首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
JGP study finds that the C. elegans orthologue of the PIEZO family is a mechanosensitive ion channel that regulates pharyngeal pumping and food sensation.

The PIEZO family of mechanosensitive cation channels has been implicated in a wide variety of physiological processes in mammals and is also associated with human disease. Mammalian genomes encode two family members, known as Piezo1 and Piezo2, but invertebrates such as the nematode Caenorhabditis elegans only possess a single Piezo-related gene (1). The function of the C. elegans orthologue, known as pezo-1, has largely remained obscure, but, in this issue of JGP, Millet et al. reveal that it encodes a bona fide mechanosensitive ion channel that regulates pharyngeal activity (2).Jonathan Millet (left), Valeria Vásquez (center), and colleagues reveal that pezo-1, the sole PIEZO family member in C. elegans, is a mechanosensitive ion channel that regulates pharyngeal pumping and food sensation, particularly when worms are fed with large and stiff bacterial filaments that are difficult to swallow (graphic created with BioRender.com).In 2020, an elegant study demonstrated that pezo-1 controls C. elegans ovulation and fertilization (3). However, explains Valeria Vásquez from the University of Tennessee Health Science Center, whether pezo-1 encodes for a mechanosensitive ion channel was unknown. “PEZO-1 is expressed in many tissues, including the pharynx, which is the organ we decided to concentrate on in our study,” Vásquez says.Muscle cells in the C. elegans pharynx rhythmically contract and relax to pump food into the worm’s intestine. Vásquez and colleagues, including first author Jonathan Millet, found that PEZO-1 is expressed in several different pharyngeal cell types (2), including the gland cells whose secretions lubricate the pharynx, and the proprioceptive NSM neurons that are thought to sense the presence of food within the pharynx lumen and release serotonin to increase the rate of pharyngeal pumping.Millet et al. analyzed pharyngeal pumping in worms lacking pezo-1, as well as in animals expressing a pezo-1 point mutant that, in human Piezo1, increases channel function by slowing channel deactivation and inactivation. Loss or gain of pezo-1 function had surprisingly little effect on pharyngeal activity, causing only mild alterations in the duration and frequency of pumping induced by serotonin, and more obvious effects when challenged with high osmolarity solutions.Worms cultured in the laboratory are usually fed a diet of small, easily ingested Escherichia coli cells and, both loss and gain of pezo-1 function increased the pharynx’s response to this type of food. In their natural habitat, however, C. elegans encounter bacteria of various shapes and sizes, some of which might be harder to swallow. “It occurred to me that it might make a difference if we fed the worms with bacteria that were stiffer and longer,” Vásquez says.The researchers therefore provided their pezo-1 mutants with E. coli treated with cephalexin, an antibiotic that inhibits cell separation and causes the bacteria to form long, spaghetti-like filaments. Compared with wild-type worms fed with this diet, pharyngeal activity was markedly enhanced by the gain-of-function pezo-1 mutant, but substantially reduced in the absence of pezo-1, almost as if the worms were “choking” on the bacterial filaments.Crucially, by performing patch-clamp experiments on both cultured C. elegans cells and insect cells expressing recombinant pezo-1, Millet et al. confirmed that PEZO-1 is, indeed, a mechanosensitive ion channel. However, it remains to be seen exactly how PEZO-1 helps the pharynx sense the physical parameters of food and adjust its pumping activity accordingly. One possibility is that the channel acts within the proprioceptive neurons to regulate the release of serotonin.Intriguingly, the Drosophila PIEZO orthologue controls feeding behavior in flies (4). “However, it’s not known which mechanosensitive channels are important in the pharyngeal system of mammals,” Vásquez says. “Our studies in C. elegans could therefore open an opportunity to understand food sensation in humans.”  相似文献   

