首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nuclear RNP complex assembly initiates cytoplasmic RNA localization   总被引:1,自引:0,他引:1  
Cytoplasmic localization of mRNAs is a widespread mechanism for generating cell polarity and can provide the basis for patterning during embryonic development. A prominent example of this is localization of maternal mRNAs in Xenopus oocytes, a process requiring recognition of essential RNA sequences by protein components of the localization machinery. However, it is not yet clear how and when such protein factors associate with localized RNAs to carry out RNA transport. To trace the RNA-protein interactions that mediate RNA localization, we analyzed RNP complexes from the nucleus and cytoplasm. We find that an early step in the localization pathway is recognition of localized RNAs by specific RNA-binding proteins in the nucleus. After transport into the cytoplasm, the RNP complex is remodeled and additional transport factors are recruited. These results suggest that cytoplasmic RNA localization initiates in the nucleus and that binding of specific RNA-binding proteins in the nucleus may act to target RNAs to their appropriate destinations in the cytoplasm.  相似文献   

3.
Eliyahu E  Lesnik C  Arava Y 《FEBS letters》2012,586(1):64-69
Many nuclear-transcribed mRNAs encoding mitochondrial proteins are localized near the mitochondrial outer membrane. A yet unresolved question is whether protein synthesis is important for transport of these mRNAs to their destination. Herein we present a connection between mRNA localization in yeast and the protein chaperone Ssa1. Ssa1 depletion lowered mRNA association with mitochondria while its overexpression increased it. A genome-wide analysis revealed that Ssa proteins preferentially affect mRNAs encoding hydrophobic proteins, which are expected targets for these protein chaperones. Importantly, deletion of the mitochondrial receptor Tom70 abolished the impact of Ssa1 overexpression on mRNAs encoding Tom70 targets. Taken together, our results suggest a role for Ssa1 in mediating localization of nascent peptide-ribosome-mRNA complexes to the mitochondria, consistent with a co-translational transport process.  相似文献   

4.
5.
6.
Loeber J  Claussen M  Jahn O  Pieler T 《The FEBS journal》2010,277(22):4722-4731
Localization of a specific subset of maternal mRNAs to the vegetal cortex of Xenopus oocytes is important for the regulation of germ layer formation and germ cell development. It is driven by vegetal localization complexes that are formed with the corresponding signal sequences in the untranslated regions of the mRNAs and with a number of different so-called localization proteins. In the context of the present study, we incorporated tagged variants of the known localization protein Vg1RBP into vegetal localization complexes by means of oocyte microinjection. Immunoprecipitation of the corresponding RNPs allowed for the identification of novel Vg1RBP-associated proteins, such as the embryonic poly(A) binding protein, the Y-box RNA-packaging protein 2B and the oocyte-specific version of the elongation factor 1α (42Sp50). Incorporation of 42Sp50 into localization RNPs could be confirmed by co-immunoprecipitation of Vg1RBP and Staufen1 with myc-tagged 42Sp50. Furthermore, myc-42Sp50 was found to co-sediment with the same two proteins in large, RNAse-sensitive complexes, as well as to associate specifically with several vegetally localizing mRNAs but not with nonlocalized control RNAs. Finally, oocyte microinjection experiments reveal that 42Sp50 is a protein that shuttles between the nucleus and cytoplasm. Taken together, these observations provide evidence for a novel function of 42Sp50 in the context of vegetal mRNA transport in Xenopus oocytes.  相似文献   

7.
8.
9.
Interest in the mechanisms of subcellular localization of mRNAs and the effects of localized translation has increased over the last decade. Polarized eukaryotic cells transport mRNA-protein complexes to subcellular sites, where translation of the mRNAs can be regulated by physiological stimuli. The long distances separating distal neuronal processes from their cell body have made neurons a useful model system for dissecting mechanisms of mRNA trafficking. Both the dendritic and axonal processes of neurons have been shown to have protein synthetic capacity and the diversity of mRNAs discovered in these processes continues to increase. Localized translation of mRNAs requires a co-ordinated effort by the cell body to target both mRNAs and necessary translational machinery into distal sites, as well as temporal control of individual mRNA translation. In addition to altering protein composition locally at the site of translation, some of the proteins generated in injured nerves retrogradely signal to the cell body, providing both temporal and spatial information on events occurring at distant subcellular sites.  相似文献   

