首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. Moreover, HCT116 xenografts, which were cotreated with 5-FU and systemically delivered MSC.sTRAIL, went into remission. Noteworthy, this effect was protein 53 (p53) independent and was mediated by TRAIL-receptor 2 (TRAIL-R2) upregulation, demonstrating the applicability of this approach in p53-defective tumors. Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAILDR5, had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAILDR4 when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments.  相似文献   

2.
Treatment of high-risk neuroblastoma (NB) represents a major challenge in paediatric oncology. Alternative therapeutic strategies include antibodies targeting the disialoganglioside GD(2) , which is expressed at high levels on NB cells, and infusion of donor-derived natural killer (NK) cells. To combine specific antibody-mediated recognition of NB cells with the potent cytotoxic activity of NK cells, here we generated clonal derivatives of the clinically applicable human NK cell line NK-92 that stably express a GD(2) -specific chimeric antigen receptor (CAR) comprising an anti-GD(2) ch14.18 single chain Fv antibody fusion protein with CD3-ζ chain as a signalling moiety. CAR expression by gene-modified NK cells facilitated effective recognition and elimination of established GD(2) expressing NB cells, which were resistant to parental NK-92. In the case of intrinsically NK-sensitive NB cell lines, we observed markedly increased cell killing activity of retargeted NK-92 cells. Enhanced cell killing was strictly dependent on specific recognition of the target antigen and could be blocked by GD(2) -specific antibody or anti-idiotypic antibody occupying the CAR's cell recognition domain. Importantly, strongly enhanced cytotoxicity of the GD(2) -specific NK cells was also found against primary NB cells and GD(2) expressing tumour cells of other origins, demonstrating the potential clinical utility of the retargeted effector cells.  相似文献   

3.
Background aimsMultipotent mesenchymal stromal cells, also known as mesenchymal stem cells (MSC), can be isolated from adult and fetal tissues. Recently, there has been considerable interest in MSC because they have features favorable for transplantation, namely their multipotency and non-immunogenic properties.MethodsWe analyzed how human MSC derived from first-trimester fetal liver and adult bone marrow interact with naive and activated innate natural killer (NK) cells. NK cell function was studied by measuring killing of MSC, as well as degranulation (CD107a) induced by MSC. To assess the importance of NK cell killing, expression of surface epitopes was analyzed by flow cytometry on MSC before and after stimulation with interferon (IFN)γ.ResultsFetal and adult MSC express several ligands to activating NK cell receptors as well as low levels of HLA class I, with large inter-individual variation. Naive peripheral blood NK cells did not lyse fetal or adult MSC, whereas interleukin (IL)2 activated allogeneic as well as autologous NK cells did. Pre-incubation of MSC with IFN-γ increased their levels of HLA class I, protecting them from NK cell recognition. Fetal and adult MSC were preferably killed via the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) pathways, respectively. Blocking NKG2D reduced NK cell degranulation in both fetal and adult MSC.ConclusionsFetal and adult MSC differ in their interactions with NK cells. Both fetal and adult MSC are susceptible to lysis by activated NK cells, which may have implications for the use of MSC in cell therapy.  相似文献   

4.
Colorectal carcinoma (CRC) constitutes a common malignancy with limited therapeutic options in metastasized stages. Mesenchymal stem cells (MSC) home to tumours and may therefore serve as a novel therapeutic tool for intratumoral delivery of antineoplastic factors. Tumour necrosis factor (TNF)‐related apoptosis inducing ligand (TRAIL) which promises apoptosis induction preferentially in tumour cells represents such a factor. We generated TRAIL‐MSC by transduction of human MSC with a third generation lentiviral vector system and analysed their characteristics and capacity to inhibit CRC growth. (1) TRAIL‐MSC showed stable transgene expression with neither changes in the defining MSC characteristics nor signs of malignant transformation. (2) Upon direct in vitro coculture TRAIL‐MSC induced apoptosis in TRAIL‐sensitive CRC‐cell lines (DLD‐1 and HCT‐15) but also in CRC‐cell lines resistant to soluble TRAIL (HCT‐8 and SW480). (3) In mixed subcutaneous (s.c.) xenografts TRAIL‐MSC inhibited CRC‐tumour growth presumably by apoptosis induction but a substantial proportion of TRAIL‐MSC within the total tumour cell number was needed to yield such anti‐tumour effect. (4) Systemic application of TRAIL‐MSC had no effect on the growth of s.c. DLD‐1 xenografts which appeared to be due to a pulmonary entrapment and low rate of tumour integration of TRAIL‐MSC. Systemic TRAIL‐MSC caused no toxicity in this model. (5) Wild‐type MSC seemed to exert a tumour growth‐supporting effect in mixed s.c. DLD‐1 xenografts. These novel results support the idea that lentiviral TRAIL‐transgenic human MSC may serve as vehicles for clinical tumour therapy but also highlight the need for further investigations to improve tumour integration of transgenic MSC and to clarify a potential tumour‐supporting effect by MSC.  相似文献   