2.
Glutamatergic neurotransmission is evolutionarily conserved across animal phyla. A major class of glutamate receptors consists of the metabotropic glutamate receptors (mGluRs). In C. elegans, three mGluR genes, mgl-1, mgl-2, and mgl-3, are organized into three subgroups, similar to their mammalian counterparts. Cellular reporters identified expression of the mgls in the nervous system of C. elegans and overlapping expression in the pharyngeal microcircuit that controls pharyngeal muscle activity and feeding behavior. The overlapping expression of mgls within this circuit allowed the investigation of receptor signaling per se and in the context of receptor interactions within a neural network that regulates feeding. We utilized the pharmacological manipulation of neuronally regulated pumping of the pharyngeal muscle in the wild-type and mutants to investigate MGL function. This defined a net mgl-1-dependent inhibition of pharyngeal pumping that is modulated by mgl-3 excitation. Optogenetic activation of the pharyngeal glutamatergic inputs combined with electrophysiological recordings from the isolated pharyngeal preparations provided further evidence for a presynaptic mgl-1-dependent regulation of pharyngeal activity. Analysis of mgl-1, mgl-2, and mgl-3 mutant feeding behavior in the intact organism after acute food removal identified a significant role for mgl-1 in the regulation of an adaptive feeding response. Our data describe the molecular and cellular organization of mgl-1, mgl-2, and mgl-3. Pharmacological analysis identified that, in these paradigms, mgl-1 and mgl-3, but not mgl-2, can modulate the pharyngeal microcircuit. Behavioral analysis identified mgl-1 as a significant determinant of the glutamate-dependent modulation of feeding, further highlighting the significance of mGluRs in complex C. elegans behavior.  相似文献   

3.
The survival of an organism depends on its ability to respond to its environment through its senses. The sense of touch is one of the most vital; still, it is the least understood. In the process of touch sensation, a mechanical stimulus is converted into electrical signals. Groundbreaking electrophysiological experiments in organisms ranging from bacteria to mammals have suggested that this conversion may occur through the activation of ion channels that gate in response to mechanical stimuli. However, the molecular identity of these channels has remained elusive for a very long time. Breakthroughs in our understanding of the cellular and molecular mechanisms of touch sensation have come from the analysis of touch-insensitive mutants in model organisms such as Caenorhabditis elegans and Drosophila melanogaster. This review will focus on the elegant genetic, molecular, imaging, and electrophysiological studies that demonstrate that a channel complex composed of two members of the DEG/ENaC gene family of channel subunits (named for the C. elegans degenerins and the related mammalian epithelial amiloride-sensitive Na channel), MEC-4 and MEC-10, and accessory subunits is gated by mechanical forces in touch-sensing neurons from C. elegans. I also report here electrophysiological and behavioral studies employing knockout mice that have recently shown that mammalian homologues of MEC-4, MEC-10, and accessory subunits are needed for normal mechanosensitivity in mouse, suggesting a conserved function for this channel family across species. The C. elegans genome encodes 28 DEG/ENaC channels: I discuss here the global role of DEG/ENaCs in mechanosensation, reporting findings on the role of other three nematode DEG/ENaCs (UNC-8, DEL-1, and UNC-105) in mechanosensitive and stretch-sensitive behaviors. Finally, this review will discuss findings in which members of another family of ion channels, the Transient Receptor Potential channels family, have been implicated in mechanosensitive behaviors in organisms ranging from C. elegans to mammals.  相似文献   

4.

Background

The pharyngeal microcircuit of the nematode Caenorhabditis elegans serves as a model for analysing neural network activity and is amenable to electrophysiological recording techniques. One such technique is the electropharyngeogram (EPG) which has provided insight into the genetic basis of feeding behaviour, neurotransmission and muscle excitability. However, the detailed manual analysis of the digital recordings necessary to identify subtle differences in activity that reflect modulatory changes within the underlying network is time consuming and low throughput. To address this we have developed an automated system for the high-throughput and discrete analysis of EPG recordings (AutoEPG).

Methodology/Principal Findings

AutoEPG employs a tailor made signal processing algorithm that automatically detects different features of the EPG signal including those that report on the relaxation and contraction of the muscle and neuronal activity. Manual verification of the detection algorithm has demonstrated AutoEPG is capable of very high levels of accuracy. We have further validated the software by analysing existing mutant strains with known pharyngeal phenotypes detectable by the EPG. In doing so, we have more precisely defined an evolutionarily conserved role for the calcium-dependent potassium channel, SLO-1, in modulating the rhythmic activity of neural networks.

Conclusions/Significance

AutoEPG enables the consistent analysis of EPG recordings, significantly increases analysis throughput and allows the robust identification of subtle changes in the electrical activity of the pharyngeal nervous system. It is anticipated that AutoEPG will further add to the experimental tractability of the C. elegans pharynx as a model neural circuit.  相似文献   