10.
11.
mRNAs play key roles in regulating diverse cellular functions. In many cases, mRNAs exhibit distinct intracellular localizations that are necessary for the spatiotemporal control of protein expression in cells. Therefore, imaging the localization and dynamics of these mRNAs is crucial for understanding diverse aspects of cellular function. In this review, we summarize how mRNA imaging can be achieved using tethered fluorescent proteins and fluorogenic aptamers. We discuss ‘fluorogenic proteins’ and describe how these recently developed RNA-regulated fluorescent proteins simplify mRNA imaging experiments.  相似文献   

12.
BACKGROUND: The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to distinct cortical domains of mRNAs that function as cytoplasmic determinants. A conserved machinery for mRNA localization and nuclear positioning involving cytoplasmic Dynein has been postulated; however, the precise role of plus- and minus end-directed microtubule-based transport in axis formation is not yet understood. RESULTS: Here, we show that mRNA localization and nuclear positioning at mid-oogenesis depend on two motor proteins, cytoplasmic Dynein and Kinesin I. Both of these microtubule motors cooperate in the polar transport of bicoid and gurken mRNAs to their respective cortical domains. In contrast, Kinesin I-mediated transport of oskar to the posterior pole appears to be independent of Dynein. Beside their roles in RNA transport, both motors are involved in nuclear positioning and in exocytosis of Gurken protein. Dynein-Dynactin complexes accumulate at two sites within the oocyte: around the nucleus in a microtubule-independent manner and at the posterior pole through Kinesin-mediated transport. CONCLUSION: The microtubule motors cytoplasmic Dynein and Kinesin I, by driving transport to opposing microtubule ends, function in concert to establish intracellular polarity within the Drosophila oocyte. Furthermore, Kinesin-dependent localization of Dynein suggests that both motors are components of the same complex and therefore might cooperate in recycling each other to the opposite microtubule pole.  相似文献   

13.
Intracellular trafficking of RNA in neurons   总被引:5,自引:0,他引:5  
  相似文献   

14.
15.
Geng C  Macdonald PM 《Fly》2007,1(5):259-267
Axial patterning in Drosophila relies on the deployment of patterning proteins at specific regions within the developing oocyte. This process involves transport of mRNAs from the nurse cells to the oocyte, localization of mRNAs within the oocyte, and translational regulation of these mRNAs to restrict the final distribution of the proteins. Despite extensive analysis, the events of deployment are not fully understood and it seems certain that many contributing factors remain to be identified. We describe the development and application of a sensitized genetic screen to reveal such additional factors. Overexpression of Imp, a factor implicated in regulation of gurken mRNA, causes a weak dorsalization that can be enhanced by reducing the level of other factors acting in the same pathway. A collection of deficiency mutants was screened using this assay, leading to the identification of 5 genes that are candidates to contribute to axial patterning. Three of the genes were characterized in greater detail. The mushroom body expressed gene was implicated in axial patterning, with overexpression leading to a range of patterning abnormalities that can be explained by a more primary defect in organization of the cytoskeleton. Two mitotic cell cycle control factors, cyclin E and E2f1, were also implicated, raising the possibility that a mitotic cell cycle checkpoint may impinge on grk expression, much as meiotic checkpoints can alter expression of this gene.  相似文献   