5.
While melanoma cell lines use aerobic glycolysis, addition of a competitive inhibitor such as 2-deoxyglucose (2DG) by itself achieved only modest killing. To overcome high levels of pro-survival proteins in melanoma cells, 2DG or glucose deprivation (GD) was combined with tumor necrosis factor-related apoptosis inducing-ligand (TRAIL). TRAIL treatment by itself also only induced modest killing, but combining TRAIL with 2DG or GD triggered a synergistic pro-apoptotic response in melanoma lines but not melanocytes. In melanoma cells, there was cleavage of caspases 3, 8 and Bid. Killing by combination treatments was completely blocked by a pan-caspase inhibitor, z-VAD. Mechanistically, 2DG and GD enhanced surface levels for both death receptors (DR4 and DR5); which was accompanied by reductions in levels of Mcl-1, Bcl-2 and survivin. Mannose pre-treatment reduced enhanced killing by combination treatments, accompanied by reduced DR5 levels. These results indicate melanoma cells in which there is altered glucose-related metabolomics can be exploited by interfering with glucose metabolism in combination with TRAIL; thereby overcoming the notorious death resistance of melanoma. Thus, a new therapeutic window is open for future clinical trials using agents targeting the glucose-related metabolome, in combination with agents triggering death receptors in patients with melanoma.  相似文献   

6.
《Cytotherapy》2023,25(1):33-45
Background aimsMesenchymal stromal cells (MSCs) are a multipotent cell population of clinical interest because of their ability to migrate to injury and tumor sites, where they may participate in tissue repair and modulation of immune response. Although the processes regulating MSC function are incompletely understood, it has been shown that stimulation of Toll-like receptors (TLRs) can alter MSC activity. More specifically, it has been reported that human bone marrow-derived MSCs can be “polarized” by TLR priming into contrasting immunomodulatory functions, with opposite (supportive or suppressive) roles in tumor progression and inflammation. Adipose-derived MSCs (ASCs) represent a promising alternative MSC subpopulation for therapeutic development because of their relative ease of isolation and higher abundance compared with their bone marrow-derived counterparts; however, the polarization of ASCs remains unreported.MethodsIn this study, we evaluated the phenotypic and functional consequences of short-term, low-level stimulation of ASCs with TLR3 and TLR4 agonists.ResultsIn these assays, we identified transient gene expression changes resembling the reported pro-inflammatory and anti-inflammatory MSC phenotypes. Furthermore, these priming strategies led to changes in the functional properties of ASCs, affecting their ability to migrate and modulate immune-mediated responses to prostate cancer cells in vitro.ConclusionsTLR3 stimulation significantly decreased ASC migration, and TLR4 stimulation increased ASC immune-mediated killing potential against prostate cancer cells.  相似文献   

