首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea urchin sperm motility can be activated by alkalinization of the internal pH, and previous studies have shown that the internal pH can be regulated by a voltage-sensitive Na+/H+ exchanger present in the flagellar plasma membrane. In this study, the effects of speract, a peptide purified from egg conditioned media, on the Na+/H+ exchange were investigated. Evidence presented indicates that speract activates K+ channels in the flagellar membrane and modulates the Na+/H+ exchange activity through resultant changes in membrane potential. In the presence of tetraphenylphosphonium, a lipophilic ion, or high external Na+, the isolated flagella were depolarized, and Na+/H+ exchanger was inhibited. Speract and valinomycin, a K+ ionophore, were able to reactivate 22Na+ uptake, H+ efflux, and alkalinization of intraflagellar pH under either of the depolarizing conditions. Membrane potential measurements using 3,3'-dipropylthiodicarbocyanide iodide indicated repolarization by either speract or valinomycin. The speract-induced voltage changes did not require Na+ but were sensitive to [K+]. Thus, speract induced a slight depolarization in Na+-free seawater with 10 mM K+ but a hyperpolarization with 2 mM K+. Further support for the activation of K+ channels in the flagella was the 2-5-fold stimulation of K+ efflux induced by speract as measured with a K+ electrode. The ionic selectivity of the speract-activated channel assessed by voltage measurements was K+ greater than Rb+ greater than Cs+. The half-maximally effective concentration of speract was about 0.2 nM. That the H+ and K+ efflux in response to peptide was receptor-mediated was confirmed by the use of speract or resact on intact sea urchin spermatozoa, where the peptides were found to stimulate K+ efflux and to reverse the tetraphenylphosphonium inhibition on H+ efflux only in the homologous spermatozoa. Modulation of the voltage-sensitive Na+/H+ exchange by egg peptides, therefore, appears to be indirect and is coupled through its action on membrane potential.  相似文献   

2.
The Na+ and K+ permeability properties of rat brain mitochondria were determined to explain the influences of these cations upon respiration. A new procedure for isolating exceptionally intact mitochondria with minimal contamination by synaptosomes was developed for this purpose. Respiration was uncoupled by Na+ and less so by K+. Uncoupling was maximal in the presence of EDTA plus Pi and was decreased by Mg2+. Maximal uncoupler-stimulated respiration rates were inhibited by Na+ but largely unaffected by K+. The inhibition by Na+ was relatively insensitive to Mg2+. Membrane Na+ and K+ conductances as well as neutral exchanges (Na+/H+ and K+/H+ antiport activities) were determined by swelling measurements and correlated with metabolic effects of the cations. Cation conductance, i.e. electrophoretic Na+ or K+ permeation, was increased by EDTA (Na+ greater than K+) and decreased by Mg2+. Magnesium preferentially suppressed Na+ conductance so as to reverse the cation selectivity (K+ greater than Na+). Neutral cation/H+ exchange rates (Na+ greater than K+) were not influenced by chelator or Mg2+. The extent of cation-dependent uncoupling of respiration correlated best with the inner membrane conductance of the ion according to an empirical relationship derived with the model K+ conductor valinomycin. The metabolic influences of Na+ and K+ can be explained in terms of coupled flow of these ions with protons and their effect upon the H+ electrochemical gradient although alternative possibilities are discussed. These in vitro studies are compared to previous observations in situ to assess their physiological significance.  相似文献   

3.
The solution conformation of cyclo-[D-Val-L-Pro-L-Val-D-Pro]3 (PV) and its alkali-metal ion complexes was investigated by proton nuclear magnetic resonance spectroscopy. It is concluded that the cation complexes of PV have S6 symmetry and are essentially isostructural with the K complex of valinomycin. In contrast to valinomycin, the Li- and Na-PV complexes are stable in methanol and have dissociation rate constants that are several orders of magnitude slower than the corresponding valinomycin complexes. Also in contrast to valinomycin, free PV exists in two different conformational states which interconvert at very slow rates (less than 1 s-1). One of these conformers has S6 symmetry and is structurally similar to that of the cation complexes. The other species, which has lower symmetry than S6, is the more stable conformer. Depending upon concentration and solvent polarity, the latter represents between 50 and 75% of the total mixture. It is proposed that PV may have a higher affinity for cations than valinomycin because of its higher potential energy in the uncomplexed state.  相似文献   