5.
In this study an attempt was made to determine the position of the outlets and nuclei of the pharyngeal glands in four monhysterid genera. Five Eumonhystera spp., seven Monhystera spp., and eight Monhystrella spp. were studied under the light microscope. Longitudinal sections of an undescribed Monhystera sp. and cross sections of Geomonhystera disjuncta were also studied under the scanning and transmission electron microscope, respectively. The results of the light microscopic studies were inconclusive about the position of the outlets but showed a number of nuclei in the basal part of the pharynx. The scanning and transmission electron microscopic studies revealed five pharyngeal glands and their outlets; their position was as follows: dorsal gland outlet at the base of buccal tooth, first pair of ventrosublateral gland outlets halfway along the pharynx, and second pair of ventrosublateral gland outlets close to the base of the pharynx. It is concluded that at least three, and possibly five, nuclei are in the basal part of the pharynx. This pattern, in the position of the outlets and nuclei, is similar to that in Caenorhabditis elegans (Maupas, 1900) Dougherty, 1953 and may well be the basic plan in the Class Chromadorea (including Secernentia as a subclass).  相似文献   

6.
7.
Insulin signalling plays a significant role in both developmental programmes and pathways modulating the neuronal signalling that controls adult behaviour. Here, we have investigated insulin signalling in food-associated behaviour in adult C. elegans by scoring locomotion and feeding on and off bacteria, the worm’s food. This analysis used mutants (daf-2, daf-18) of the insulin signalling pathway, and we provide evidence for an acute role for insulin signalling in the adult nervous system distinct from its impact on developmental programmes. Insulin receptor daf-2 mutants move slower than wild type both on and off food and showed impaired locomotory responses to food deprivation. This latter behaviour is manifest as a failure to instigate dispersal following prolonged food deprivation and suggests a role for insulin signalling in this adaptive response. Insulin receptor daf-2 mutants are also deficient in pharyngeal pumping on food and off food. Pharmacological analysis showed the pharynx of daf-2 is selectively compromised in its response to 5-HT compared to the excitatory neuropeptide FLP-17. By comparing the adaptive pharyngeal behaviour in intact worms and isolated pharyngeal preparations, we determined that an insulin-dependent signal extrinsic to the pharyngeal system is involved in feeding adaptation. Hence, we suggest that reactive insulin signalling modulates both locomotory foraging and pharyngeal pumping as the animal adapts to the absence of food. We discuss this in the context of insulin signalling directing a shift in the sensitivity of neurotransmitter systems to regulate the worm’s response to changes in food availability in the environment.  相似文献   

8.

Background

The genetic tractability and the species-specific association with beetles make the nematode Pristionchus pacificus an exciting emerging model organism for comparative studies in development and behavior. P. pacificus differs from Caenorhabditis elegans (a bacterial feeder) by its buccal teeth and the lack of pharyngeal grinders, but almost nothing is known about which genes coordinate P. pacificus feeding behaviors, such as pharyngeal pumping rate, locomotion, and fat storage.

Methodology/Principal Findings

We analyzed P. pacificus pharyngeal pumping rate and locomotion behavior on and off food, as well as on different species of bacteria (Escherichia coli, Bacillus subtilis, and Caulobacter crescentus). We found that the cGMP-dependent protein kinase G (PKG) Ppa-EGL-4 in P. pacificus plays an important role in regulating the pumping rate, mouth form dimorphism, the duration of forward locomotion, and the amount of fat stored in intestine. In addition, Ppa-EGL-4 interacts with Ppa-OBI-1, a recently identified protein involved in chemosensation, to influence feeding and locomotion behavior. We also found that C. crescentus NA1000 increased pharyngeal pumping as well as fat storage in P. pacificus.

Conclusions

The PKG EGL-4 has conserved functions in regulating feeding behavior in both C. elegans and P. pacificus nematodes. The Ppa-EGL-4 also has been co-opted during evolution to regulate P. pacificus mouth form dimorphism that indirectly affect pharyngeal pumping rate. Specifically, the lack of Ppa-EGL-4 function increases pharyngeal pumping, time spent in forward locomotion, and fat storage, in part as a result of higher food intake. Ppa-OBI-1 functions upstream or parallel to Ppa-EGL-4. The beetle-associated omnivorous P. pacificus respond differently to changes in food state and food quality compared to the exclusively bacteriovorous C. elegans.  相似文献   

