首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic variation of the new pandemic H1N1 influenza A viruses isolated in 1977 was analyzed by two-dimensional oligonucleotide fingerprinting and RNA sequencing. Differences were observed in the fingerprints of the RNAs of these viruses, and analysis of the changes suggested that sequential mutations occurred in their genomes. Based on these data, a scheme is presented which proposes divergent evolution of strains from a common ancestry. Furthermore, it was found that mutations were not restricted to the genes coding for the hemagglutinin and the neuraminidase, but were scattered throughout the genome, suggesting that selective antibody pressure is not solely responsible for the emergence of genetic variants. Our data also strengthen the hypothesis that the new H1N1 influenza virus strains are derived from strains circulating in 1950.  相似文献   

2.
Antigenic and genetic variations have been analyzed in eight consecutive isolates recovered from a child with severe combined immunodeficiency syndrome persistently infected with naturally acquired type A (H1N1) influenza virus over a 10-month period. Hemagglutination inhibition reactions and T1 oligonucleotide fingerprinting demonstrated that these viruses were related to strains causing outbreaks in the United States at that time (1983 to 1984) but that antigenic and genetic differences between consecutive isolates could be detected. This variation between isolates was examined further by sequencing the RNAs encoding the HA1 region of the hemagglutinin (HA) and the nucleoprotein (NP) in five of the consecutive isolates. Multiple point mutations were detected in both genes, and a deletion of one amino acid was detected in the HA. Depending on the isolates compared, 5.8 x 10(-3) to 17 x 10(-3) substitutions per nucleotide site per year were detected in the RNAs encoding the HA1, and 3.5 x 10(-3) to 24 x 10(-3) substitutions per nucleotide site per year were detected in the NP gene. Fifty-four percent of the base changes in the HA1 and 73% in the NP led to amino acid substitutions. A progressive accumulation of mutations over time was not observed, suggesting that the genetic diversity of these viruses may best be interpreted as the result of shifts in the population equilibrium (quasi-species) of replicating variant genomes.  相似文献   

3.
选择一个于1998年开始发生H9亚型禽流感的封闭式大型养鸡场,连续5年内分离到22株H9N2亚型病毒,对其中9株与1998年分离株进行HA基因序列和病毒抗原性的比较结果表明,这些分离株均与1998年的具有较高的序列同源性,且在本研究期内HA基因的这些变化尚未产生引起交叉保护性改变。初步推断这些分离株均系1998年分离株在场内循环传播变化得来,其HA基因的变异可能与频繁的疫苗免疫选择压力有关。这为进一步研究禽流感病毒变异的规律和制定正确的禽流感防治对策具有重要意义。  相似文献   

4.
In aquatic birds, influenza A viruses mainly replicate in the intestinal tract without significantly affecting the health of the host, but in mammals, they replicate in the respiratory tract and often cause disease. Occasionally, influenza viruses have been detected in stool samples of hospitalized patients and in rectal swabs of naturally or experimentally infected mammals. In this study, we compared the biological and molecular differences among four wild-type avian H1N1 influenza viruses and their corresponding fecal and lung isolates in DBA/2J and BALB/cJ mice. All fecal and lung isolates were more pathogenic than the original wild-type viruses, when inoculated into mice of both strains. The increased virulence was associated with the acquisition of genetic mutations. Most of the novel genotypes emerged as PB2E627K, HAF128V, HAF454L, or HAH300P variations, and double mutations frequently occurred in the same isolate. However, influenza virus strain- and host-specific differences were also observed in terms of selected variants. The avian H1N1 virus of shorebird origin appeared to be unique in its ability to rapidly adapt to BALB/cJ mice via the fecal route, compared to the adaptability of the H1N1 virus of mallard origin. Furthermore, a bimodal distribution in fecal shedding was observed in mice infected with the fecal isolates, while a normal distribution was observed after infection with the lung isolates or wild-type virus. Fecal isolates contained HA mutations that increased the activation pH of the HA protein. We conclude that influenza virus variants that emerge in fecal isolates in mammals might influence viral transmission, adaptation to mammals, and viral ecology or evolution.  相似文献   