4.
General properties of ouabain-sensitive K+ binding to purified Na+,K+-ATPase [EC 3.6.1.3] were studied by a centrifugation method with 42K+. 1) The affinity for K+ was constant at pH values higher than 6.4, and decreased at pH values lower than 6.4. 2) Mg2+ competitively inhibited the K+ binding. The dissociation constant (Kd) for Mg2+ of the enzyme was estimated to be about 1 mM, and the ratio of Kd for Mg2+ to Kd for K+ was 120 : 1. The order of inhibitory efficiency of divalent cations toward the K+ binding was Ba2+ congruent to Ca2+ greater than Zn2+ congruent to Mn2+ greater than Sr2+ greater than Co2+ greater than Ni2+ greater than Mg2+. 3) The order of displacement efficiency of monovalent cations toward the K+ binding in the presence or absence of Mg2+ was Tl+ greater than Rb+ greater than or equal to (K+) greater than NH4+ greater than or equal to Cs+ greater than Na+ greater than Li+. The inhibition patterns of Na+ and Li+ were different from those of other monovalent cations, which competitively inhibited the K+ binding. 4) The K+ binding was not influenced by different anions, such as Cl-, SO4(2-), NO3-, acetate, and glycylglycine, which were used for preparing imidazole buffers. 5) Gramicidin D and valinomycin did not affect the K+ binding, though the former (10 micrograms/ml) inhibited the Na+,K+-ATPase activity by about half. Among various inhibitors of the ATPase, 0.1 mM p-chloromercuribenzoate and 0.1 mM tri-n-butyltin chloride completely inhibited the K+ binding. Oligomycin (10 micrograms/ml) and 10 mM N-ethylmaleimide had no effect on the K+ binding. In the presence of Na+, however, oligomycin decreased the K+ binding by increasing the inhibitory effect of Na+, whether Mg2+ was present or not. 6) ATP, adenylylimido diphosphate and ADP each at 0.2 mM decreased the K+ binding to about one-fourth of the original level at 10 microM K+ without MgCl2 and at 60 microM K+ with 5 mM MgCl2. On the other hand, AMP, Pi, and p-nitrophenylphosphate each at 0.2 mM had little effect on the K+ binding.  相似文献   

5.
Extracellular K+ enhances the chemotactic responsiveness and spontaneous movememt of rabbit peritoneal neutrophils but is not required for these functions. Other monovalent cations act the same; the rank order of their effectiveness is K+ = NH4 greater than Rb+ Cs+ greater than Li = Na. The K+ specific ionophore, valinomycin (10-7 M) inhances chemotaxis in the presence of K+ but not in its absence; another K+ specific ionophore, nigericin (10-7 M) inhibits chemotaxis in the absence of K+ but not in its presence. Ouabain (5 x 10-6 M) prevents the enhancing effects of K+ on chemotaxis. Removing the Na+ of the buffer and substituting it with K+, choline or glucose greatly enhances spontaneous motility but depresses chemotactic activity. One hypothesis suggested by the above results is that as a part of their action, chemotactic factors stimulate a net influx of K+ into the neutrophil; an alternative or additional hypothesis is that chemotactic factors stimulate a net efflux of Na+ from the neutrophil.  相似文献   