7.
ObjectivesAcute lung injury (ALI) not only affects pulmonary function but also leads to intestinal dysfunction, which in turn contributes to ALI. Mesenchymal stem cell (MSC) transplantation can be a potential strategy in the treatment of ALI. However, the mechanisms of synergistic regulatory effects by MSCs on the lung and intestine in ALI need more in‐depth study.Materials and methodsWe evaluated the therapeutic effects of MSCs on the murine model of lipopolysaccharide (LPS)‐induced ALI through survival rate, histopathology and bronchoalveolar lavage fluid. Metagenomic sequencing was performed to assess the gut microbiota. The levels of pulmonary and intestinal inflammation and immune response were assessed by analysing cytokine expression and flow cytometry.ResultsMesenchymal stem cells significantly improved the survival rate of mice with ALI, alleviated histopathological lung damage, improved intestinal barrier integrity, and reduced the levels of inflammatory cytokines in the lung and gut. Furthermore, MSCs inhibited the inflammatory response by decreasing the infiltration of CD8+ T cells in both small‐intestinal lymphocytes and Peyer''s patches. The gut bacterial community diversity was significantly altered by MSC transplantation. Furthermore, depletion of intestinal bacterial communities with antibiotics resulted in more severe lung and gut damages and mortality, while MSCs significantly alleviated lung injury due to their immunosuppressive effect.ConclusionsThe present research indicates that MSCs attenuate lung and gut injury partly via regulation of the immune response in the lungs and intestines and gut microbiota, providing new insights into the mechanisms underlying the therapeutic effects of MSC treatment for LPS‐induced ALI.  相似文献   

8.
《Cytotherapy》2014,16(9):1197-1206
Background aimsThe aim of the study was to evaluate the effect of mesenchymal stromal cells (MSCs) on tumor cell growth in vitro and in vivo and to elucidate the apoptotic and anti-proliferative mechanisms of MSCs on a hepatocellular carcinoma (HCC) murine model.MethodsThe growth-inhibitory effect of MSCs on the Hepa 1–6 cell line was tested by means of methyl thiazolyl diphenyl-tetrazolium assay. Eighty female mice were randomized into four groups: group 1 consisted of 20 mice that received MSCs only by intrahepatic injection; group 2 consisted of 20 HCC mice induced by inoculation of Hepa 1–6 cells into livers without MSC treatment; group 3 consisted of 20 mice that received MSCs after induction of liver cancer; group 4 consisted of 20 mice that received MSCs after induction of liver cancer on top of induced biliary cirrhosis.ResultsMSCs exhibited a growth-inhibitory effect on Hepa 1–6 murine cell line in vitro. Concerning in vivo study, decreases of serum alanine transaminase, aspartate transaminase and albumin levels after MSC transplantation in groups 2 and 3 were found. Gene expression of α-fetoprotein was significantly downregulated after MSC injection in the HCC groups. We found that gene expression of caspase 3, P21 and P53 was significantly upregulated, whereas gene expression of Bcl-2 and survivin was downregulated in the HCC groups after MSC injection. Liver specimens of the HCC groups confirmed the presence of dysplasia. The histopathological picture was improved after administration of MSCs to groups 2 and 3.ConclusionsMSCs upregulated genes that help apoptosis and downregulated genes that reduce apoptosis. Therefore, MSCs could inhibit cell division of HCC and potentiate their death.  相似文献   

9.
《Cytotherapy》2014,16(11):1486-1500
Background aimsHuman mesenchymal stromal cells (MSCs) are being used in clinical trials, but the best protocol to prepare the cells for administration to patients remains unclear. We previously demonstrated that MSCs could be pre-activated to express therapeutic factors by culturing the cells in 3 dimensions (3D). We compared the activation of MSCs in 3D in fetal bovine serum containing medium and in multiple xeno-free media formulations.MethodsMSC aggregation and sphere formation was studied with the use of hanging drop cultures with medium containing fetal bovine serum or with various commercially available stem cell media with or without human serum albumin (HSA). Activation of MSCs was studied with the use of gene expression and protein secretion measurements and with functional studies with the use of macrophages and cancer cells.ResultsMSCs did not condense into tight spheroids and express a full complement of therapeutic genes in α-minimum essential medium or several commercial stem-cell media. However, we identified a chemically defined xeno-free media, which, when supplemented with HSA from blood or recombinant HSA, resulted in compact spheres with high cell viability, together with high expression of anti-inflammatory (prostaglandin E2, TSG-6 TNF-alpha induced gene/protein 6) and anti-cancer molecules (TRAIL TNF-related apoptosis-inducing ligand, interleukin-24). Furthermore, spheres cultured in this medium showed potent anti-inflammatory effects in a lipopolysaccharide-stimulated macrophage system and suppressed the growth of prostate cancer cells by promoting cell-cycle arrest and cell death.ConclusionsWe demonstrated that cell activation in 3D depends critically on the culture medium. The conditions developed in the present study for 3D culture of MSCs should be useful in further research on MSCs and their potential therapeutic applications.  相似文献   