5.
Rates of fixation of mutations during the evolution of the foot-and-mouth disease virus (FMDV) C1 in nature have been estimated by hybridization of viral RNA to cloned cDNAs representing defined FMDV genome segments, and comparison of the selected RNAs by T1 RNase oligonucleotide fingerprinting. Values ranged from <0.04 × 10−2 to 4.5 × 10−2 substitutions per nucleotide per year (s/nt/yr), depending on the time period and the genomic segment considered. Rates for viral structural protein genes were up to sixfold higher than for nonstructural protein genes. Values in excess of 10−2 s/nt/yr have been measured for the RNA region that encodes VP1–VP3. The nucleotide sequences of the major immunogenic region of capsid protein VP1 have been determined for six new FMDV C1 isolates, and they are compared with the two previously known sequences of FMDV C1 (C-S8 and C1-O). Both oligonucleotide fingerprinting of selected RNA fragments and direct nucleotide sequencing demonstrate that genetic heterogeneity exists among three viruses isolated on the same day, introducing a significant indetermination in the evaluation of fixation rates of mutations. During the FMDV C1 outbreak, amino acid substitutions did occur that are known to affect the immunological properties of the virus. The proportion of mutations between two viral RNAs does not increase significantly with the time elapsed between the two isolations, suggesting a cocirculation of multiple, related, nonidentical FMDVs (‘evolving quasispecies’) as the mode of evolution of this agent.  相似文献   

6.
Phylogenetic profiles of the genes coding for the hemagglutinin (HA) protein, nucleoprotein (NP), matrix (M) protein, and nonstructural (NS) proteins of influenza B viruses isolated from 1940 to 1998 were analyzed in a parallel manner in order to understand the evolutionary mechanisms of these viruses. Unlike human influenza A (H3N2) viruses, the evolutionary pathways of all four genes of recent influenza B viruses revealed similar patterns of genetic divergence into two major lineages. Although evolutionary rates of the HA, NP, M, and NS genes of influenza B viruses were estimated to be generally lower than those of human influenza A viruses, genes of influenza B viruses demonstrated complex phylogenetic patterns, indicating alternative mechanisms for generation of virus variability. Topologies of the evolutionary trees of each gene were determined to be quite distinct from one another, showing that these genes were evolving in an independent manner. Furthermore, variable topologies were apparently the result of frequent genetic exchange among cocirculating epidemic viruses. Evolutionary analysis done in the present study provided further evidence for cocirculation of multiple lineages as well as sequestering and reemergence of phylogenetic lineages of the internal genes. In addition, comparison of deduced amino acid sequences revealed a novel amino acid deletion in the HA1 domain of the HA protein of recent isolates from 1998 belonging to the B/Yamagata/16/88-like lineage. It thus became apparent that, despite lower evolutionary rates, influenza B viruses were able to generate genetic diversity among circulating viruses through a combination of evolutionary mechanisms involving cocirculating lineages and genetic reassortment by which new variants with distinct gene constellations emerged.  相似文献   

7.
At the final step in viral replication, the viral genome must be incorporated into progeny virions, yet the genomic regions required for this process are largely unknown in RNA viruses, including influenza virus. Recently, it was reported that both ends of the neuraminidase (NA) coding region are critically important for incorporation of this vRNA segment into influenza virions (Y. Fujii, H. Goto, T. Watanabe, T. Yoshida, and Y. Kawaoka, Proc. Natl. Acad. Sci. USA 100:2002-2007, 2003). To determine the signals in the hemagglutinin (HA) vRNA required for its virion incorporation, we made a series of deletion constructs of this segment. Subsequent analysis showed that 9 nucleotides at the 3' end of the coding region and 80 nucleotides at the 5' end are sufficient for efficient virion incorporation of the HA vRNA. The utility of this information for stable expression of foreign genes in influenza viruses was assessed by generating a virus whose HA and NA vRNA coding regions were replaced with those of vesicular stomatitis virus glycoprotein (VSVG) and green fluorescent protein (GFP), respectively, while retaining virion incorporation signals for these segments. Despite the lack of HA and NA proteins, the resultant virus, which possessed only VSVG on the virion surface, was viable and produced GFP-expressing plaques in cells even after repeated passages, demonstrating that two foreign genes can be incorporated and maintained stably in influenza A virus. These findings could serve as a model for the construction of influenza A viruses designed to express and/or deliver foreign genes.  相似文献   

