首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification of the alliin lyase of garlic, Allium sativum L   总被引:3,自引:0,他引:3       下载免费PDF全文
1. Alliin lyase (EC 4.4.1.4) was purified up to sevenfold from garlic-bulb homogenates. The enzyme was unstable to storage at -10 degrees , particularly in dilute concentrations, but the addition of glycerol (final concentration 10%, v/v) stabilized the activity completely for at least 30 days. 2. The purified enzyme had an optimum pH for activity at 6.5. The addition of pyridoxal phosphate stimulated the reaction rate and the stimulation became more marked as the purification proceeded. 3. Hydroxylamine (10mum) and cysteine (0.5mm) inhibited the enzyme activity by more than 80%. Spectral studies indicated that cysteine reacted with pyridoxal phosphate bound to the protein. 4. The K(m) values for S-methyl-, S-ethyl-, S-propyl-, S-butyl- and S-allyl-l-cysteine sulphoxides were determined. With S-allyl-l-cysteine sulphoxide the K(m) was 6mm and the V(max.) was greater than those with the other substrates tested. 5. The thioether analogues of the substrates were competitive inhibitors for the lyase reaction. The K(i) decreased with increasing chain length of the alkyl substituent. With S-ethyl-l-cysteine sulphoxide as substrate the K(i) was 33, 8 and 5mm respectively for S-methyl-, S-ethyl- and S-propyl-l-cysteine. 6. The addition of EDTA or Mg(2+), Mn(2+), Co(2+) or Fe(2+) stimulated the reaction rate. Other bivalent cations either had no effect or gave a strong inhibition. In the presence of EDTA no further increase of activity was observed with added Mg(2+).  相似文献   

2.
Some aspects of the kinetics of rat liver pyruvate carboxylase   总被引:9,自引:9,他引:0  
1. The kinetics of rat liver pyruvate carboxylase were examined and the effect of various agents as activators or inhibitors determined. 2. Essentially similar results were obtained in comparisons of kinetics determined by a radioactivity method involving extracts of acetone-dried powders from whole livers and with a spectrophotometric assay using partially purified enzyme from the mitochondrial fraction. Activity per g of liver from fed or starved rats assayed under optimum substrate and activator conditions was 3 or 6 mumol of oxaloacetate formed/min at 30 degrees C, respectively. 3. The enzyme exhibited cold-lability and lost activity on standing, even in 1.5m-sucrose. 4. The K(m) towards pyruvate was about 0.33mm and towards bicarbonate 4.2mm. K(m) towards MgATP(2-) was 0.14mm. Mg(2+) ions activated the enzyme, in addition to their role in MgATP(2-) formation. From calculations of likely concentrations of free Mg(2+) in the assay medium a K(a) towards Mg(2+) of about 0.25mm was deduced. Mn(2+) also activated the enzyme as well as Mg(2+), but at much lower concentrations. It appeared to be inhibitory when concentrations of free Mn(2+) as low as 0.1mm were present. 5. Excess of ATP is inhibitory, and this appears at least in part independent of the trapping of Mg(2+). 6. Both Co(2+) and Zn(2+) were inhibitory; 2mol of the latter appeared to be bound even in the presence of excess of Mg(2+) and the inhibition was time-dependent. 7. Ca(2+) inhibited by competition with Mg(2+) (K(i) about 0.38mm). The inhibition due to Ca(2+) was less pronounced when activation was with Mn(2+). Inhibition by Ca(2+) and ATP appeared to be additive. 8. Hill plots suggested that no interactions occurred between ATP-binding sites. Although similar plots for total Mg(2+) gave n=3.6, no conclusions could be drawn due to the chelation of the cation with other components of the assay. Similar difficulties arose in assessing the values for Ca(2+). 9. The enzyme was inactive in the absence of acetyl-CoA and showed a sigmoidal response in its presence. K(a) was about 0.1mm with possibly up to four binding sites. Malonyl-CoA was a competitive inhibitor, with K(i) 0.01mm. 10. There was no apparent inhibition by glucose, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-diphosphate, acetoacetate, beta-hydroxybutyrate, malate, aspartate, pyruvate, palmitoylcarnitine, octanoate, glutathione, butacaine, triethyltin or potassium chloride under the conditions used. Inhibition was found with citrate (possibly by chelation) and adenosine, and also by phosphoenolpyruvate, AMP, ADP and cyclic AMP, K(i) towards the last four being 0.55, 0.76, 0.25 and 1.4mm respectively.  相似文献   

