首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The plant cell cycle   总被引:1,自引:0,他引:1  
The first aim of this paper is to review recent progress in identifying genes in plants homologous to cell division cycle (cdc) genes of fission yeast. In the latter, cdc genes are well-characterised. Arguably, most is known about cdc2 which encodes a 34 kDa protein kinase (p34cdc2) that functions at the G2-M and G1-S transition points of the cell cycle. At G2-M, the p34cdc2 protein kinase is regulated by a number of gene products that function in independent regulatory pathways. The cdc2 kinase is switched on by a phosphatase encoded by cdc25, and switched off by a protein kinase encoded by weel. p34 Must also bind with a cyclin protein to form maturation promoting factor before exhibiting protein kinase activity. In plants, homologues to p34cdc2 have been identified in pea, wheat, Arabidopsis, alfalfa, maize and Chlamydomonas. They all exhibit the PSTAIRE motif, an absolutely conserved amino acid sequence in all functional homologues sequenced so far. As in animals, some plant species contain more than one cdc2 protein kinase gene. but in contrast to animals where one functions at G2-M and the other (CDK2 in humans and Egl in Xenopus) at G1-S, it is still unclear whether there are functional differences between the plant p34cdc2 protein kinases. Again, whereas in animals cyclins are well characterised on the basis of sequence analysis, into class A, class B (G2-M) and CLN (G1 cyclins), cyclins isolated from several plant species cannot be so clearly characterised. The differences between plant and animal homologues to p34cdc2 and cyclins raises the possibility that some of the regulatory controls of the plant genes may be different from those of their animal counterparts. The second aim of the paper is to review how planes of cell division and cell size are regulated at the molecular level. We focus on reports showing that p34cdc2 binds to the preprophase band (ppb) in late G2 of the cell cycle. The binding of p34cdc2 to ppbs may be important in regulating changes in directional growth but, more importantly, there is a requirement to understand what controls the positioning of ppbs. Thus, we highlight work resolving proteins such as the microtubule associated proteins (MAPs) and those mitogen activated protein kinases (MAP kinases), which act on, or bind to, mitotic microtubules. Plant homologues to MAP kinases have been identified in alfalfa. Finally, some consideration is given to cell size at division and how alterations in cell size can alter plant development. Transgenic tobacco plants expressing the fission yeast gene, cdc25, exhibited various perturbations of development and a reduced cell size at division. Hence, cdc25 affected the cell cycle (and as a consequence, cell size at division) and cdc25 expression was correlated with various alterations to development including precocious flowering and altered floral morphogenesis. Our view is that the cell cycle is a growth cycle in which a cell achieves an optimal size for division and that this size control has an important bearing on differentiation and development. Understanding how cell size is controlled, and how plant cdc genes are regulated, will be essential keys to ‘the cell cycle locks’, which when ‘opened’, will provide further clues about how the cell cycle is linked to plant development.  相似文献   

4.
The plant cell cycle   总被引:4,自引:0,他引:4  
Molecular controls of the plant cell cycle must integrate environmental signals within developmental contexts. Recent advances highlight the fundamental conservation of underlying cell cycle mechanisms between animals and plants, overlaid by a rich molecular and regulatory diversity that is specific to plant systems. Here we review plant cell cycle regulators and their control.  相似文献   

5.
6.
In and out of the plant cell cycle   总被引:2,自引:0,他引:2  
  相似文献   

7.
Hormonal control of the plant cell cycle   总被引:7,自引:0,他引:7  
Plant organogenesis is essentially a post-embryonic process that requires a strict balance between cell proliferation and differentiation. This is subject to a complex regulatory network which, in some cases, depends on the action of a variety of plant hormones. Of these, auxins and cytokinins are those best documented as impinging directly on cell cycle control. However, increasing evidence is accumulating to indicate that other hormones also have an impact on cell cycle control by influencing the availability of cell cycle regulators. In this article, we review the results that point to the variety of situations in which cell cycle progression is controlled by phytohormones.  相似文献   