16.
The localization of mRNAs to discrete cytoplasmic sites is important for the function of many, and perhaps all, cells. Many mRNAs are thought to be localized in a directed fashion along microtubule tracts. This appears to be the case for several mRNAs that are synthesized in Drosophila nurse cells and then transported into, and localized within, the oocyte. In this report, we compare the transport/localization kinetics and dynamics of three such mRNAs, K10, bicoid, and oskar. We generated flies carrying heat shock—K10, -bicoid, or -oskar fusion genes, which allowed us to carry out the molecular genetics equivalent of a pulse chase experiment. Our analyses indicate that K10, bicoid, and oskar mRNA transport and localization are a continuous process involving multiple movements of the same mRNA molecules. The transport and early localization dynamics of the three mRNAs are indistinguishable from each other and, in order, include accumulation in the apical regions of nurse cells, transport to the posterior pole of the oocyte, and movement to the oocyte's anterior cortex at stage 8. We also show that the rate of transport is the same in each case, ∼︁1.1 μm/min. Only after stage 8 are RNA-specific movements seen The similarities in the transport/early localization kinetics and dynamics of K10, bicoid, and oskar mRNAs suggest that such events are mediated by a common set of factors. We also observe that all three mRNAs localize to the apical regions of somatic follicle cells when expressed in such cells, suggesting that the transport/early localization factors are widespread and involved in the localization of mRNAs in many tissues. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
《Fly》2013,7(5):259-267
Axial patterning in Drosophila relies on the deployment of patterning proteins at specific regions within the developing oocyte. This process involves transport of mRNAs from the nurse cells to the oocyte, localization of mRNAs within the oocyte, and translational regulation of these mRNAs to restrict the final distribution of the proteins. Despite extensive analysis, the events of deployment are not fully understood and it seems certain that many contributing factors remain to be identified. We describe the development and application of a sensitized genetic screen to reveal such additional factors. Overexpression of Imp, a factor implicated in regulation of gurken mRNA, causes a weak dorsalization that can be enhanced by reducing the level of other factors acting in the same pathway. A collection of deficiency mutants was screened using this assay, leading to the identification of 5 genes that are candidates to contribute to axial patterning. Three of the genes were characterized in greater detail. The mushroom body expressed gene was implicated in axial patterning, with overexpression leading to a range of patterning abnormalities that can be explained by a more primary defect in organization of the cytoskeleton. Two mitotic cell cycle control factors - cyclin E and E2f1 - were also implicated, raising the possibility that a mitotic cell cycle checkpoint may impinge on grk expression, much as meiotic checkpoints can alter expression of this gene.  相似文献   

19.
Intracellular mRNA localization is a common mechanism to achieve asymmetric distributions of proteins. Previous studies have revealed that in a number of cell types, different mRNA species are localized by the same transport machinery. However, it has been unclear if these individual mRNA species are specifically sorted into separate or common ribonucleoprotein (RNP) particles before or during transport. Using budding yeast as a model system, we analyzed the intracellular movement of individual pairs of localized mRNA in live cells. Yeast cells localize more than 20 different mRNAs to the bud with the help of the Myo4p/She3p/She2p protein complex. For live cell imaging, mRNA pairs were tagged with tandem repeats of either bacteriophage MS2 or lambda boxB RNA sequences and fluorescently labeled by fusion protein constructs that bind to the RNA tag sequences. Using three-dimensional, single-particle tracking with dual-color detection, we have tracked the transport of two different localized mRNA species in real time. Our observations show that different localized mRNAs are coassembled into common RNP particles and cotransported in a directional manner to the target site. Nonlocalized mRNAs or mutant mRNAs that lack functional localization signals form separate particles that are not transported to the bud. This study reveals a high degree of co-ordination of mRNA trafficking in budding yeast.  相似文献   

20.
Why cells move messages: the biological functions of mRNA localization   总被引:1,自引:0,他引:1  
RNA localization is a widespread mechanism that allows cells to spatially control protein function by determining their sites of synthesis. In embryos, localized mRNAs are involved in morphogen gradient formation or the asymmetric distribution of cell fate determinants. In somatic cell types, mRNA localization contributes to local assembly of protein complexes or facilitates protein targeting to organelles. Long-distance transport of specific mRNAs in plants allows coordination of developmental processes between different plant organs. In this review, we will discuss the biological significance of different patterns of mRNA localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号