6.
Cyclo(L-Lac-L-Val-D-Pro-D-Val)3 (PV-Lac) a structural analogue of the ion-carrier valinomycin, increases the cation permeability of lipid bilayer membranes by forming a 1:1 ion-carrier complex. The selectively sequence for PV-Lac is identical to that of valinomycin; i.e., Rb+ greater than K+ greater than Cs+ greater than or equal to NH+4 greater than Na+ greater than Li+. The steady-state zero-voltage conductance, G(0), is a saturating function of KCl concentration. A similar behavior was found for Rb+, Cs+, and NH+4. However, the ion concentration at which G(0) reaches a plateau strongly depends on membrane composition. The current-voltage curves present saturating characteristics, except at low ion concentrations of Rb+, K+, or Cs+. The ion concentration at which the saturating characteristics appear depends on membrane composition. These and other results presented in this paper agree with a model that assumes complexation between carrier and ion at the membrane-water interface. Current relaxation after voltage-jump studies were also performed for PV-Lac. Both the time constant and the amplitude of the current after a voltage jump strongly depend on ion concentration and membrane composition. These results, together with the stationary conductance data, were used to evaluate the rate constants of the PV-Lac-mediated K+ transport. In glycerolmonooleate they are: association rate constant, 2 x 10(6) M-1 s-1; dissociation rate constant, 4 x 10(5) s-1; translocation rate constant for complex, 5 x 10(4) s-1; and the rate of translocation of the free carrier (ks), 55 s-1. ks is much smaller for PV-Lac than for valinomycin and thus limits the efficiency with which the carrier is able to translocate cations across the membrane.  相似文献   

7.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

8.
Brush-border membranes of renal proximal tubules were solubilized with deoxycholate and some proteins were separated and incorporated into proteoliposomes by a reconstitution procedure which was analyzed in detail. The proteoliposomes contained mainly polypeptides with molecular weights of 152,000, 94,000, and 52,000, each of which could be separated further into homologous polypeptides with different isoelectric points. In the proteoliposomes, Na+ cotransport systems for D-glucose, acidic and neutral amino acids, and mono- and dicarboxylic acids were demonstrated by showing that due to an inwardly directed Na+ gradient the substrate concentrations in the proteoliposomes increased significantly over their respective equilibrium values. Using inhibition experiments, selectivity of the different transporters could be demonstrated. Studying the reconstituted L-glutamate transporter in detail, countertransport of L-glutamate and K+ was shown (i) at Na+ equilibrium the intraliposomal L-glutamate concentration increased significantly over the equilibrium value if an outside-directed K+ gradient was applied; (ii) Rb+ influx was significantly stimulated by the outflux of L-glutamate. By applying a K+ diffusion potential across the liposomal membrane by addition of valinomycin it could be shown that during L-glutamate transport in the presence of Na+ and K+ positive charge is transferred together with L-glutamate and Na+. The apparent Km value of L-glutamate uptake driven by concentration differences of 89 mM Na+ (out greater than in) and 89 mM K+ (in greater than out) was 26.3 +/- 1.3 microM. The Vmax value of 70.2 +/- 2.3 pmol X mg of protein-1 X S-1 was half the value measured in intact membranes.  相似文献   

9.
HeLa cells synthesize and secrete increased levels of tissue plasminogen activator (tPA) when incubated for 18 h with 10-20 nM phorbol myristate acetate. This response was inhibited by a number of conditions which affect intracellular Na+ and K+ concentrations. Removing extracellular Na+, while maintaining isotonicity with choline+, reduced the secretion of both functional and antigenic tPA in a linear fashion. A series of cardiac glycosides and related compounds strongly inhibited tPA secretion with the following rank order of potency: digitoxin = ouabain greater than digoxin greater than digitoxigenin greater than digoxigenin greater than digitoxose greater than digitonin. These compounds also inhibited cellular Na+/K+-ATPase activity over an identical concentration range. Two compounds which selectively increase cellular permeability to K+, valinomycin, and nigericin, strongly inhibited tPA secretion, with IC50 values of approximately 50 nM. In contrast, monensin, which selectively increases cellular permeability to Na+, was much less active. Valinomycin, but not nigericin, also inhibited cellular Na+/K+-ATPase activity. Phorbol myristate acetate, 5-20 nM, increased Na+/K+-ATPase activity up to 2-fold and tPA secretion up to 15-fold. We conclude that the secretion of tPA by HeLa cells treated with phorbol myristate acetate proceeds via a mechanism which requires extracellular Na+ and a functional Na+/K+-ATPase ("sodium pump") enzyme.  相似文献   

