similar proportions (70-83%) of oocytes were observed in the MII or advanced stages among treatments. However, when higher concentrations of roscovitine were used (Experiment 2), significantly greater inhibitory effect was observed at the levels of 80-120 microM with 83-91% oocytes being blocked in the GV stage when compared to the control (9%) and the 40-60 microM (27-43%) groups (P < 0.05). Although 15-21% of the oocytes showed abnormal MII morphology with aberrant meiotic spindles and/or formation of cytoplasmic microtubules, a substantial number of oocytes resumed meiosis and reached MII stage at 44 hr after removal of this chemical. In Experiment 3, different concentrations of roscovitine (0, 20, 40, and 80 microM) were tested to examine the length of intervals (0, 11, 22, 33, and 44 hr) for an effective inhibition. Results showed that the inhibitory effect was significantly more prominent at 22 hr than that at 33 and 44 hr after roscovitine treatment in all treatment groups (P < 0.05). This study demonstrated that roscovitine-treated oocytes resumed meiosis after removal of the inhibitor. This could provide flexibility for studying porcine oocyte development and embryo cloning and may have application in other species.  相似文献   

17.
The effects of osmotic stress on germinal vesicle (GV) and metaphase II (MII) stage bovine cumulus oocyte complexes (COCs) were evaluated by first exposing them to various anisotonic NaCl solutions (75, 150, 600, 1200, 2400, and 4800 +/- 5 mOsm/kg) for 10 min and then returning them to isotonic TL-Hepes solution (270 +/- 5 mOsm/kg) at 20 +/- 2 degrees C. Percentages of oocyte maturation, fertilization, polyspermy, cleavage, and blastocyst formation were measured as endpoints. Exposure to anisotonic conditions had a significant (P < 0.05) effect on the developmental competence of both GV and bovine MII COCs. Oocytes at the GV stage were more sensitive to anisotonic stress than MII oocytes (P < 0.05). None of the GV oocytes developed to the blastocyst stage after exposure to hypertonic conditions (2400 or 4800 mOsm solutions), while exposure to hypotonic conditions (75 or 150 mOsm solutions) resulted in significantly lower (P < 0.05) blastocyst formation (9% and 13%, respectively) compared to the isotonic control (25%). A dramatic decrease to 4% development to blastocyst was observed for MII oocytes following exposure to a 4800 mOsm solution. Blastocyst formation of MII oocytes which were exposed to 75, 150, 600, 1200, or 2400 mOsm solutions were similar (15%, 20%, 18%, 14%, and 13%, respectively; P > 0.05), but lower (P < 0.05) than those in the control group (29%). Exposing GV oocytes to anisotonic conditions increased polyspermic fertilization (P < 0.05), although MII oocytes were not similarly affected (P > 0.05). These data support the hypothesis that osmotic stress is detrimental to bovine oocytes and must be considered when developing optimized cryopreservation procedures for these cells. Mol. Reprod. Dev. 55:212-219, 2000.  相似文献   