3.
1. Carbamoyl phosphate synthetase was purified up to 45-fold from Alaska pea seedling (Pisum sativum L. cultivar Alaska). 2. The enzyme was most active with and had the lowest K(m) for l-glutamine as compared with NH(4) (+). 3. The purest preparations utilized very poorly or not at all l-asparagine and urea as nitrogen donors. 4. At saturating concentrations of components of the reaction, the K(m) for l-glutamine was 1.2x10(-4)m, and the K(m) for ATP was approx. 3.9x10(-4)m. 5. Although the enzyme was very labile, stability was improved by glutamine, asparagine, ammonium sulphate, dithiothreitol and especially l-ornithine. 6. Free ATP was markedly inhibitory, and MgATP(2-) and Mg(2+) appeared to be the actual substrates utilized. 7. Fe(2+) and Mn(2+) were also utilized, but not as readily as Mg(2+) except at low concentrations. K(+) increased activity significantly. 8. Of the four nucleotides tested (ITP, ATP, GTP and UTP) only ATP served as an effective phosphate donor.  相似文献   

4.
Kinetic properties of cerebral pyruvate kinase   总被引:2,自引:1,他引:1       下载免费PDF全文
Partly purified guinea-pig brain pyruvate kinase is not activated by fructose 1,6-diphosphate and gives hyperbolic substrate-saturation curves with phosphoenolpyruvate. It is therefore different from the L-type pyruvate kinase of mammalian liver. Inhibition by MgATP(2-) was competitive for MgADP(-) but not for phosphoenolpyruvate, and the enzyme is therefore different from the M-type pyruvate kinase, which is said to be competitively inhibited by MgATP(2-) with respect to both substrates. The K(i)(MgATP(2-)) value of approx. 8mm for the brain enzyme is higher than the values (about 2mm) reported for the muscle enzyme. Stimulation of enzymic activity was observed at low (1-2mm) concentrations of MgATP(2-). Substrate kinetic constants were K(m) (MgADP(-))=0.47mm, K(m) (phosphoenolpyruvate)=0.08mm. Free Mg(2+) at very high concentrations (over 10mm) was inhibitory (K(i)=20-32mm). Neither ADP(3-) nor 5'-AMP(2-) inhibited the activity. The brain enzyme was concluded to be different from both the M-type and the L-type of other mammalian organs such as muscle and liver.  相似文献   

5.
A Mg(2+)+Na(+)+K(+)-stimulated adenosine triphosphatase (ATPase) preparation was isolated from rat ventral prostate by flotation of microsomal membranes in high-density sucrose solutions. The reaction medium for optimum Na(+)+K(+)-stimulated ATPase activity was found to be: Na(+), 115mm; K(+), 7-10mm; Mg(2+), 3mm; ATP, 3mm; tris buffer, pH7.4 at 38 degrees , 20mm. The average DeltaP(i) (Mg(2+)+Na(+)+K(+) minus Mg(2+)+Na(+)) was 9mumoles/mg. of protein/hr., representing a 30% increase over the Mg(2+)+Na(+)-stimulated ATPase activity. At high concentrations, K(+) was inhibitory to the enzyme activity. Half-maximal inhibition of Na(+)+K(+)-stimulated ATPase activity was elicited by ouabain at 0.1mm. The preparation exhibited phosphatase activity towards ribonucleoside triphosphates other than ATP. However, stimulation of P(i) release by Na(+)+K(+) was observed only with ATP as substrate. The apparent K(m) for ATP for Na(+)+K(+)-stimulated activity was about 0.3x10(-3)m. Ca(2+) inhibited only the Na(+)+K(+)-stimulated ATPase activity. Mg(2+) could be replaced by Ca(2+) but then no Na(+)+K(+) stimulation of ATPase activity was noticed. The addition of testosterone or dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) in vitro at 0.1-10mum under a variety of experimental conditions did not significantly increase the Na(+)+K(+)-stimulated ATPase activity. The enzyme preparations from prostates of orchidectomized rats, however, exhibited a drastic decrease in the specific activity of Na(+)+K(+)-stimulated ATPase; these changes were prevented in the orchidectomized rats by injection of testosterone propionate.  相似文献   