10.
《Cytotherapy》2014,16(6):764-775
Background aimsStem cells may be a promising therapy for acute respiratory distress syndrome. Recent in vivo and in vitro studies suggested that the mesenchymal stromal cells (MSCs) have anti-oxidative stress properties. We hypothesized that intravenous injection of bone marrow–derived mesenchymal stem cells (MSCs) could attenuate Escherichia coli–induced acute lung injury (ALI) in mice by controlling the oxidative stress status.MethodsEighty mice were randomly divided into four groups: group 1 (control group) received 25 μL of saline as a vehicle; group 2 contained E coli–induced ALI mice; group 3 included mice that received MSCs before induction of ALI; group 4 included mice that received MSCs after induction of ALI. Lung samples were isolated and assayed for oxidative stress variables and histopathologic analysis. Total anti-oxidant capacity was measured in broncho-alveolar lavage.ResultsPre- and post-injury MSC injection increased survival, reduced pulmonary edema and attenuated lung injuries in ALI mice. Histologically, MSCs exhibited a considerable degree of preservation of the pulmonary alveolar architecture. An increase of anti-oxidant enzyme activities and a decrease of myeloperoxidase activity and malondialdehyde levels in the MSC recipient groups versus the ALI group were found. Furthermore, the total anti-oxidant capacity and reduced glutathione levels were significantly increased in MSCs recipient groups versus the ALI group. Weak +ve inducible nitric oxide synthase immuno-expression in groups that received MSCs was detected. Pre-injury MSC injection showed better effects than did post-injury MSC injection.ConclusionsSystemic bone marrow–derived MSC injection was effective in modulating the oxidative stress status in E coli–induced acute lung injury in mice.  相似文献   

11.
Background aimsMultipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown.MethodsMSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to “rescue” the proliferative capacity of MSCs.ResultshPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS.ConclusionshPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity.  相似文献   

12.
Background aimsCell-based therapies of pulmonary diseases with mesenchymal stromal cells (MSCs) are increasingly under experimental investigation. In most of these, MSCs are administered intravenously or by direct intratracheal instillation. A parallel approach is to administer the cells into the lung by endoscopic atomization (spraying). In a previous study, the authors developed a flexible endoscopic atomization device that allows administration of respiratory epithelial cells in the lungs with high survival.MethodsIn this study, the authors evaluated the feasibility of spraying MSCs with two different endoscopic atomization devices (air and pressure atomization). Following atomization, cell viability was evaluated with live/dead staining. Subsequent effects on cytotoxicity, trilineage differentiation and expression of MSC-specific markers as well as on MSC metabolic activity and morphology were analyzed for up to 7 days.ResultsMSC viability immediately after spraying and subsequent metabolic activity for 7 days was not influenced by either of the devices. Slightly higher cytotoxicity rates could be observed for pressure-atomized compared with control and air-atomized MSCs over 7 days. Flow cytometry revealed no changes in characteristic MSC cell surface marker expression, and morphology remained unchanged. Standard differentiation into osteocytes, chondrocytes and adipocytes was inducible after atomization.ConclusionsIn the literature, a minimal survival of 50% was previously defined as the cutoff value for successful cell atomization. This is easily met with both of the authors’ devices, with more than 90% survival. Thus, there is a potential role for atomization in intrapulmonary MSC-based cell therapies, as it is a feasible and easily utilizable approach based on clinically available equipment.  相似文献   