8.
The evolution and population dynamics of human influenza in Taiwan is a microcosm of the viruses circulating worldwide, which has not yet been studied in detail. We collected 343 representative full genome sequences of human influenza A viruses isolated in Taiwan between 1979 and 2009. Phylogenetic and antigenic data analysis revealed that H1N1 and H3N2 viruses consistently co-circulated in Taiwan, although they were characterized by different temporal dynamics and degrees of genetic diversity. Moreover, influenza A viruses of both subtypes underwent internal gene reassortment involving all eight segments of the viral genome, some of which also occurred during non-epidemic periods. The patterns of gene reassortment were different in the two subtypes. The internal genes of H1N1 viruses moved as a unit, separately from the co-evolving HA and NA genes. On the other hand, the HA and NA genes of H3N2 viruses tended to segregate consistently with different sets of internal gene segments. In particular, as reassortment occurred, H3HA always segregated as a group with the PB1, PA and M genes, while N2NA consistently segregated with PB2 and NP. Finally, the analysis showed that new phylogenetic lineages and antigenic variants emerging in summer were likely to be the progenitors of the epidemic strains in the following season. The synchronized seasonal patterns and high genetic diversity of influenza A viruses observed in Taiwan make possible to capture the evolutionary dynamic and epidemiological rules governing antigenic drift and reassortment and may serve as a “warning” system that recapitulates the global epidemic.  相似文献   

9.
10.
To understand more fully the molecular events associated with highly virulent or attenuated influenza virus infections, we have studied the effects of expression of the 1918 hemagglutinin (HA) and neuraminidase (NA) genes during viral infection in mice under biosafety level 3 (agricultural) conditions. Using histopathology and cDNA microarrays, we examined the consequences of expression of the HA and NA genes of the 1918 pandemic virus in a recombinant influenza A/WSN/33 virus compared to parental A/WSN/33 virus and to an attenuated virus expressing the HA and NA genes from A/New Caledonia/20/99. The 1918 HA/NA:WSN and WSN recombinant viruses were highly lethal for mice and displayed severe lung pathology in comparison to the nonlethal New Caledonia HA/NA:WSN recombinant virus. Expression microarray analysis performed on lung tissues isolated from the infected animals showed activation of many genes involved in the inflammatory response, including cytokine, apoptosis, and lymphocyte genes that were common to all three infection groups. However, consistent with the histopathology studies, the WSN and 1918 HA/NA:WSN recombinant viruses showed increased up-regulation of genes associated with activated T cells and macrophages, as well as genes involved in apoptosis, tissue injury, and oxidative damage that were not observed in the New Caledonia HA/NA:WSN recombinant virus-infected mice. These studies document clear differences in gene expression profiles that were correlated with pulmonary disease pathology induced by virulent and attenuated influenza virus infections.  相似文献   

11.
E Domingo  M Dávila  J Ortín 《Gene》1980,11(3-4):333-346
The genomic RNA from isolates of foot-and-mouth-disease virus (FMDV) of serological types O or C obtained during epizootic outbreaks have been analysed by two-dimensional gel electrophoresis of the T1 RNase-generated oligonucleotides (T1 fingerprinting). Among virus isolates that are closely related serologically, 4-12 oligonucleotide changes were detected constitute the genome, the variations affect 0.7%-2.2% positions in FMDV RNA. Higher nucleotide-sequence divergence exists between the genomic RNAs from serologically unrelated viruses, while a 100-fold lower RNA sequence heterogeneity has been detected by analysis of individual clones derived from one viral isolate. Oligonucleotide mapping indicates that the variant oligonucleotides are scattered throughout the FMDV genome. We suggest that extensive genetic variability at many RNA sites is the basis for the antigenic diversity of FMDV.  相似文献   

12.
We studied the genetic and epidemic characteristics of influenza A (H3N2) viruses circulated in human in Fujian Province, south of China from 1996 to 2004. Phylogenetic analysis was carried out for genes encoding hemagglutinin1 (HA1) of influenza A virus (14 new and 11 previously reported reference se-quences). Our studies revealed that in the 8 flu seasons, the mutations of HA1 genes occurred from time to time, which were responsible for about four times of antigenic drift of influenza H3N2 viruses in Fujian, China. The data demonstrated that amino acid changes were limited to some key codons at or near antibody binding sites A through E on the HA1 molecule. The changes at the antibody binding site B or A or sialic acid receptor binding site 226 were critical for antigenic drift. But the antigenic sites might change and the key codons for antigenic drift might change as influenza viruses evolve. It seems important to monitor new H3 isolates for mutations in the positively selected codons of HA1 gene in south of Asia.  相似文献   

