首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
3.
The assembly of synapses and neuronal circuits relies on an array of molecular recognition events and their modification by neuronal activity. Neurexins are a highly polymorphic family of synaptic receptors diversified by extensive alternative splicing. Neurexin variants exhibit distinct isoform-specific biochemical interactions and synapse assembly functions, but the mechanisms governing splice isoform choice are not understood. We demonstrate that Nrxn1 alternative splicing is temporally and spatially controlled in the mouse brain. Neuronal activity triggers a shift in Nrxn1 splice isoform choice via calcium/calmodulin-dependent kinase IV signaling. Activity-dependent alternative splicing of Nrxn1 requires the KH-domain RNA-binding protein SAM68 that associates with RNA response elements in the Nrxn1 pre-mRNA. Our findings uncover SAM68 as a key regulator of dynamic control of Nrxn1 molecular diversity and activity-dependent alternative splicing in the central nervous system.  相似文献   

4.
5.
6.
7.
Insulin signaling pathways in the brain regulate food uptake and memory and learning. Insulin and protein kinase C (PKC) pathways are integrated and function closely together. PKC activation in the brain is essential for learning and neuronal repair. Intranasal delivery of insulin to the central nervous system (CNS) has been shown to improve memory, reduce cerebral atrophy, and reverse neurodegeneration. However, the neuronal molecular mechanisms of these effects have not been studied in depth. PKCδ plays a central role in cell survival. Its splice variants, PKCδI and PKCδII, are switches that determine cell survival and fate. PKCδI promotes apoptosis, whereas PKCδII promotes survival. Here, we demonstrate that insulin promotes alternative splicing of PKCδII isoform in HT22 cells. The expression of PKCδI splice variant remains unchanged. Insulin increases PKCδII alternative splicing via the PI3K pathway. We further demonstrate that Akt kinase mediates phosphorylation of the splicing factor SC35 to promote PKCδII alternative splicing. Using overexpression and knockdown assays, we demonstrate that insulin increases expression of Bcl2 and bcl-xL via PKCδII. We demonstrate increased cell proliferation and increased BrdU incorporation in insulin-treated cells as well as in HT22 cells overexpressing PKCδII. Finally, we demonstrate in vivo that intranasal insulin promotes cognitive function in mice with concomitant increases in PKCδII expression in the hippocampus. This is the first report of insulin, generally considered a growth or metabolic hormone, regulating the alternative isoform expression of a key signaling kinase in neuronal cells such that it results in increased neuronal survival.  相似文献   

8.
We have combined genetic and biochemical approaches to analyze the function of the RNA-binding protein Nova-1, the paraneoplastic opsoclonus-myoclonus ataxia (POMA) antigen. Nova-1 null mice die postnatally from a motor deficit associated with apoptotic death of spinal and brainstem neurons. Nova-1 null mice show specific splicing defects in two inhibitory receptor pre-mRNAs, glycine alpha2 exon 3A (GlyRalpha2 E3A) and GABA(A) exon gamma2L. Nova protein in brain extracts specifically bound to a previously identified GlyRalpha2 intronic (UCAUY)3 Nova target sequence, and Nova-1 acted directly on this element to increase E3A splicing in cotransfection assays. We conclude that Nova-1 binds RNA in a sequence-specific manner to regulate neuronal pre-mRNA alternative splicing; the defect in splicing in Nova-1 null mice provides a model for understanding the motor dysfunction in POMA.  相似文献   

9.
Neuronal regulation of alternative pre-mRNA splicing   总被引:1,自引:0,他引:1  
  相似文献   

10.
Identification of alternatively spliced dab1 isoforms in zebrafish   总被引:1,自引:0,他引:1  
We have investigated the genomic organization, the occurrence of alternative splicing and the differential expression of the zebrafish disabled1 (dab1) gene. Dab1 is a key effector of the Reelin pathway, which regulates neuronal migration during brain development in vertebrates. The coding region of the zebrafish dab1 gene spans over 600 kb of genomic DNA and is composed of 15 exons. Alternative splicing in a region enriched for tyrosine residues generates at least three different isoforms. These isoforms are developmentally regulated and show differential tissue expression. Comparison with mouse and human data shows an overall conservation of the genomic organization with different alternative splicing events generating species-specific isoforms. Because these alternative splicing events give rise to isoforms with different numbers of phosphorylateable tyrosines, we speculate that alternative splicing of the dab1 gene in zebrafish and in other vertebrates regulates the nature of the cellular response to the Reelin signal.Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users.  相似文献   

11.
Alternative pre-mRNA splicing, which produces various mRNA isoforms with distinct structures and functions from a single gene, is regulated by specific RNA-binding proteins and is an essential method for regulating gene expression in mammals. Recent studies have shown that abnormal change during neuronal development triggered by splicing mis-regulation is an important feature of various neurological diseases. Polypyrimidine tract binding protein 1 (PTBP1) is a kind of RNA-binding proteins with extensive biological functions. As a well-known splicing regulator, it affects the neuronal development process through its involvement in axon formation, synaptogenesis, and neuronal apoptosis, according to the most recent studies. Here, we summarized the mechanism of alternative splicing, structure and function of PTBP1, and the latest research progress on the role of alternative splicing events regulated by PTBP1 in axon formation, synaptogenesis and neuronal apoptosis, to reveal the mechanism of PTBP1-regulated changes in neuronal development process.  相似文献   