18.
In this study, we evaluated the distribution and oxidative activity of mitochondria in ex vivo pre-ovulatory porcine oocytes using the fluorescence probe MitoTracker CMTM Ros Orange. Cumulus-oocyte complexes (COCs) were classified according to cumulus morphology and time from hCG administration. The meiotic configuration of the oocytes and the degree of apoptosis in the surrounding cumulus cells were also evaluated. Estrus was synchronized in 45 crossbred Landrace gilts by feeding altrenogest for 15 days and administering 1000 IU PMSG on Day 16. The LH peak was simulated by treatment with 500 IU hCG, given 80 h after PMSG. Endoscopic oocyte recovery was carried out 2 h before or 10, 22, or 34 h after hCG administration. Altogether 454 COCs were aspirated from follicles with a diameter of more than 5 mm. Cumulus morphology in the majority of COCs recovered 2 h before and 10 h after hCG was compact (60.4 and 52.7%, respectively; P<0.05). At 22 h after hCG, COC morphology changed significantly from 10 h dramatically: 74% of COCs had an expanded cumulus (P<0.01). At 34 h after hCG, 100% of recovered COCs had an expanded cumulus. The percentage of oocytes with a mature meiotic configuration differed among COC morphologies and increased as the interval after hCG administration increased (P<0.05). The type of mitochondrial distribution in the oocytes (n=336) changed from homogeneous to heterogeneous as the interval after hCG administration increased (P<0.01) and was associated with the cumulus morphology. Representative mitochondrial distributions were found as follows: -2 h: fine homogeneous in compact and dispersed COCs; 10 h: granulated homogeneous in compact and dispersed COCs; 22 h: granulated homogeneous in expanded COCs; and 34 h: granulated heterogeneous and clustered heterogeneous in expanded COCs (P<0.01). The oxidative activity of mitochondria measured by fluorescence intensity (Em: 570 nm) per oocyte after Mitotracker CMTM Ros Orange labeling increased in the oocyte as the post-hCG interval increased (P<0.01) and depended on the type of mitochondrial distribution. Lowest oxidative activity of mitochondria was found in oocytes with fine homogeneous distribution (253.1+/-9.4 microA). The oxidative activity increased (334.4+/-10.3 microA) in oocytes with granulated homogeneous distribution of mitochondria, and reached highest level in oocytes with granulated heterogeneous (400.9+/-13.0 microA) and clustered heterogeneous distributions (492.8+/-13.9 microA) (P<0.01). Mitochondrial activity in oocytes coincided with apoptosis in surrounding cumulus cells which increased in a time-dependent manner during pre-ovulatory maturation in vivo (P<0.01). These results indicate that there is a relationship between meiotic progression, cumulus expansion and mitochondrial redistribution and their oxidative activity during final pre-ovulatory maturation in pig oocytes. It appears that increased levels of mitochondrial activities in oocytes are correlated to increased levels of apoptosis in surrounding cumulus cells, in which mitochondria may play a role.  相似文献   

19.
Canine cumulus-oocyte complexes (COC) were recovered from ovaries of post-pubertal animals (1-3, 4-6 and 7-10 years old) at different ovarian estrous phases (anestrus and diestrus). The number of COCs, and the number and nuclear maturity of high-quality (grade-1) oocytes were assessed. For all animals, no significant differences were found between the two reproductive phases relatively to the total number of COCs and grade-1 oocytes recovered. However, significant higher numbers of COCs were recovered from young than from elderly animals, and the proportion of grade-1 oocytes was also significantly higher in the younger group than in the other two age-groups. Of 226 grade-1 oocytes, 73% were at the germinal vesicle stage (GV), 10% had resumed meiosis (9% at germinal vesicle breakdown; 1% at metaphase-I) and 17% were degenerated. A significant effect of the reproductive phase on oocyte nuclear maturity was found only for adult animals, with a higher number of GV oocytes being found at anestrous (79%) due to higher rates of meiosis resumption (34%) at diestrous. The high number of grade-1 oocytes with meiosis resumption and fragmented or unidentified nuclear contents, indicates that current criteria for the selection of viable canine COCs are not optimized and need a new definition.  相似文献   

20.
在马(Equus caballus)的繁殖和非繁殖季节,本研究探讨马扩展型(Ex)和紧凑型(Cp)卵丘-卵母细胞复合体(COCs)卵母细胞的孤雌激活效率。在繁殖季节,探讨马驹和成年马成纤维细胞核移植(SCNT)的成功率。孤雌激活实验结果显示,在繁殖季节,发育到2-细胞、4-细胞和桑椹胚的比例,扩展型(Ex)卵丘-卵母细胞复合体分别是52.8%(19/36)、38.9%(14/36)和5.6%(2/36),紧凑型(Cp)卵丘-卵母细胞复合体分别是47.9%(23/48)、33.3%(16/48)和6.2%(3/48)。在非繁殖季节,发育到2-细胞、4-细胞的比例,扩展型(Ex)分别是37.2%(16/43)和16.3%(7/43),紧凑型(Cp)的比例分别是35.1%(27/77)和11.7%(9/77),都没有获得桑椹胚。同一季节,扩展型(Ex)与紧凑型(Cp)胚胎发育的比率差异不显著(P 0.05),不同季节,两者差异显著(P 0.05)。体细胞核移植实验结果显示,以马驹成纤维细胞作为核供体细胞,胚胎发育到2-细胞、4~8细胞和桑椹胚的比例分别是41.5%(22/53)、33.9%(18/53)和15.1%(8/53),以成年马成纤维细胞作为核供体细胞,比例分别是38.9%(7/18)、22.2%(4/18),没有获得桑椹胚。综上所述,季节和卵丘-卵母细胞复合体(COCs)类型影响马卵母细胞孤雌激活的效率,不同核供体细胞影响克隆胚胎构建的成功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号