13.
为了解H9N2亚型禽流行性感冒(流感)病毒在同亚型灭活疫苗的选择压力下的遗传变异情况,对某鸡场的感染鸡群进行连续4年的跟踪监测,对使用疫苗前和持续使用疫苗后不同时段分离到的H9N2亚型禽流感病毒的HA基因进行全序列分析.结果表明,在使用第一次分离的病毒株制备的疫苗后8个月分离到的病毒株,其HA基因仅发生一个氨基酸的差异;但在继续使用该疫苗的第二个和第三个年头分离的病毒株,它们的HA基因则一直在发生较大的变化.这一发现对进一步研究禽流感病毒在不断使用疫苗的选择压力下发生变异的规律,指导制定正确的禽流感防制对策具有重要意义.  相似文献   

14.
Populations of RNA viruses are often characterized by abundant genetic variation. However, the relative fitness of these mutations is largely unknown, although this information is central to our understanding of viral emergence, immune evasion, and drug resistance. Here we develop a phylogenetic method, based on the distribution of nonsynonymous and synonymous changes, to assess the relative fitness of polymorphisms in the structural genes of 143 RNA viruses. This reveals that a substantial proportion of the amino acid variation observed in natural populations of RNA viruses comprises transient deleterious mutations that are later purged by purifying selection, potentially limiting virus adaptability. We also demonstrate, for the first time, the existence of a relationship between amino acid variability and the phylogenetic distribution of polymorphisms. From this relationship, we propose an empirical threshold for the maximum viable deleterious mutation load in RNA viruses.  相似文献   

15.
The impact of avian influenza caused by H9N2 viruses in Pakistan is now significantly more severe than in previous years. Since all gene segments contribute towards the virulence of avian influenza virus, it was imperative to investigate the molecular features and genetic relationships of H9N2 viruses prevalent in this region. Analysis of the gene sequences of all eight RNA segments from 12 viruses isolated between 2005 and 2008 was undertaken. The hemagglutinin (HA) sequences of all isolates were closely related to H9N2 viruses isolated from Iran between 2004 and 2007 and contained leucine instead of glutamine at position 226 in the receptor binding pocket, a recognised marker for the recognition of sialic acids linked α2–6 to galactose. The neuraminidase (NA) of two isolates contained a unique five residue deletion in the stalk (from residues 80 to 84), a possible indication of greater adaptation of these viruses to the chicken host. The HA, NA, nucleoprotein (NP), and matrix (M) genes showed close identity with H9N2 viruses isolated during 1999 in Pakistan and clustered in the A/Quail/Hong Kong/G1/97 virus lineage. In contrast, the polymerase genes clustered with H9N2 viruses from India, Iran and Dubai. The NS gene segment showed greater genetic diversity and shared a high level of similarity with NS genes from either H5 or H7 subtypes rather than with established H9N2 Eurasian lineages. These results indicate that during recent years the H9N2 viruses have undergone extensive genetic reassortment which has led to the generation of H9N2 viruses of novel genotypes in the Indian sub-continent. The novel genotypes of H9N2 viruses may play a role in the increased problems observed by H9N2 to poultry and reinforce the continued need to monitor H9N2 infections for their zoonotic potential.  相似文献   

16.
Virus growth during influenza vaccine manufacture can lead to mutations that alter antigenic properties of the virus, and thus may affect protective potency of the vaccine. Different reassortants of pandemic "swine" H1N1 influenza A vaccine (121XP, X-179A and X-181) viruses as well as wild type A/California/07/2009(H1N1) and A/PR/8/34 strains were propagated in embryonated eggs and used for DNA/RNA Illumina HiSeq and MiSeq sequencing. The RNA sequences of these viruses published in NCBI were used as references for alignment of the sequencing reads generated in this study. Consensus sequences of these viruses differed from the NCBI-deposited sequences at several nucleotides. 121XP stock derived by reverse genetics was more heterogeneous than X-179A and X-181 stocks prepared by conventional reassortant technology. Passaged 121XP virus contained four non-synonymous mutations in the HA gene. One of these mutations (Lys226Glu) was located in the Ca antigenic site of HA (present in 18% of the population). Two non-synonymous mutations were present in HA of viruses derived from X-179A: Pro314Gln (18%) and Asn146Asp (78%). The latter mutation located in the Sa antigenic site was also detected at a low level (11%) in the wild-type A/California/07/2009(H1N1) virus, and was present as a complete substitution in X-181 viruses derived from X-179A virus. In the passaged X-181 viruses, two mutations emerged in HA: a silent mutation A1398G (31%) in one batch and G756T (Glu252Asp, 47%) in another batch. The latter mutation was located in the conservative region of the antigenic site Ca. The protocol for RNA sequencing was found to be robust, reproducible, and suitable for monitoring genetic consistency of influenza vaccine seed stocks.  相似文献   