10.
This paper describes properties of 86Rb+ fluxes through a novel K+ channel in luminal-membrane vesicles isolated from pars convoluta of rabbit proximal tubule. The uptake of 86Rb+ into potassium salt loaded vesicles was specifically inhibited by Ba2+. The isotope accumulation is driven by an electrical diffusion potential as shown in experiments using these membrane vesicles loaded with anions of different membrane permeability and was as follows: gluconate greater than SO4(2-) greater than Cl-. Furthermore, the vesicles containing the channels show a cation selectivity with the order K+ greater than Rb+ greater than Li+ greater than Na+ = choline+.  相似文献   

11.
Potassium channels and valinomycin molecules share the exquisite ability to select K(+) over Na(+). Highly selective K channels maintain a special local environment around their binding sites devoid of competing hydrogen bond donor groups, which enables spontaneous transfer of K(+) from states of low coordinations in water into states of over-coordination by eight carbonyl ligands. In such a phase-activated state, electrostatic interactions from these 8-fold binding sites, constrained to maintain high coordinations, result in K(+)/Na(+) selectivity with no need for a specific cavity size. Under such conditions, however, direct coordination from five or six carbonyl ligands does not result in selectivity. Yet, valinomycin molecules achieve selectivity by providing only six carbonyl ligands. Does valinomycin use additional coordinating ligands from the solvent or does it have special structural features not present in K channels? Quantum chemical investigations undertaken here demonstrate that valinomycin selectivity is due to cavity size constraints that physically prevent it from collapsing onto the smaller sodium ion. Valinomycin enforces these constraints by using a combination of intramolecular hydrogen bonds and other structural features, including its specific ring size and the spacing between its connected ligands. Results of these investigations provide a consistent explanation for the experimental data available for the ion-complexation properties of valinomycin in solvents of varying polarity. Together, investigations of these two systems reveal how nature, despite being popular for its parsimony in recycling functional motifs, can use different combinations of phase, coordination number, cavity size, and rigidity (constraints) to achieve K(+)/Na(+) selectivity.  相似文献   

12.
Palytoxin (PTX), isolated from the marine soft coral Palythoa tuberculosa, increases the cation conductance of human red cell membranes. In the presence of 10(-10) M PTX and 10(-5) M DIDS, the membrane potential approximates the equilibrium potential for Na+ or K+ rather than Cl-. Even in the absence of DIDS, the Na+ and K+ conductances were greater than the Cl- conductance. The selectivity of the PTX-induced cation conductance is K+ greater than Rb+ greater than Cs+ greater than Na+ greater than Li+ much greater than choline+ greater than TEA+ much greater than Mg2+. Measurements of K+ efflux revealed two apparent sites for activation by PTX, one with a Kal of 0.05 nM and a maximum flux, nu max1, of 1.4 mol/liter of cells per h and another with a Ka2 of 98 nM and a nu max2 of 24 mol/liter of cells per h. These effects of PTX are completely blocked by external ouabain (300 microM) and prevented by internal vanadate (100 microM). When the PTX channels are open, the Na,K pumps do not catalyze ATP hydrolysis. Upon thorough washout of cells exposed to about five molecules of PTX/pump, the Na,K pump of these cells operates normally. Blockage of the positively charged NH2 terminus of PTX with a p-bromobenzoyl group reduces the potency of the compound to induce Na and K fluxes by at least a factor of 100, and to compete with the binding of [3H]ouabain by at least a factor of 10. These data are consistent with the conclusion that PTX binds reversibly to the Na,K pumps in the red cell membrane and opens a (10-pS) channel equally permeable to Na and K at or near each pump site.  相似文献   