13.
BackgroundNo curative treatment is known for primary ovarian failure; however, mesenchymal stem cells (MSCs), through self-renewal and regeneration, push the trial to evaluate their role in the treatment of ovarian failure. The aim of this study was to explore the impact of MSCs on cyclophosphamide (CTX)-induced ovarian failure in rabbits and to clarify the mechanism(s) by which MSCs exert their action.MethodsThirty-five adult female rabbits were injected with CTX to induce ovarian failure. Five rabbits were euthanized after the last injection of CTX for histological examination. The others (30 rabbits) were further subdivided into two groups: group 1 (ovarian failure group, 15 rabbits) received no treatment; group 2 (ovarian failure and MSC recipient group, 15 rabbits) received MSCs isolated from extracted bone marrow of male rabbits.ResultsA decrease of follicle-stimulating hormone and an increase of estrogen and vascular endothelial growth factor (VEGF) levels in the MSC recipient group versus the ovarian failure group were found. Weak caspase-3 expression and +ve proliferating cell nuclear antigen staining after MSC injection were detected. Cytological and histological examinations showed increased follicle numbers with apparent normal structure of ovarian follicles in the MSC recipient group. Moreover, Y chromosome–containing cells from male donors were present within the ovarian tissues in group 2.ConclusionsThe current study suggests that intravenous injection of MSCs into rabbits with chemotherapy-induced ovarian damage improved ovarian function. MSCs accomplish this function by direct differentiation into specific cellular phenotypes and by secretion of VEGF, which influence the regeneration of the ovary.  相似文献   

14.
《Cytotherapy》2014,16(5):683-691
Background aimsMesenchymal stromal cell (MSC) transplantation holds great promise for use in medical therapies. Several key features of MSCs, including efficient cell growth, generation of sufficient cell numbers and safety, as determined by teratoma formation, make MSCs an ideal candidate for clinical use. However, MSCs derived under standard culture conditions, co-cultured with animal by-products, are inappropriate for therapy because of the risks of graft rejection and animal virus transmission to humans. Alternative serum sources have been sought for stem cell production.MethodsWe demonstrate for the first time that human serum from umbilical cord blood (hUCS) is an effective co-culture reagent for MSC production from Wharton's jelly MSCs (WJMSCs). Ten umbilical cords were used to generate parallel cultures of WJMSC lines under medium supplemented with hUCS and embryonic stem cell-qualified fetal bovine serum. The WJMSC lines from each medium were analyzed and compared with regard to cell line derivation, proliferation ability and characteristic stability.ResultsThe phenotypic characteristics of WJMSC derived under either medium showed no differences. WJMSC lines derived under hUCS medium displayed comparable primary culture cell outgrowth, lineage differentiation capacity and cell recovery after cryopreservation compared with supplementation with embryonic stem cell-qualified fetal bovine serum medium. However, superior cell proliferation rates and retention of in vitro propagation (>22 passages) were observed in WJMSC cultures supplemented with hUCS. Additionally, more robust population doubling times were observed in hUCS-supplemented cultures.ConclusionsWe conclude that hUCS is an efficient and effective serum source for animal product–free WJMSC line production and can generate MSC lines that may be appropriate for therapeutic use.  相似文献   

15.
BACKGROUNDMultipotent mesenchymal stromal cells (MSCs) are widely used in the clinic due to their unique properties, namely, their ability to differentiate in all mesenchymal directions and their immunomodulatory activity. Healthy donor MSCs were used to prevent the development of acute graft vs host disease (GVHD) after allogeneic bone marrow transplantation (allo-BMT). The administration of MSCs to patients was not always effective. The MSCs obtained from different donors have individual characteristics. The differences between MSC samples may affect their clinical efficacy.AIMTo study the differences between effective and ineffective MSCs.METHODSMSCs derived from the bone marrow of a hematopoietic stem cells donor were injected intravenously into allo-BMT recipients for GVHD prophylaxis at the moment of blood cell reconstitution. Aliquots of 52 MSC samples that were administered to patients were examined, and the same cells were cultured in the presence of peripheral blood mononuclear cells (PBMCs) from a third-party donor or treated with the pro-inflammatory cytokines IL-1β, IFN and TNF. Flow cytometry revealed the immunophenotype of the nontreated MSCs, the MSCs cocultured with PBMCs for 4 d and the MSCs exposed to cytokines. The proportions of CD25-, CD146-, CD69-, HLA-DR- and PD-1-positive CD4+ and CD8+ cells and the distribution of various effector and memory cell subpopulations in the PBMCs cocultured with the MSCs were also determined.RESULTSDifferences in the immunophenotypes of effective and ineffective MSCs were observed. In the effective samples, the mean fluorescence intensity (MFI) of HLA-ABC, HLA-DR, CD105, and CD146 was significantly higher. After MSCs were treated with IFN or cocultured with PBMCs, the HLA-ABC, HLA-DR, CD90 and CD54 MFI showed a stronger increase in the effective MSCs, which indicated an increase in the immunomodulatory activity of these cells. When PBMCs were cocultured with effective MSCs, the proportions of CD4+ and CD8+central memory cells significantly decreased, and the proportion of CD8+CD146+ lymphocytes increased more than in the subpopulations of lymphocytes cocultured with MSC samples that were ineffective in the prevention of GVHD; in addition, the proportion of CD8+effector memory lymphocytes decreased in the PBMCs cocultured with the effective MSC samples but increased in the PBMCs cocultured with the ineffective MSC samples. The proportion of CD4+CD146+ lymphocytes increased only when cocultured with the inefficient samples.CONCLUSIONFor the first time, differences were observed between MSC samples that were effective for GVHD prophylaxis and those that were ineffective. Thus, it was shown that the immunomodulatory activity of MSCs depends on the individual characteristics of the MSC population.  相似文献   