12.
The clathrin light chains are components of clathrin coated vesicles, structural constituents involved in endocytosis and membrane recycling. The clathrin light chain B (LCB) gene encodes two isoforms, termed LCB2 and LCB3, via an alternative RNA splicing mechanism. We have determined the structure of the rat clathrin light chain B gene. The gene consists of six exons that extend over 11.9 kb. The first four exons and the last exon are common to the LCB2 and LCB3 isoforms. The fifth exon, termed EN, is included in the mRNA in brain, giving rise to the brain specific form LCB2 but is excluded in other tissues, generating the LCB3 isoform. Primary rat neuronal cell cultures express predominantly the brain specific LCB2 isoform, whereas primary rat cultures of glia express only the LCB3 isoform, suggesting that expression of the brain-specific LCB2 form is limited to neurons. Further evidence for neuronal localization of the LCB2 form is provided using a teratocarcinoma cell line, P19, which can be induced by retinoic acid to express a neuronal phenotype, concomitant with the induction of the LCB2 form. In order to determine the sequences involved in alternative splice site selection, we constructed a minigene containing the alternative spliced exon EN and its flanking intron and exon sequences. This minigene reflects the splicing pattern of the endogenous gene upon transfection in HeLa cell and primary neuronal cell cultures, indicating that this region of the LCB gene contains all the necessary information for neuron-specific splicing.  相似文献   

13.
Xie J  Jan C  Stoilov P  Park J  Black DL 《RNA (New York, N.Y.)》2005,11(12):1825-1834
Neurons make extensive use of alternative pre-mRNA splicing to regulate gene expression and diversify physiological responses. We showed previously in a pituitary cell line that the Ca(++)/calmodulin-dependent protein kinase CaMK IV specifically repressed splicing of the BK channel STREX exon. This repression is dependent on a CaMK IV-responsive RNA element (CaRRE) within the STREX 3' splice site. Here, we report that similar Ca(++) regulation of splicing, mediated by L-type calcium channels and CaM kinase IV, occurs in cultured neurons and in the brain. We identify a critical CaRRE motif (CACATNRTTAT) that is essential for conferring CaMK IV repression on an otherwise constitutive exon. Additional Ca(++)-regulated exons that carry this consensus sequence are also identified in the human genome. Thus, the Ca(++)/CaMK IV pathway in neurons controls the alternative splicing of a group of exons through this short CaRRE consensus sequence. The functions of some of these exons imply that splicing control through the CaMK IV pathway will alter neuronal activity.  相似文献   

14.
15.
16.
Drebrin A, a major neuronal actin-binding protein, regulates the dendritic spine shapes of neurons. Here, we have cloned and characterized a novel mouse cDNA clone encoding a truncated form of drebrin A, named s-drebrin A. Analysis of the genomic organization of the mouse drebrin gene (Dbn1), which mapped to the central portion of chromosome 13, revealed that isoforms including s-drebrin A are generated by alternative splicing from a single drebrin gene. The s-drebrin A mRNA was expressed in the brain, but not in non-neuronal tissues. The s-drebrin A expression was barely detected in the embryonic brain, but was upregulated during postnatal development of the brain. Overexpression of GFP-tagged s-drebrin A in fibroblasts showed it to be associated with actin filaments and with changes in actin cytoskeleton organization. These findings suggest that s-drebrin A has a role in spine morphogenesis, possibly by competing the actin-binding activity with drebrin A.  相似文献   

17.
CaV1.2 calcium channels play roles in diverse cellular processes such as gene regulation, muscle contraction, and membrane excitation and are diversified in their activity through extensive alternative splicing of the CaV1.2 mRNA. The mutually exclusive exons 8a and 8 encode alternate forms of transmembrane segment 6 (IS6) in channel domain 1. The human genetic disorder Timothy syndrome is caused by mutations in either of these two CaV1.2 exons, resulting in disrupted Ca(2+) homeostasis and severe pleiotropic disease phenotypes. The tissue-specific pattern of exon 8/8a splicing leads to differences in symptoms between patients with exon 8 or 8a mutations. Elucidating the mechanisms controlling the exon 8/8a splicing choice will be important in understanding the spectrum of defects associated with the disease. We found that the polypyrimidine tract-binding protein (PTB) mediates a switch from exon 8 to 8a splicing. PTB and its neuronal homolog, nPTB, are widely studied splicing regulators controlling large sets of alternative exons. During neuronal development, PTB expression is down-regulated with a concurrent increase in nPTB expression. Exon 8a is largely repressed in embryonic mouse brain but is progressively induced during neuronal differentiation as PTB is depleted. This splicing repression is mediated by the direct binding of PTB to sequence elements upstream of exon 8a. The nPTB protein is a weaker repressor of exon 8a, resulting in a shift in exon choice when nPTB replaces PTB in cells. These results provide mechanistic understanding of how these two exons, important for human disease, are controlled.  相似文献   

18.
Structure and novel exons of the human tau gene.   总被引:11,自引:0,他引:11  
A Andreadis  W M Brown  K S Kosik 《Biochemistry》1992,31(43):10626-10633
  相似文献   

19.
20.
Six tau isoforms differing in their affinity for microtubules are produced by alternative splicing from the MAPT (microtubule-associated protein tau) gene in adult human brain. Several MAPT mutations causing the familial tauopathy, FTDP-17 (frontotemporal dementia with parkinsonism linked to chromosome 17), affect alternative splicing of exon 10, encoding a microtubule-binding motif. Advanced RNA analysis methods have suggested that levels of exon 10-containing MAPT mRNA are elevated in Alzheimer's disease. Furthermore, the MAPT H1 haplotype, associated with Alzheimer's disease, promotes exon 10 inclusion in MAPT mRNA. Thus an accurate regulation of tau alternative splicing is critical for the maintenance of neuronal viability, and its alteration might be a contributing factor to Alzheimer's disease. Tau alternative splicing could represent a target for therapeutic intervention to delay the progression of pathology in familial as well as sporadic tauopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号