6.
During our screening of amylolytic microorganisms from Brazilian fruits, we isolated a yeast strain classified as Cryptococcus flavus. When grown on starch-containing medium this strain exhibited the highest amylase production after 24 h of cultivation. The extracellular amylase from C. flavus was purified from the culture broth by a single step using chromatography on a Sephacryl S-100 column. The enzyme was purified 16.14-fold with a yield of 50.21% of the total activity. The purified enzyme was a glycoprotein with an apparent molecular mass of 75 and 84.5 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively. The enzyme lost approximately 50% of the molecular mass after treatment with glycosidases. The major end products of starch, amylose, amylopectin, pullulan and glycogen were maltose and maltotriose. The K(m) value for the pure enzyme was 0.056 mg ml(-1) with soluble starch as the substrate. Enzyme activity was optimal at pH 5.5 and 50 degrees C. The enzyme retained 90% of the activity after incubation at 50 degrees C for 60 min and was inhibited by Cu(2+), Fe(2+) and Hg(2+).  相似文献   

7.
Chitinolytic systems of anaerobic polycentric rumen fungi of genera Orpinomyces and Anaeromyces were investigated in three crude enzyme fractions - extracellular, cytosolic and cell-wall. Endochitinase was found as a dominant enzyme with highest activity in the cytosolic fraction. Endochitinases of both genera were stable at pH 4.5-7.0 with optimum at 6.5. The Orpinomyces endochitinase was stable up to 50 degrees C with an optimum for enzyme activity at 50 degrees C; similarly, Anaeromyces endochitinase was stable up to 40 degrees C with optimum at 40 degrees C. The most suitable substrate for both endochitinases was fungal cell-wall chitin. Enzyme activities were inhibited by Hg(2+) and Mn(2+), and activated by Mg(2+) and Fe(3+). Both endochitinases were inhibited by 10 mmol/L SDS and activated by iodoacetamide.  相似文献   

8.
A lytic enzyme was purified 600-fold with 12% recovery from lysates of Streptomyces venezuelae S13 infected with actinophage MSP2. The purified enzyme preparation was homogeneous as shown by polyacrylamide electrophoresis. The enzyme was active over a pH range 6.0 to 9.0 with a maximum at pH 7.5. The pH profile for stability was sharp, with an optimum at pH 7.5. Maximal activity occurred between 30 and 35 C. The enzyme was stable at 20 C or less. A 30-min exposure to 25, 30, 35, 40, 45, and 50 C produced an inactivation of 3, 40, 77, 82, 93, and 100%, respectively. Lytic activity was stimulated fivefold by either 5 x 10(-3)m Mg(2+) or Mn(2+) and three- and twofold by Ca(2+) and Ba(2+), respectively. Addition of Na(+), K(+), NH(4) (+), or Li(+) to the tris(hydroxymethyl)aminomethane-hydrochloride buffer did not alter the rate of lysis. Enzyme activity was inhibited 74 and 27% by 10(-4) and 10(-5)m ethylenediaminetetraacetic acid (EDTA), respectively. The inhibition by EDTA was reversed partially by addition of Mg(2+). Lytic activity was abolished by either 5 x 10(-4)m HgCl(2) or p-hydroxymercuribenzoate, whereas 5 x 10(-4)m CuSO(4) inhibited 72%. Cell wall solubilization paralleled the release of N-terminal amino groups and reached a level of 0.23 mumole per mg of cell walls. No release of reducing power was detected in treated or untreated cell wall suspensions. Tests for proteolytic activity were negative.  相似文献   