8.
9.
10.
The ins and outs of the plant cell cycle   总被引:6,自引:0,他引:6  
Plant growth and development are driven by the continuous generation of new cells. Whereas much has been learned at a molecular level about the mechanisms that orchestrate progression through the different cell-cycle phases, little is known about how the cell-cycle machinery operates in the context of an entire plant and contributes to growth, cell differentiation and the formation of new tissues and organs. Here, we discuss how intrinsic developmental signals and environmental cues affect cell-cycle entry and exit.  相似文献   

11.
The cell cycle in plant development   总被引:5,自引:1,他引:4  
  相似文献   

12.
The plant cell cycle in context   总被引:5,自引:0,他引:5  
Biological scientists are eagerly confronting the challenge of understanding the regulatory mechanisms that control the cell division cycle in eukaryotes. New information will have major implications for the treatment of growth-related diseases and cancer in animals. In plants, cell division has a key role in root and shoot growth as well as in the development of vegetative storage organs and reproductive tissues such as flowers and seeds. Many of the strategies for crop improvement, especially those aimed at increasing yield, involve the manipulation of cell division. This review describes, in some detail, the current status of our understanding of the regulation of cell division in eukaryotes and especially in plants. It also features an outline of some preliminary attempts to exploit transgenesis for manipulation of plant cell division.  相似文献   

13.
14.
Geminiviruses and RNA silencing   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
The retinoblastoma pathway in plant cell cycle and development   总被引:9,自引:0,他引:9  
The activity of cyclin-dependent kinases (CDKs) on specific targets mediates the temporal regulation of plant cell cycle transitions. The sequential activity of CDKs and the spatial regulation of cell proliferation during plant development, however, are still poorly understood. Understanding these aspects depends on the identification of the downstream targets and upstream modulators of CDKs and their regulation in response to mitogenic and/or differentiation signals. Current efforts to elucidate the answers to these questions are very promising; in particular, recent works reveal the essential role that the retinoblastoma pathway plays in controlling cell cycle progression and, presumably, some developmental events.  相似文献   

17.
18.
Shamina NV  Dorogova NV 《Tsitologiia》2004,46(11):960-966
Five major mictotubule arrays characteristic of cell cycle in the higher plants were noticed: cortical coils, preprophase band, radial array, division spindle, and phragmoplast. The organization of mocrotubules into ordered arrays; their dynamics and function during plant cell division are discussed in this review.  相似文献   

19.
The role and regulation of D-type cyclins in the plant cell cycle   总被引:9,自引:0,他引:9  
  相似文献   

20.
Glutathione is generally accepted as the principal electron donor for dehydroascorbate (DHA) reduction. Moreover, both glutathione and DHA affect cell cycle progression in plant cells. But other mechanisms for DHA reduction have been proposed. To investigate the connection between DHA and glutathione, we have evaluated cellular ascorbate and glutathione concentrations and their redox status after addition of dehydroascorbate to medium of tobacco (Nicotiana tabacum) L. cv Bright Yellow-2 (BY-2) cells. Addition of 1 mm DHA did not change the endogenous glutathione concentration. Total glutathione depletion of BY-2 cells was achieved after 24-h incubation with 1 mm of the glutathione biosynthesis inhibitor l-buthionine sulfoximine. Even in these cells devoid of glutathione, complete uptake and internal reduction of 1 mm DHA was observed within 6 h, although the initial reduction rate was slower. Addition of DHA to a synchronized BY-2 culture, or depleting its glutathione content, had a synergistic effect on cell cycle progression. Moreover, increased intracellular glutathione concentrations did not prevent exogenous DHA from inducing a cell cycle shift. It is therefore concluded that, together with a glutathione-driven DHA reduction, a glutathione-independent pathway for DHA reduction exists in vivo, and that both compounds act independently in growth control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号