13.
Membrane vesicles isolated from untransformed Balb/c and Swiss mouse fibroblasts and their SV 40-transformed derivatives were shown to catalyze carrier-mediated, intravesicular uptake of alpha-aminoisobutyric acid and D-glucose. Concentrative uptake of alpha-aminoisobutyric acid required the presence of a Na+-gradient (external greater than internal) and could occur independently of endogenous (Na+ + K+)ATPase activity. A K+ diffusion gradient (internal greater than external) in the presence of valinomycin, or the addition of the Na+ salt of a highly permeant anion, conditions expected to create an interior-negative membrane potential stimulated Na+-gradient-dependent uptake, suggesting this process is electrogenic. D-Glucose uptake was nonconcentrative and did not require ion gradients or metabolic conversion. Na+ gradient-dependent transport of alpha-aminoisobutyric acid was reduced both in initial rate and extent of uptake in vesicles from confluent untransformed cells and increased in those from SV 40-transformed cells, compared with activities observed in vesicles from proliferating untransformed cells. No changes in D-glucose carrier activity were observed when assayed at low glucose concentrations.  相似文献   

14.
The interactions of monovalent cations and of the K+-specific ionophore, valinomycin, with the Ca2+-ATPase of skeletal muscle of sarcoplasmic reticulum have been studied in the absence of cation gradients by their effects on enzyme turnover and on the ATP plus Ca2+-dependent enhanced fluorescence of the ATP analogue, 2',3'-O-(2,4,6-trinitrocyclohexyldienylidine)-adenosine 5'-triphosphate (TNP-ATP) (Watanabe, T., and Inesi, G. (1982) J. Biol. Chem. 257, 11510-11516). Monovalent cations decreased turnover-dependent TNP-ATP fluorescence in the series K+ greater than Rb+ approximately equal to Cs+ greater than Na+ greater than Li+ (K0.5 = 49, 73, 75, 94, and 246 mM, respectively), consistent with the known specificity of the monovalent cation binding site that stimulates turnover and E-P hydrolysis. Valinomycin (200 nmol/mg), in the absence of monovalent cations, decreased ATPase activity by 30% and abolished the stimulatory effects of 150 mM KCl or NaCl on turnover. The ionophore alone enhanced TNP-ATP fluorescence by 20% and altered the specificity and affinity of the site that inhibited TNP-ATP fluorescence to Cs+ greater than Rb+ greater than K+ approximately equal to Na+ greater than Li+ (K0.5 = 79, 111, 134, 136, and 270 mM, respectively), which follows the Hofmeister series for effectiveness of monovalent lyotropic cations. TNP-ATP binding was not affected by either monovalent cations or valinomycin. Inhibition of turnover-dependent TNP-ATP fluorescence appears to be a useful parameter for monitoring monovalent cation binding to the Ca2+-ATPase. It is concluded that the ionophore interacts directly with the Ca2+-ATPase, independent of its K+ conductance effects on the lipid bilayer, and modifies the affinity and specificity of the monovalent cation site, either by direct interaction or by the formation of a valinomycin-monovalent cation-enzyme complex.  相似文献   

15.
Uptake of L-alanine against a concentration gradient has been shown to occur with isolated brush border membranes from rat small intestine. An alanine transport system, displaying the following characteristics, was shown: (a) L-alanine was taken up and released faster than D-alanine; (b) Na+ as well as Li+ stimulated the uptake of both stereoisomers; (c) the uptake of L- and D-alanine showed saturation kinetics; (d) countertransport of L-alanine was shown; (e) other neutral amino acids inhibited L-alanine but not D-alanine entry when an electrochemical Na+ gradient across the membrane was present initially during incubation. No inhibition occurred in the absence of a Na+ gradient. The electrogenicity of L-alanine transport was established by three types of experiments: (a) Gradients of Na+ salts across the vesicle membrane (medium concentration greater than intravesicular concentration) supported a transient uptake of L-alanine above equilibrium level, and the lipophilic anion SCN- was the most effective counterion. (b) A gradient of K= across the membrane (vesicle greater than medium) likewise supported active transport of L-alanine into the vesicles provided the K= conductance of the membrane was increased with valinomycin. (c) Similarly, a proton gradient (vesicle greater than medium) in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, an agent known to increase the proton conductance of membranes, produced an overshooting L-alanine uptake. A consideration of the possible forces, existing under the experimental conditions, suggests that the gradients of SCN-, K+ in the presence of valinomycin, and H+ in the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone contribute to the driving force for L-alanine transport by creating a diffusion potential. Since the presence of Na+ was required in all experiments with active L-alanine transport these results support the existence of a transport system in the brush border membrane which catalyzes the co-transport of Na+ and L-alanine across this membrane.  相似文献   