16.
《Cytotherapy》2014,16(3):331-345
Background aimsMesenchymal stromal cells (MSCs) exhibit the inherent potential to regulate multiple signaling pathways and cell types that contribute to the pathogenesis of inflammatory and immune diseases. However, more recent studies have suggested that the secretion of immunomodulatory factors by MSCs can be enhanced by three-dimensional aggregation or pro-inflammatory cytokine treatment.MethodsHuman MSC spheroids were formed by forced aggregation into agarose micro-wells and subsequently cultured in either minimal essential medium alpha supplemented with fetal bovine serum or serum-free, defined MesenCult-XF medium (STEMCELL Technologies, Vancouver, Canada). A subset of the spheroids were treated with pro-inflammatory cytokines interferon (IFN)-γ or tumor necrosis factor (TNF)-α or both for 4 days. Immunomodulatory factor (prostaglandin E2, indoleamine 2,3-dioxygenase, transforming growth factor-β1 and interleukin-6) secretion was quantified after 4 days of culture, and the immunomodulatory activity of MSCs was assessed by quantifying activated macrophage expression of TNF-α after trans-well co-culture.ResultsCulturing human MSCs as three-dimensional aggregates increased secretion of immunomodulatory paracrine factors, which was enhanced further by treatment with IFN-γ and TNF-α, demonstrating that these parameters can synergistically enhance endogenous human MSC immunomodulatory properties. However, immunomodulatory factor secretion was found to be highly dependent on the composition of cell culture medium. Human MSCs cultured in MesenCult-XF medium displayed significantly less expression of prostaglandin E2, indoleamine 2,3-dioxygenase, transforming growth factor-β1 and interleukin-6 compared with human MSCs cultured in medium supplemented with fetal bovine serum. Finally, pre-conditioning of human MSC spheroids with IFN-γ and TNF-α resulted in greater immunomodulatory activity in a macrophage co-culture assay.ConclusionsAltogether, engineering the environment of human MSCs to develop pre-conditioning strategies for enhancing human MSC immunomodulation may be a simple approach for improving MSC-based therapies for the treatment of inflammatory and immune diseases.  相似文献   

17.
18.
《Cytotherapy》2022,24(2):137-148
Background aimsMesenchymal stromal cells (MSCs) have shown great promise in the field of regenerative medicine, as many studies have shown that MSCs possess immunomodulatory function. Despite this promise, no MSC therapies have been licensed by the Food and Drug Administration. This lack of successful clinical translation is due in part to MSC heterogeneity and a lack of critical quality attributes. Although MSC indoleamine 2,3-dioxygnease (IDO) activity has been shown to correlate with MSC function, multiple predictive markers may be needed to better predict MSC function.MethodsThree MSC lines (two bone marrow-derived, one induced pluripotent stem cell-derived) were expanded to three passages. At the time of harvest for each passage, cell pellets were collected for nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography mass spectrometry (MS), and media were collected for cytokine profiling. Harvested cells were also cryopreserved for assessing function using T-cell proliferation and IDO activity assays. Linear regression was performed on functional data against NMR, MS and cytokines to reduce the number of important features, and partial least squares regression (PLSR) was used to obtain predictive markers of T-cell suppression based on variable importance in projection scores.ResultsSignificant functional heterogeneity (in terms of T-cell suppression and IDO activity) was observed between the three MSC lines, as were donor-dependent differences based on passage. Omics characterization revealed distinct differences between cell lines using principal component analysis. Cell lines separated along principal component one based on tissue source (bone marrow-derived versus induced pluripotent stem cell-derived) for NMR, MS and cytokine profiles. PLSR modeling of important features predicted MSC functional capacity with NMR (R2 = 0.86), MS (R2 = 0.83), cytokines (R2 = 0.70) and a combination of all features (R2 = 0.88).ConclusionsThe work described here provides a platform for identifying markers for predicting MSC functional capacity using PLSR modeling that could be used as release criteria and guide future manufacturing strategies for MSCs and other cell therapies.  相似文献   

