首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The KinetiSol® Dispersing (KSD) technology has enabled the investigation into the use of polyvinyl alcohol (PVAL) as a concentration enhancing polymer for amorphous solid dispersions. Our previous study revealed that the 88% hydrolyzed grade of PVAL was optimal for itraconazole (ITZ) amorphous compositions with regard to solid-state properties, non-sink dissolution performance, and bioavailability enhancement. The current study investigates the influence of molecular weight for the 88% hydrolyzed grades of PVAL on the properties of KSD processed ITZ:PVAL amorphous dispersions. Specifically, molecular weights in the processable range of 4 to 18 mPa · s were evaluated and the 4-88 grade provided the highest AUC dissolution profile. Amorphous dispersions at 10, 20, 30, 40, and 50% ITZ drug loads in PVAL 4-88 were also compared by dissolution performance. Analytical tools of diffusion-ordered spectroscopy and Fourier transform infrared spectroscopy were employed to understand the interaction between drug and polymer. Finally, results from a 30-month stability test of a 30% drug loaded ITZ:PVAL 4-88 composition shows that stable amorphous dispersions can be achieved. Thus, this newly enabled polymer carrier can be considered a viable option for pharmaceutical formulation development for solubility enhancement.KEY WORDS: amorphous solid dispersion, itraconazole, polyvinyl alcohol, PVAL, solubility enhancement  相似文献   

2.
Molecular dynamics (MD) simulations were employed to study the influence of solvents on the structure and mechanical properties of physically crosslinked poly(vinyl alcohol) (PVA) gels. Firstly, three kinds of PVA precursor gels were made by adding water, dimethyl sulfoxide (DMSO) and a mixture of DMSO and water (4:1 by weight), respectively. The solvents in the precursor gels were then exchanged with water to obtain three kinds of PVA hydrogels. Solvent in the precursor gel with a mixture of DMSO and water was also exchanged with ethanol and DMSO, respectively. It was found that the tensile strength and failure strain of the PVA hydrogel prepared from precursor gel with a mixture of DMSO and water was the highest, and the polymer network was more homogeneous than the other two PVA hydrogels. The polymer network of PVA gel with ethanol or with DMSO was more heterogenous than with water, and the tensile strength and failure strain were much lower. The torsional activity of polymer chains of PVA gel with ethanol was much stronger than PVA gel with water and DMSO.  相似文献   

3.
Dimethyl sulfoxide (DMSO), a water-miscible organic solvent, has been used as a cryoprotectant for cells. It is known that DMSO stabilizes the HII phase of phosphatidylethanolamine (PE) membranes rather than the Lalpha phase, while most other water-miscible organic solvents such as acetone and ethanol destabilize the HII phase. To elucidate the mechanism for this stabilizing effect of DMSO on the HII phase, we have investigated its effects on the structures and physical properties of PE membranes. X-ray diffraction data indicated that dipalmitoleoylphosphatidylethanolamine (DPOPE) membranes in H2O at 20 degrees C were in the Lalpha phase and that an Lalpha to HII phase transition occurred at X=0.060 (mole fraction of DMSO) in water/DMSO mixtures. As the DMSO concentration increased, the basis vector length of the dioleoylphosphatidylethanolamine (DOPE)/ 16 wt% tetradecane membrane and also of the DPOPE/ 16 wt% tetradecane membrane in the HII phase decreased, suggesting that the spontaneous curvature of these membranes increased. We have also investigated the effects of DMSO on the physical properties of the PE membranes, and compared them with those of acetone. As the DMSO concentration increased, the excimer to monomer fluorescence intensities of pyrene-phosphatidylcholine in the PE membranes decreased, indicating that the membrane fluidity decreased, and also the generalized polarization value of the Laurdan fluorescent probe in the DPOPE membrane increased, indicating that the polarity of the membrane interface decreased. On the other hand, acetone had the opposite effects to DMSO. The interaction free energy between the membrane surface segments and solvent increased with an increase in DMSO concentration. It decreased the amount of solvent in the membrane interface, inducing an increase in the spontaneous curvature. This can reasonably explain the effects of DMSO on the phase stability and the physical properties of the membranes.  相似文献   