9.
In this study, we investigated inhibitory effects of some metal ions on human erythrocyte glutathione reductase. For this purpose, initially human erythrocyte glutathione reductase was purified 1051-fold in a yield of 41% by using 2', 5'-ADP Sepharose 4B affinity gel and Sephadex G-200 gel filtration chromatography. SDS polyacrylamide gel electrophoresis was done in order to control the purification of enzyme. SDS polyacrylamide gel electrophoresis showed a single band for enzyme. A constant temperature (4 degrees C) was maintained during the purification process. Enzyme activity was determined with the Beutler method by using a spectrophotometer at 340 nm. Hg(2+), Cd(2+), Pb(2+), Cu(2+), Fe(3+) and Al3+ exhibited inhibitory effects on the enzyme in vitro. K(i) constants and IC(50) values for metal ions were determined by Lineweaver-Burk graphs and plotting activity % vs. [I]. IC(50) values of Pb(2+), Hg(2+), Cu(2+), Cd(2+), Fe(3+) and Al(3+) were 0.011, 0.020, 0.0252, 0.0373, 0.209 and 0.229 mM, and the Ki constants 0.0254+/-0.0027, 0.0378+/-0.0043, 0.0409+/-0.0048, 0.0558+/-0.0083, 0.403+/-0.043 and 1.137+/-0.2 mM, respectively. While Pb(2+), Hg(2+), Cd(2+) and Fe(3+) showed competitive inhibition, others displayed noncompetitive inhibition.  相似文献   

10.
An epsilon-poly-L-lysine-degrading enzyme of an epsilon-poly-L-lysine-producing strain of Streptomyces albulus was purified and characterized. The enzyme was tightly bound to the cell membrane. After solubilization with NaSCN, the enzyme was purified to homogeneity by phenyl-Sepharose CL-4B column chromatography. The subunit molecular mass of the purified enzyme was 54 kDa. Enzyme activity was inhibited by o-phenanthroline, and could be restored in the presence of 1 mM Mg(2+), Ca(2+), Fe(3+) or Zn(2+). The mode of epsilon-poly-L-lysine degradation was of the exo-type, and the enzyme released N-terminal L-lysines one by one. The enzyme acted on various peptides possessing L-lysine residues at the N-terminus and was classified as an aminopeptidase. Epsilon-Poly-L-lysine-degrading activity was found in the membrane fraction of some other Streptomyces strains as well as that of Streptomyces albulus. Streptomyces virginiae IFO 12827 and Streptomyces norsei IFO 15452 exhibited high epsilon-poly-L-lysine-degrading activity, and both strains could produce epsilon-poly-L-lysine, indicating a correlation between the distribution of membrane-bound epsilon-poly-L-lysine-degrading enzyme and epsilon-poly-L-lysine-producing activity.  相似文献   

11.
1. ATP sulphurylase was purified up to 1000-fold from spinach leaf tissue. Activity was measured by sulphate-dependent [(32)P]PP(i)-ATP exchange. The enzyme was separated from Mg(2+)-requiring alkaline pyrophosphatase (which interferes with the PP(i)-ATP-exchange assay) and from other PP(i)-ATP-exchange activities. No ADP sulphurylase activity was detected. 2. Sulphate was the only form of inorganic sulphur that catalysed PP(i)-ATP exchange; K(m) (sulphate) was 3.1mm, K(m) (ATP) was 0.35mm and the pH optimum was 7.5-9.0. The enzyme was insensitive to thiol-group reagents and required either Mg(2+) or Co(2+) for activity. 3. The enzyme catalysed [(32)P]PP(i)-dATP exchange; K(m) (dATP) was 0.84mm and V (dATP) was 30% of V (ATP). Competition between ATP and dATP was demonstrated. 4. Selenate catalysed [(32)P]PP(i)-ATP exchange and competed with sulphate; K(m) (selenate) was 1.0mm and V (selenate) was 30% of V (sulphate). No AMP was formed with selenate as substrate. Molybdate did not catalyse PP(i)-ATP exchange, but AMP was formed. 5. Synthesis of adenosine 5'-[(35)S]sulphatophosphate was demonstrated by coupling purified ATP sulphurylase and Mg(2+)-dependent alkaline pyrophosphatase (also prepared from spinach) with [(35)S]sulphate and ATP as substrates; adenosine 5'-sulphatophosphate was not synthesized in the absence of pyrophosphatase. Some parameters of the coupled system are reported.  相似文献   