17.
Influenza A viruses encoding an altered viral NS1 protein have emerged as promising live attenuated vaccine platforms. A carboxy-terminal truncation in the NS1 protein compromises its interferon antagonism activity, making these viruses attenuated in the host yet still able to induce protection from challenge with wild-type viruses. However, specific viral protein expression by NS1-truncated viruses is known to be decreased in infected cells. In this report, we show that recombinant H5N1 and H1N1 influenza viruses encoding a truncated NS1 protein expressed lower levels of hemagglutinin (HA) protein in infected cells than did wild-type viruses. This reduction in HA protein expression correlated with a reduction in HA mRNA levels in infected cells. NS1 truncation affected the expression of HA protein but not that of the nucleoprotein (NP). This segment specificity was mapped to the terminal sequences of their specific viral RNAs. Since the HA protein is the major immunogenic component in influenza virus vaccines, we sought to restore its expression levels in NS1-truncated viruses in order to improve their vaccine efficacy. For this purpose, we generated an NS1-truncated recombinant influenza A/Puerto Rico/8/34 (rPR8) virus carrying the G3A C8U "superpromoter" mutations in the HA genomic RNA segment. This strategy retained the attenuation properties of the recombinant virus but enhanced the expression level of HA protein in infected cells. Finally, mice immunized with rPR8 viruses encoding a truncated NS1 protein and carrying the G3A C8U mutations in the HA segment demonstrated enhanced protection from wild-type virus challenge over that for mice vaccinated with an rPR8 virus encoding the truncated NS1 protein alone.  相似文献   

18.
We have succeeded in engineering changes into the genome of influenza B virus. First, model RNAs containing the chloramphenicol acetyltransferase gene flanked by the noncoding sequences of the HA or NS genes of influenza B virus were transfected into cells which were previously infected with an influenza B helper virus. Like those of the influenza A viruses, the termini of influenza B virus genes contain cis-acting signals which are sufficient to direct replication, expression, and packaging of the RNA. Next, a full-length copy of the HA gene from influenza B/Maryland/59 virus was cloned. Following transfection of this RNA, we rescued transfectant influenza B viruses which contain a point mutation introduced into the original cDNA. A series of mutants which bear deletions or changes in the 5' noncoding region of the influenza B/Maryland/59 virus HA gene were constructed. We were able to rescue viruses which contained deletions of 10 or 33 nucleotides at the 5' noncoding region of the HA gene. The viability of these viruses implies that this region of the genome is flexible in sequence and length.  相似文献   

19.
Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV) in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1) gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.  相似文献   

20.
Several mechanisms, including a high mutation rate and reassortment of genes, have been found to be responsible for the variability of influenza A viruses. RNA recombination would be another mechanism leading to genetic variation; however, recombination has only rarely been reported to occur in influenza viruses. During ribonucleoprotein transfection experiments designed to generate viable influenza viruses from in vitro-synthesized RNA, we discovered several viruses which must have originated from recombination events. The ribonucleoprotein transfection system may enhance the formation of viruses which result from jumping of the viral polymerase between RNAs or from ligation of different viral RNAs. Five different recombinant viruses are described. Two of these, REC1 and REC2, contain a neuraminidase (NA) gene whose defective polyadenylation signal has been repaired via intergenic recombination; 124 and 95 nucleotides have been added, respectively. Another virus, REC5, must have originated by multiple recombination events since it contains a mosaic gene with sequences derived from the NA gene of influenza A/WSN/33 virus and the matrix, polymerase protein PB1, and NA genes of influenza A/PR/8/34 virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号