4.
Rhizopus arrhizus lipase immobilized on celite was used to prepare isomerically pure 2-monoglycerides by alcoholysis of triglycerides in organic media. Reaction parameters such as choice of solvent, choice of alcohol, and alcohol concentration were studied. When 12.5 mM tripalmitin was used as substrate, methyl-tert-butyl ether was the best solvent for alcoholysis at water activity 0.11. Ethanol gave the highest yield (97%) at an optimal ethanol concentration of 200–300 mM. At higher alcohol concentrations, the enzyme activity was substantially lowered. The enzyme preparation showed high stability in repeated-batch reactions.  相似文献   

5.
We attempted to apply the directed evolution approach to enhancing enzyme properties in the presence of organic solvents, in which enzyme stability and activity were often drastically reduced. Stability and catalytic activity of phospholipase A(1) in the presence of an organic solvent were enhanced by error-prone polymerase chain reaction (PCR) and DNA shuffling followed by a filter-based visual screening. Three mutants (SA8, SA17 and SA20) were isolated on indicator plates (i.e., 1% phosphatidylcholine gels containing 30% dimethyl sulfoxide (DMSO)) after a second mutant library was treated in 50% DMSO for 36 h. The half-life values of the three mutants exhibited an approximately 4-fold increase. The three mutants also exhibited increased stability in all organic solvents tested compared with the wild-type enzyme. Thus, an enzyme variant having superior catalytic efficiency in most of the organic solvents could be obtained by using any solvent suitable for designing the efficient screening system, regardless of the properties of the particular solvent.  相似文献   

6.
A method for the electrochemical detection of superoxide radical was developed, based on cytochrome c (cyt c) immobilized on the binary self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic amide (T-NH2) on gold electrode. The sensor works by electrochemically detecting cyt c reduced by the superoxide radical generated by a xanthine-XOD system. The electrochemical properties of immobilized cyt c were investigated in aqueous buffer and in a mixture of aqueous and organic solvents. The interaction of superoxide radical with the modified electrode was characterized in phosphate buffer solution (PBS) and in the mixtures of both PBS and dimethyl sulfoxide (DMSO) and PBS and glycerol (Gly). The results showed that the sensors responded immediately to superoxide radical in PBS and gave a steady-state anodic current within 10s during the generation of superoxide radical. In 40% DMSO and in 30% Gly solution, the current response reached a steady-state anodic current within 20s. The sensor could also be used to estimate superoxide dismutase (SOD).  相似文献   

7.
The immobilization process of glucose oxidase(GOx) in the poly(1,3-diaminobenzene) (poly(1,3-DAB)) network was closely investigated in situ using an electrochemical quartz crystal microbalance(EQCM). GOx captured in approximately 50 nm thick poly-1,3-DAB layer causes a 514 Hz frequency increase, corresponding to 541 ng, and distributes mostly in the outer part of the polymer film. The presence of poly-L-lysine and glutaraldehyde during electropolymerization of poly(1,3-DAB) improves sensitivity by raising the amount of GOx immobilized. Adding a protective membrane on to the enzyme layer from poly(tetrafluoroethylene) (PTFE) dispersed in aqueous media lets the entire fabrication procedure finish perfectly without nonaqueous solvent. The finalized needle-type glucose sensors show competent functions in sensitivity, stability, biocompatibility, lifetime, interference and reproducibility.  相似文献   

8.
An attempt has been made to identify the large number of components separated in sodium dodecyl sulfate polyacrylamide gels of a mitochondrial inner membrane preparation with the enzymic activities they represent. Individual enzymes and enzyme complexes (electron transfer and the ATP synthesizing and hydrolyzing complexes) were purified and coelectrophoresed with the inner membrane preparation on 10% polyacrylamide gels. Different bands in the densitometric profile of the inner membrane preparation were thus identified with one or more components of one or more of the electron transfer or ATP-synthesizing and -hydrolyzing complexes. Only one major component (band 14), of molecular weight 29,000, was not represented in any of these complexes. It is a hydrophobic protein of as yet unknown function.  相似文献   