19.
《Cytotherapy》2020,22(12):762-771
Background aimsMesenchymal stromal cells (MSCs) isolated from various tissues are under investigation as cellular therapeutics in a wide range of diseases. It is appreciated that the basic biological functions of MSCs vary depending on tissue source. However, in-depth comparative analyses between MSCs isolated from different tissue sources under Good Manufacturing Practice (GMP) conditions are lacking. Human clinical-grade low-purity islet (LPI) fractions are generated as a byproduct of islet isolation for transplantation. MSC isolates were derived from LPI fractions with the aim of performing a systematic, standardized comparative analysis of these cells with clinically relevant bone marrow-derived MSCs (BM MSCs).MethodsMSC isolates were derived from LPI fractions and expanded in platelet lysate-supplemented medium or in commercially available xenogeneic-free medium. Doubling rate, phenotype, differentiation potential, gene expression, protein production and immunomodulatory capacity of LPIs were compared with those of BM MSCs.ResultsMSCs can be readily derived in vitro from non-transplanted fractions resulting from islet cell processing (i.e., LPI MSCs). LPI MSCs grow stably in serum-free or platelet lysate-supplemented media and demonstrate in vitro self-renewal, as measured by colony-forming unit assay. LPI MSCs express patterns of chemokines and pro-regenerative factors similar to those of BM MSCs and, importantly, are equally able to attract immune cells in vitro and in vivo and suppress T-cell proliferation in vitro. Additionally, LPI MSCs can be expanded to therapeutically relevant doses at low passage under GMP conditions.ConclusionsLPI MSCs represent an alternative source of GMP MSCs with functions comparable to BM MSCs.  相似文献   

20.
Lian WS  Cheng WT  Cheng CC  Hsiao FS  Chen JJ  Cheng CF  Wu SC 《Life sciences》2011,88(9-10):455-464
AimIntra-myocardial injection of adult bone marrow-derived stem cells (MSC) has recently been proposed as a therapy to repair damaged cardiomyocytes after acute myocardial infarction (AMI). PGI2 has vasodilatation effects; however, the effects of combining both MSC and PGI2 therapy on AMI have never been evaluated.Main methodsWe genetically enhanced prostaglandin I synthase (PGIS) gene expression in mouse mesenchymal stem cells (MSC) using lentiviral vector transduction (MSCPGIS). Mice were subjected to an AMI model and injected (intra-myocardially) with either 5 × 104 MSCs or MSCPGIS before surgery. Fourteen days post AMI, mice were analyzed with echocardiography, immunohistochemistry, and apoptotic, and traditional tissue assays.Key findingsLenti-PGIS transduction did not change any characteristic of the MSCs. PGIS over-expressed MSCs secreted 6-keto-PGF1α in the culture medium and decreased free radical damage during hypoxia/re-oxygenation and H2O2 treatment. Furthermore, splenocyte proliferation was significantly suppressed with MSCPGIS as compared with MSCs alone. Fourteen days post AMI, echocardiography showed more improvement in cardiac function of the MSCPGIS group than the MSC alone group, sham-operated group, or artery ligation only group. The histology of MSCPGIS treated hearts revealed MSCs in the infarcted region and decreased myocardial fibrosis/apoptosis with limited cardiac remodeling. Furthermore, the level of the vascular endothelial growth factor was elevated in the MSCPGIS group as compared to the other three groups.SignificanceIn summary, our results provide both in vitro and in vivo evidence for the beneficial role of MSCPGIS in limiting the process of detrimental cardiac remodeling in a mouse AMI model during early stages of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号