16.
J Moffett  M Jones  E Englesberg 《Biochemistry》1987,26(9):2487-2494
Membrane vesicles were prepared from CHO-K1 and alanine-resistant transport mutants, alar4 and alar4-H3.9. Alar4 is a constitutive mutant of the A system, and alar4-H3.9, derived from alar4, may be the result of amplification of a gene coding for an A-system transporter. Under conditions in which the same membrane potential (interior negative) and Na+ gradient were employed, the mutant vesicles show increases in the A system over that of the parental CHO-K1 cell line, paralleling, but not equivalent to, that found in whole cells. L-system and 5'-nucleotidase activities of these vesicles were similar, indicating that the increased A-system activity of the mutant vesicles is not due to the differential enrichment of the A system in these vesicles. The membrane potential was produced by a K+ diffusion gradient (internal greater than external) in the presence of valinomycin or by the addition of a Na+ salt of a highly permeant anion such as SCN-. Monensin was employed to study the effect of the Na+ gradient on transport and membrane potential. The latter was determined by measuring the uptake of tetraphenylphosphonium ion. A negative membrane potential determines the concentrative ability and the initial velocity of the A system in these vesicles. The concentration of external Na+ has a stimulatory effect on the initial velocity of this system. However, the Na+ gradient (external greater than internal) has no effect on the initial velocity or the membrane potential when the potential is set by valinomycin and high internal K+. Little if any ASC system could be detected in vesicles from CHO-K1.  相似文献   

17.
The Mg2+-dependent, K+-stimulated ATPase of microsomes from pig gastric mucosa has been studied in relation to observed active H+ transport into vesicular space. Uptake of fluorescent dyes (acridine orange and 9-aminoacridine) was used to monitor the generated pH gradient. Freeze-fracture electron microscopy showed that the vesicular gastric microsomes have an asymmetric distribution of intramembraneous particles (P-face was particulate; E-face was relatively smooth. Valinomycin stimulated both dye uptake and K+-ATPase (valinomycin-stimulated K+-ATPase); stimulation by valinomycin was due to increased K+ entry to some intravesicular activating site, which in turn depends upon the accompanying anion. Using the valinomycin-stimulated K+-ATPase and H+ accumulation as an index, the sequence for anion permeation was NO-3 greater than Br- greater than Cl- greater than I- greater than acetate approximately isethionate. When permeability to both K+ and H+ was increased (e.g using valinomycin plus a protonophore or nigericin), stimulation of K+-ATPase was much less dependent on the anion and the observed dissipation of the vesicular pH gradient was consistent with an 'uncoupling' of ATP hydrolysis from H+ accumulation. Thiocyanate interacts with valinomycin inhibiting the typical action of the K+ ionophore. But stimulation of ATPase activity was seen by adding 10 mM SCN- to membranes preincubated with valinomycin. From the relative activation of the valinomycin-stimulated K+-ATPase, it appears that SCN- is a very permeant anion which can be placed before NO-3 in the sequence of permeation. Valinomycin-stimulated ATPase and H+ uptake showed similar dependent correlations, including: dependence on [ATP] and [K+], pH optima, temperature activation, and selective inhibition by SH- or NH2-group reagents. These results are consistent with a pump-leak model for the gastric microsomal K+-ATPase which was simulated using Nernst-Planck conditions for passive pathways and simple kinetics for the pump. The pump is a K+/H+ exchange pump requiring K+ at an internal site. Rate of K+ entry would depend on permeability to K+ as well as the counterion, either (1) the anion to accompany K+ or (2) the H+ efflux path as an exchange ion. The former leads to net accumulation of H+ and anion, while the latter results in non-productive stimulation of ATP hydrolysis.  相似文献   