9.
Glucose oxidase (GOD) was immobilized on screen-printed platinum electrodes by entrapment in a screen printable paste polymerized by irradiation with UV-light. The influences of different additives, in particular polymers and graphite, on the sensitivity and stability of the sensor and the permeability of the enzyme layer for a possible electrochemical interferent were investigated. The chosen additives were Gafquat 755N, poly-L-lysine, bovine serum albumin (BSA), sodium dodecylsulfate (SDS), polyethylene glycol (PEG), Nafion and graphite. All additives led to increases of glucose signals, i.e. improved the sensitivity of glucose detection with Gafquat 755N, poly-L-lysine, SDS and graphite showing the strongest influences with increases by a factor 4, 6.5, 5 and 10, respectively. Ascorbic acid was used as a model interferent showing the influence of the enzyme layer composition on the selectivity of the sensor. The addition of Gafquat 755N or poly-L-lysine led to higher signals not only for glucose, but also for ascorbic acid. SDS addition already reduced the influence of ascorbic acid, which was almost completely eliminated when Nafion (5%) and PEG (10%) were added. A comparable beneficial effect on the selectivity of the sensors was also observed for the addition of 0.5% graphite. Thus, the enzyme electrodes with PEG, Nafion or graphite as additives in the enzyme layer were applied to glucose determinations in food samples and samples obtained from E. coli cultivations.  相似文献   

10.
The detection and quantification of ethanol with high sensitivity, selectivity and accuracy is required in many different areas. A variety of methods and strategies have been reported for the determination of this analyte including gas chromatography, liquid chromatography, refractometry and spectrophotometry, among other. The use of the enzyme alcohol oxidase (AOX) on the analysis of ethanol in complex samples allows a considerable enhancement in specificity. This paper reviews the state of the art on ethanol determination based on AOX sensors, using either electrochemical electrodes or immobilised enzyme reactors. Almost all AOX-based ethanol sensors developed so far are based on the monitoring of O2 consumption or H2O2 formation. This has been mostly achieved using amperometric electrodes set at appropriate potentials namely, -600 mV for O2 monitoring or +600 mV for H2O2 monitoring. Mediated and non-mediated bienzymatic systems have also been assembled using AOX coupled to horseradish peroxidase (HRP). Different types of electrodes have been proposed for the detection of ethanol, namely, membrane electrode, carbon paste electrodes, screen-printed electrodes and self-assembled monolayers. Another approach to work with this sensitive enzyme is to use high amounts of AOX in order to create an enzyme reservoir, a strategy which can be implemented using immobilised enzyme reactors. These reactors can be combined with a colorimetric detection in a flow-injection analysis system or with electrochemical transducers.  相似文献   

11.
The effect of various organic solvents on the catalytic activity, stability and substrate specificity of alchohol dehydrogenase from Haloferax volcanii (HvADH2) was evaluated. The HvADH2 showed remarkable stability and catalysed the reaction in aqueous?Corganic medium containing dimethyl sulfoxide (DMSO) and methanol (MeOH). Tetrahydrofuran and acetonitrile were also investigated and adversely affected the stability of the enzyme. High concentration of salt, essential to maintain the enzymatic activity and structural integrity of the halophilic enzyme under standard conditions may be partially replaced by DMSO and MeOH. The presence of organic solvents did not induce gross changes in substrate specificity. DMSO offered a protective effect for the stability of the enzyme at nonoptimal pHs such as 6 and 10. Salt and solvent effects on the HvADH2 conformation and folding were examined through fluorescence spectroscopy. The fluorescence findings were consistent with the activity and stability results and corroborated the denaturing properties of some solvents. The intrinsic tolerance of this enzyme to organic solvent makes it highly attractive to industry.  相似文献   