12.
Thermostable aldolase from Thermus aquaticus   总被引:4,自引:1,他引:3       下载免费PDF全文
Data are presented on the purification and properties of the thermostable fructose-1,6-diphosphate aldolase of Thermus aquaticus, a nonsporulating, extreme thermophile. The enzyme shows little activity at temperatures below 60 C and optimal activity at about 95 C. The enzyme was purified 43-fold by diethylaminoethyl cellulose column chromatography and Sephadex G-200 gel filtration. The enzyme is activated by high concentrations of NH(4) (+) and low concentrations of Fe(2+) and Co(2+) and is strongly inhibited by ethylenediaminetetraacetic acid (EDTA). The activation by Fe(2+) and Co(2+) and the inhibition by EDTA are both reversed by dialysis. The enzyme is greatly activated by cysteine and less so by other sulfhydryl compounds. Activation by cysteine is reversible by dialysis. The purified enzyme had a molecular weight as determined by Sephadex G-200 gel filtration of 140,000; after incubation of enzyme with cysteine, another molecular species was also found with a molecular weight of 70,000. The purified enzyme is stable at low protein concentrations to 97 C but is rapidly inactivated at 105 C. In cysteine the enzyme is more heat labile; heat inactivation in the presence of cysteine is prevented by substrate, although, in the absence of cysteine, substrate partially labilizes the enzyme to heat. The temperature optimum for enzyme activity is several degrees lower in the presence of cysteine than in its absence, and the K(m) is threefold lower. It is concluded that the T. aquaticus enzyme resembles some other aldolases of Rutter's class II, except for its extreme heat stability. The T. aquaticus enzyme is compared with that of Bacillus stearothermophilus, a moderate thermophile. Although the T. aquaticus enzyme is considerably more heat stable, the enzymes from the two thermophiles have many similarities. New data are presented which show that the B. stearothermophilus aldolase is metal ion-dependent, in disagreement with earlier reports.  相似文献   

13.
Exo-1,4-beta-glucanase (E.C. 3.2.1.91) was successively purified by precipitation with acetone, followed by gel filtration on Sephadex G-100 and chromatographed onto DEAE-cellulose. A typical procedure provided 47.14 fold purification with 72.8% yield. The molecular mass of the purified enzyme was found to be 88 kDa by SDS-PAGE. The pH optimum of the enzyme was 5.2 and maximum activity was obtained at 45 degrees C. Km value against alpha-cellulose was 0.65 mg mL(-1). Alpha-cellulose and filter paper were the best substrates for enzyme activity. Enzyme was activated by Mn2+ and Fe3+, inactivated by Cu2+ and completely inhibited by Hg2+ and Ag+.  相似文献   

14.
Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k(cat) = 2.0 s(-1); k(cat)/K(m) = 2.5 × 10(3) M(-1) s(-1)). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn(2+) prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k(cat) and k(cat)/K(m) values of 200 s(-1) and 5 × 10(5) M(-1) s(-1), respectively. The apoenzyme was prepared and reconstituted with Fe(2+), Zn(2+), or Mn(2+). In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe(II)/Fe(II)]-ADE was oxidized to [Fe(III)/Fe(III)]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe(III)/Fe(III)]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Mo?ssbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 ? resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate-limiting steps.  相似文献   

15.
The gene (Bhbgl) encoding a β-glucosidase from the alkalophilic bacterium Bacillus halodurans C-125 was synthesized chemically via the PCR-based two-step DNA synthesis (PTDS) method and expressed in Escherichia coli. Bhbgl contained an open reading frame (ORF) of 1359 bp encoding a 453-amino acid protein belonging to glycoside hydrolase family 1 (GHF1), and the deduced molecular mass of recombinant Bhbgl (52,488 Da) was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited a high specific activity with o-nitrophenyl-β-D-glucopyranoside (oNPGlu) and an apparent K (m) value of 0.32 mM. With oNPGlu as the substrate, Bhbgl displayed pH and temperature optima of ~7.0 and 50°C, respectively. The enzyme was relatively stable under alkaline conditions and >50% activity was retained after incubation at pH 9.5 for 24 h at 4°C. Recombinant Bhbgl activity was inhibited by 5 mM Zn(2+), Fe(3+), or Cd(2+), but was enhanced by 1 mM Mg(2+) and other metal ions. Enzyme activity was also stimulated by at least four sugars (sucrose, D-galactose, xylose, glucose) at concentrations ranging from 50 to 800 mM.  相似文献   