18.
A highly purified membrane fraction was derived from hog gastric mucosa by a combination of differential and density gradient centrifugation and free flow electrophoresis. This final fraction was 35-fold enriched with respect to cation activated ouabain-insensitive ATPase. Antibody against this fraction was shown to be bound to the luminal surface of the gastric glands. The addition of ATP to this fraction or the density gradient fraction resulted in H+ uptake into an osmotically sensitive space. The apparent Km for ATP was 1.7-10(-4) M in the absence of a K+ gradient similar to that found for ATPase activity. The reaction is specific for ATP and requires cation in the sequence K+ greater than Rb+ greater than Cs+ greater than Na+ greater than Li+ and inhibited by ATPase inhibitors such as N,N'-dicylclohexyl-carbodiimide. Maximal H+ uptake occurs with an outward K+ gradient but the minimal apparent KA is found in the absence of a K+ gradient. The pH optimum for H+ uptake is between 5.8 and 6.2 which corresponds to the pH range for phosphroylation of the enzyme, but is considerably less than the pH maximum of the K+ dependent dephosphorylation. In the presence of an inward K+ gradient, protonophores such as tetrachlorsalicylanilide only partially abolish the H+ gradient but valinomycin dissipates 75% of the gradient, and nigericin abolishes the gradient. The vesicles therefore have a low K+ conductance but a measurable H+ conductance, hence a K+ gradient can produce an H+ gradient in the presence of valinomycin. The uptake and spontaneous leak of H+ are temperature sensitive with a similar transition temperature. Ultraviolet irradiation inactivates ATPase and proton transport at the same rate, approximately at twice the rate of p-nitrophenylphosphatase inactivation. It is concluded that H+ uptake by these vesicles is probably due to a dimeric (H+ + K+)-ATPase and is probably non-electrogenic.  相似文献   

19.
Flagellar plasma membrane vesicles were isolated from sea urchin sperm using osmotic lysis. A membrane impermeant fluorescence pH indicator, pyranine, was incorporated into the vesicles as they resealed after lysis and was used to measure the intravesicular pH (pHi). Addition of Na+ rapidly alkalinized the pHi of vesicles prepared with an internal acidic pH gradient. The pHi increase showed ionic selectivity in the order of Na+ greater than Li+ much greater than K+ approximately equal to Cs+ approximately equal to O. Complete removal of monovalent anions such as Cl- and HCO3- did not affect the exchange, thus ruling out the participation of an anion carrier in the process. The optimal operation of the exchanger, however, required the presence of a transmembrane potential, which could be generated by the diffusion potential of either K+, a naturally permeant ion, or Cs+ which was artificially made permeant by the ionophore valinomycin. Depolarization inhibited the exchange in both the forward and the reverse directions, which is consistent with the voltage-gated electroneutral exchange mechanism proposed previously for this exchanger (Lee, H. C. J. Biol. Chem. (1984) 259, 15315-15319). The voltage sensitivity of the Na+/H+ exchanger was found to be modulated by the presence of Mg2+. A model involving the screening of the internal surface potential was proposed to account for the Mg2+ effect. The vesicle preparation used in this study allows complete control of the internal contents and represents a major simplification of the system as compared with the intact sperm and the isolated flagella used previously.  相似文献   

20.
The membrane potential of Ehrlich ascites tumor cells and the effects of valinomycin and ouabain upon it have been determined. The membrane potential in control cells was 12.0 mV, inside negative. Neither valinomycin nor ouabain alone affected this value. However, valinomycin and ouabain in combination resulted in a slight hyperpolarization of the membrane. Concomitant determinations of cellular Na+, K+ and Cl- showed that valinomycin induced net losses of K+ and Cl- and a net gain in Na+ when compared to ouabain-inhibited cells. K+ permeability was increased by approximately 30% in the presence of valinomycin. In addition, valinomycin caused a rapid depletion of cellular ATP. Inhibition of Na/K transport by ouabain was without sparing effect on the rate of ATP depletion. Possible mechanisms for the electroneutral increase in K+ permeability induced by valinomycin are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号