12.
The cathodic reduction of oxygen to hydrogen peroxide, the current efficiency for the production of H2O2 and the oxidation of veratryl alcohol with an in situ generated hydrogen peroxide‐lignin peroxidase complex were studied in this paper. The complex was prepared by utilizing a novel preparation technique in an electrochemical reactor. The oxidation of veratryl alcohol (VA; 3,4‐dimethoxybenzyl alcohol) was carried out with or without lignin peroxidase under an electric field. The redox properties of veratryl alcohol on a carbon electrode in the presence of lignin peroxidase have been investigated using cyclic voltammetry. The kinetics of veratryl alcohol oxidation in an electrochemical reactor were compared to the oxidation when hydrogen peroxide was supplied externally. Further, the oxidation of veratryl alcohol by lignin peroxidase was optimized in terms of enzyme dosage, pH, and electrical potential. The novel electroenzymatic method was found to be effective using in situ generated hydrogen peroxide for the oxidation of veratryl alcohol by lignin peroxidase.  相似文献   

13.
We performed molecular dynamics simulations on dipalmitoylphosphatidylcholine (DPPC)/dimethylsulfoxide (DMSO) system that has the same lipid:solvent weight ratio as in our previous simulation done on DPPC/water. We did not observe a large change in the size of DPPC membrane when the solvent was changed from water to DMSO. Also, we did not observe that a large number of DMSO molecules is permeating into the membrane, as it was suggested to explain the observed change in the bilayer repeat period. We found that the surface potential reverses its sign when water is replaced by DMSO. Based on the results from our simulations, we propose that the repulsion force acting between membranes is reduced when DMSO is added to solvent water and therefore membrane surfaces approach closer to each other and the extra solvent is removed into excess solution.  相似文献   

14.
Conventional amperometric alcohol electrodes were constructed with oxygen- and hydrogen peroxide-base sensors and a much improved electrode was designed by placing a hydrophobic, gas-permeable membrane over the conventional hydrogen peroxide-based alcohol electrode. The immobilization of alcohol oxidase with glutaraldehyde was also studied and optimized. The upper linear ranges of the conventional and newly designed alcohol electrodes were 0.02 and 0.5% ethanol, respectively. The hydrophobic membrane of the new design eliminated the classical electrochemical interferences of hydrogen peroxide-based electrodes and the typical pH dependence of enzymatic systems.  相似文献   

15.
Polyvinyl alcohol (PVAL) has not been investigated in a binary formulation as a concentration-enhancing polymer owing to its high melting point/high viscosity and poor organic solubility. Due to the unique attributes of the KinetiSol® dispersing (KSD) technology, PVAL has been enabled for this application and it is the aim of this paper to investigate various grades for improvement of the solubility and bioavailability of poorly water soluble active pharmaceutical ingredients. Solid amorphous dispersions were created with the model drug, itraconazole (ITZ), at a selected drug loading of 20%. Polymer grades were chosen with variation in molecular weight and degree of hydroxylation to determine the effects on performance. Differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, size exclusion chromatography, and dissolution testing were used to characterize the amorphous dispersions. An in vivo pharmacokinetic study in rats was also conducted to compare the selected formulation to current market formulations of ITZ. The 4-88 grade of PVAL was determined to be effective at enhancing solubility and bioavailability of itraconazole.  相似文献   

16.
The conventional electrolyte of 1 m lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in dimethyl sulfoxide (DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li–O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li–O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI?)a ? Li+? (DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt–solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon‐based air electrodes has been greatly enhanced, resulting in improved cycling performance of Li–O2 batteries. The fundamental stability of the electrolyte in the absence of free‐solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.  相似文献   

17.
Effects of some organic compounds of different hydrophobicity on the structure and ion specificity of the sodium-potassium adenosine triphosphatase (Na,K-ATPase) membrane preparation were studied. Inhibition abilities of these compounds correlate well with their lipophilic properties. High hydrophobic compounds change mainly the enzyme activation by potassium ions and the spin label mobilities in hydrophobic regions of the membrane preparation. Polar species, in contrast, influence the enzyme activation by sodium ions and the surface polar properties of the membrane preparation. It is supposed, that the Na,K-ATPase activations by potassium and sodium ions are correspondingly related to hydrophobic regions of the lipoprotein enzyme complex and to the polar regions stabilized by hydrogen bonds.  相似文献   