16.
Ferrochelatase of spinach chloroplasts   总被引:10,自引:5,他引:5       下载免费PDF全文
Spinach chloroplasts catalyse the incorporation of Fe(2+) into protoporphyrin, mesoporphyrin and deuteroporphyrin to form the corresponding haems. This ferrochelatase activity was detected by pyridine haemochrome formation with acetone-dried powders of chloroplasts, or from the formation of [(59)Fe]haems by intact chloroplasts. Decreasing the mitochondrial contamination of the chloroplasts by density-gradient centrifugation did not cause any loss of activity: spinach ferrochelatase appears to be principally a chloroplast enzyme. The characteristics of the enzyme were examined by using [(59)Fe]haem assay. The activity was pH-dependent: for both mesohaem and protohaem formation there were two pH maxima, a major peak at about pH7.8 and a smaller peak at about pH9.2. Lineweaver-Burk plots showed that the K(m) for Fe(2+) incorporation into protoporphyrin was 8mum and that for Fe(2+) incorporation into mesoporphyrin was 36mum. At non-saturating Fe(2+) concentrations the K(m) for protoporphyrin was 0.2mum and that for mesoporphyrin was 0.4mum. Ferrochelatase was not solubilized by treatment of chloroplasts with ultrasound but was solubilized by stirring in 1% (w/v) Tween 20 at pH10.4. Unlike the rat liver mitochondrial enzyme, chloroplast ferrochelatase was not stimulated by treatment with selected organic solvents. The spinach enzyme was inactive in aerobic conditions and it was shown by using an oxygen electrode that under such conditions the addition of Fe(2+) to buffer solutions caused a rapid uptake of dissolved oxygen, believed to be due to the oxidation of Fe(2+) to Fe(3+); Fe(3+) is not a substrate for ferrochelatase.  相似文献   

17.
J G Straka  J P Kushner 《Biochemistry》1983,22(20):4664-4672
Uroporphyrinogen decarboxylase (EC 4.1.1.37) has been purified to homogeneity from bovine liver by using isoelectric and salt precipitations, followed by chromatography on DEAE-cellulose, phenyl-Sepharose, hydroxylapatite, and Sephacryl S-200. The purified enzyme is a monomer with an Mr approximately 57 000 and an isoelectric point at pH 4.6. Enzyme activity is optimal in buffers having an ionic strength of approximately 0.1 M and a pH of 6.8. The purified enzyme has a specific activity (expressed as the disappearance of uroporphyrinogen I) of 936 nmol X h-1 X (mg of protein)-1. The purified enzyme catalyzes all four decarboxylation reactions in the conversion of uroporphyrinogen I or III to the corresponding coproporphyrinogen. The rate-limiting step in the physiologically significant conversion of uroporphyrinogen III to coproporphyrinogen III is the decarboxylation of heptacarboxylate III. Kinetic data suggest that the enzyme has at least two noninteracting active sites. At least one sulfhydryl group is required for catalytic activity. The enzyme is inhibited by sulfhydryl-specific reagents and by divalent metal ions including Fe2+, Co2+, Cu2+, Zn2+, and Pb2+. The pattern of accumulation of intermediate (hepta-, hexa-, and pentacarboxylate porphyrinogens) and final (coproporphyrinogen) decarboxylation products is affected by the ratio of substrate (uroporphyrinogen I or III) concentration to enzyme concentration. Under physiologic conditions where the uroporphyrinogen to enzyme ratio is low, the substrate is nearly quantitatively decarboxylated, and the major product is coproporphyrinogen. If the ratio of uroporphyrinogen to enzyme is high, intermediates accumulate, and heptacarboxylate porphyrinogen becomes the major decarboxylation product.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
d-Desthiobiotin synthetase, an enzyme that catalyzes the synthesis of d-desthiobiotin from dl-7,8-diaminopelargonic acid and HCO(3) (-), was purified 100-fold from cells of a biotin mutant strain of Escherichia coli. Adenosine triphosphate and Mg(2+) were shown, especially in purified extracts, to be obligatory for enzyme activity, although concentrations higher than 5 mm caused severe inhibition of the reaction with unpurified cell-free extracts. Adenosine diphosphate and adenosine monophosphate were shown to inhibit the reaction, but fluoride (up to 50 mm) had no detectable effect. The product of the enzyme reaction was identical to d-desthiobiotin on the basis of biological activity and chromatography. Furthermore, when H(14)CO(3) (-) was used as a substrate, the radioactive product was shown to be (14)C-desthiobiotin labeled exclusively in the ureido carbon.  相似文献   