18.
Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) of acetic acid bacteria is a membrane-bound enzyme involved in the acetic acid fermentation by oxidizing ethanol to acetaldehyde coupling with reduction of membranous ubiquinone (Q), which is, in turn, re-oxidized by ubiquinol oxidase, reducing oxygen to water. PQQ-ADHs seem to have co-evolved with the organisms fitting to their own habitats. The enzyme consists of three subunits and has a pyrroloquinoline quinone, 4 heme c moieties, and a tightly bound Q as the electron transfer mediators. Biochemical, genetic, and electrochemical studies have revealed the unique properties of PQQ-ADH since it was purified in 1978. The enzyme is unique to have ubiquinol oxidation activity in addition to Q reduction. This mini-review focuses on the molecular properties of PQQ-ADH, such as the roles of the subunits and the cofactors, particularly in intramolecular electron transport of the enzyme from ethanol to Q. Also, we summarize biotechnological applications of PQQ-ADH as to enantiospecific oxidations for production of the valuable chemicals and bioelectrocatalysis for sensors and fuel cells using indirect and direct electron transfer technologies and discuss unsolved issues and future prospects related to this elaborate enzyme.  相似文献   

19.
The rate constants for inactivation of lactate dehydrogenase and alcohol dehydrogenase in solution at 65 degrees C (pH 7,5) are 0,72 and 0,013 min-1, respectively. The enzyme incorporation into acrylamide gels results in immobilized enzymes, whose residual activity is 18--25% of the original one. In 6,7% gels the rate of thermal inactivation for lactate dehydrogenase is decreased nearly 10-fold, whereas the inactivation rate for alcohol dehydrogenase is increased 4,6-fold as compared to the soluble enzymes. In 14% and 40% gels the inactivation constants for lactate dehydrogenase are 6,3.10(-3) and 5,9.10(-4) min-1, respectively. In 60% gels the thermal inactivation of lactate dehydrogenase is decelerated 3600-fold as compared to the native enzyme. The enthalpy and enthropy for the inactivation of the native enzyme are equal to 62,8 kcal/mole and 116,9 cal/(mole.grad.) for the native enzyme and those of gel-incorporated (6,7%) enzyme -- 38,7 kcal/mole and 42 cal/(mole.grad.), respectively. The thermal stability of alcohol dehydrogenase in 60% gels is increased 12-fold. To prevent gel swelling, methacrylic acid and allylamine were added to the matrix, with subsequent treatment by dicyclohexylcarbodiimide. The enzyme activity of the modified gels is 2,7--3% of that for the 6,7% gels. The stability of lactate dehydrogenase in such gels is significantly increased. A mechanism of stabilization of the subunit enzymes in highly concentrated gels is discussed.  相似文献   

20.
A novel biosensor architecture, which is based on the combination of a manual and a non-manual deposition technique for sensor components on the electrode surface is reported. A water-soluble Os-poly(vinyl-imidazole) redox hydrogel is deposited on a graphite electrode by drop-coating (i.e. manually) followed by the electrochemically-induced deposition of an enzyme-containing non-conducting polymer film. The local polymer deposition is initiated by electrochemical generation of H(3)O(+) exclusively at the electrode surface causing a pH-shift to be established in the diffusion zone around the electrode (i.e. non-manually). This pH-shift leads to the protonation of a dissolved polyanionic polymer which in consequence changes significantly its solubility and is hence precipitating on the electrode surface. In the presence of a suitable enzyme, such as quinohemoprotein alcohol dehydrogenase (QH-ADH), the polymer precipitation leads to an entrapment of the redox enzyme within the polymer film. Simultaneously, the water-soluble Os-poly(vinyl-imidazole) redox hydrogel, which is slowly dissolving from the electrode surface after addition of the electrolyte, is co-entrapped within the precipitating polymer layer. This provides the pre-requisite for an efficient electron-transfer pathway from the redox enzyme via the polymer-bound redox centres to the electrode surface. The sensor preparation protocol has been optimised aiming on a high mediator concentration in the polymer film and an effective electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号