19.
A high molecular weight phosphoprotein phosphatase was purified from rabbit liver using high speed centrifugation, acid precipitation, ammonium sulfate fractionation, chromatography on DEAE-cellulose, Sepharose-histone, and Bio-Gel A-0.5m. The purified enzyme showed a single band on a nondenaturing polyacrylamide anionic disc gel which was associated with the enzyme activity. The enzyme was made up of equimolar concentrations of two subunits whose molecular weights were 58,000 (range 58,000-62,000) and 35,000 (range 35,000-38,000). Two other polypeptides (Mr 76,000 and 27,000) were also closely associated with our enzyme preparation, but their roles, if any, in phosphatase activity are not known. The optimum pH for the reaction was 7.5-8.0. Km value of phosphoprotein phosphatase for phosphorylase a was 0.10-0.12 mg/ml. Freezing and thawing of the enzyme in the presence of 0.2 M beta-mercaptoethanol caused an activation (100-140%) of phosphatase activity with a concomitant partial dissociation of the enzyme into a Mr 35,000 catalytic subunit. Divalent cations (Mg2+, Mn2+, and Co2+) and EDTA were inhibitory at concentrations higher than 1 mM. Spermine and spermidine were also found to be inhibitory at 1 mM concentrations. The enzyme was inhibited by nucleotides (ATP, ADP, AMP), PPi, Pi, and NaF; the degree of inhibition was different with each compound and was dependent on their concentrations employed in the assay. Among various types of histones examined, maximum activation of phosphoprotein phosphatase activity was observed with type III and type V histone (Sigma). Further studies with type III histone indicated that it increased both the Km for phosphorylase a and the Vmax of the dephosphorylation reaction. Purified liver phosphatase, in addition to the dephosphorylation of phosphorylase a, also catalyzed the dephosphorylation of 32P-labeled phosphorylase kinase, myosin light chain, myosin, histone III-S, and myelin basic protein. The effects of Mn2+, KCl, and histone III-S on phosphatase activity were variable depending on the substrate used.  相似文献   

20.
1. The novel enzyme, erythro-beta-hydroxyaspartate dehydratase, a key enzyme of the beta-hydroxyaspartate pathway (Kornberg & Morris, 1963, 1965), has been purified 30-fold from extracts of glycollate-grown Micrococcus denitrificans. The purified preparation was devoid of erythro-beta-hydroxyaspartate-aldolase activity, and free from enzymes that act on oxaloacetate. 2. Properties of the purified dehydratase were studied by direct assay of the enzymic formation of oxaloacetate and ammonia from added erythro-beta-hydroxyaspartate. 3. The enzyme was highly substrate-specific, utilizing only the l-isomer of erythro-beta-hydroxyaspartate (K(m), 0.43mm, and V(max.), 99mumoles of oxaloacetate formed/min./mg. of protein at pH9.15 and 30 degrees ). Of many compounds tested, only maleate was a competitive inhibitor (K(i), 32mm at pH7.6). 4. The optimum pH for activity was about 9.5. The K(m) varied with pH, showing a marked optimum at pH7.8. The V(max.) also varied with pH in a manner suggesting the presence in the enzyme-substrate complex of a dissociable group of pK'(a) about 8.5. 5. Carbonyl reagents were inhibitory, but of three thiol reagents tested only p-chloromercuribenzoate was inhibitory. 6. A partially resolved preparation of the enzyme was activated four-fold by the addition of pyridoxal phosphate and thereby restored to half activity. 7. EDTA (0.1mm) was almost completely inhibitory, activity being restored by bivalent cations (Mg(2+), Ca(2+) and Mn(2+)); no activation by univalent cations was observed. 8. The findings are discussed in the light of reported properties of related hydroxyamino acid dehydratases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号