9.
Serotonin (5-HT) regulates a wide range of behaviors in Caenorhabditis elegans, including egg laying, male mating, locomotion and pharyngeal pumping. So far, four serotonin receptors have been described in the nematode C. elegans, three of which are G protein-coupled receptors (GPCR), (SER-1, SER-4 and SER-7), and one is an ion channel (MOD-1). By searching the C. elegans genome for additional 5-HT GPCR genes, we identified five further genes which encode putative 5-HT receptors, based on sequence similarities to 5-HT receptors from other species. Using loss-of-function mutants and RNAi, we performed a systematic study of the role of the eight GPCR genes in serotonin-modulated behaviors of C. elegans (F59C12.2, Y22D7AR.13, K02F2.6, C09B7.1, M03F4.3, F16D3.7, T02E9.3, C24A8.1). We also examined their expression patterns. Finally, we tested whether the most likely candidate receptors were able to modulate adenylate cyclase activity in transfected cells in a 5-HT-dependent manner. This paper is the first comprehensive study of G protein-coupled serotonin receptors of C. elegans. It provides a direct comparison of the expression patterns and functional roles for 5-HT receptors in C. elegans.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
11.
Maintenance of the shape and diameter of biological tubules is a critical task in the development and physiology of all metazoan organisms. We have cloned the exc-9 gene of Caenorhabditiselegans, which regulates the diameter of the single-cell excretory canal tubules. exc-9 encodes a homologue of the highly expressed mammalian intestinal LIM-domain protein CRIP, whose function has not previously been determined. A second well-conserved CRIP homologue functions in multiple valves of C. elegans. EXC-9 shows genetic interactions with other EXC proteins, including the EXC-5 guanine exchange factor that regulates CDC-42 activity. EXC-9 and its nematode homologue act in polarized epithelial cells that must maintain great flexibility at their apical surface; our results suggest that CRIPs function to maintain cytoskeletal flexibility at the apical surface.  相似文献   

12.
13.
Bacterial mechanosensitive channel of small conductance (MscS) is a protein, whose activity is modulated by membrane tension, voltage and cytoplasmic crowding. MscS is a homoheptamer and each monomer consists of three transmembrane helices (TM1-3). Hydrophobic pore of the channel is made of TM3s surrounded by peripheral TM1/2s. MscS gating is a complex process, which involves opening and inactivation in response to the increase of membrane tension. A number of MscS mutants were isolated. Among them mutants affecting gating have been found including gain-of-function (GOF) and loss-of-function (LOF) that open at lower or at higher thresholds, respectively. Previously, using an in vivo screen we isolated multiple MscS mutants that leak potassium and some of them were GOF or LOF. Here we show that for a subset of these mutants K+ leak is negatively (NTD) or positively (PTD) temperature dependent. We show that temperature reliance of these mutants does not depend on how MS gating is affected by a particular mutation. Instead, we argue that NTD or PTD leak is due to the opposite allosteric coupling of the structures that determine the temperature dependence to the channel gate. In PTD mutants an increased hydration of the pore vestibule is directly coupled to the increase in the channel conductance. In NTD mutants, at higher temperatures an increased hydration of peripheral structures leads to complete separation of TM3 and a pore collapse.  相似文献   

14.
15.
Genome editing based on CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease (Cas9) has been successfully applied in dozens of diverse plant and animal species, including the nematode Caenorhabditis elegans. The rapid life cycle and easy access to the ovary by micro-injection make C. elegans an ideal organism both for applying CRISPR-Cas9 genome editing technology and for optimizing genome-editing protocols. Here we report efficient and straightforward CRISPR-Cas9 genome-editing methods for C. elegans, including a Co-CRISPR strategy that facilitates detection of genome-editing events. We describe methods for detecting homologous recombination (HR) events, including direct screening methods as well as new selection/counterselection strategies. Our findings reveal a surprisingly high frequency of HR-mediated gene conversion, making it possible to rapidly and precisely edit the C. elegans genome both with and without the use of co-inserted marker genes.  相似文献   

16.
More than fifty FMRFamide‐like neuropeptides have been identified in nematodes. We addressed the role of a subset of these in the control of nematode feeding by electrophysiological recording of the activity of C. elegans pharynx. AF1 (KNEFIRFamide), AF2 (KHEYLRFamide), AF8 (KSAYMRFamide), and GAKFIRFamide (encoded by the C. elegans genes flp‐8, flp‐14, flp‐6, and flp‐5, respectively) increased pharyngeal action potential frequency, in a manner similar to 5‐HT. In contrast, SDPNFLRFamide, SADPNFLRFamide, SAEPFGTMRFamide, KPSVRFamide, APEASPFIRFamide, and AQTVRFamide (encoded by the C. elegans genes flp‐1; flp‐1; flp‐3; flp‐9; flp‐13, and flp‐16, respectively) inhibited the pharynx in a manner similar to octopamine. Only three of the neuropeptides had potent effects at low nanomolar concentrations, consistent with a physiological role in pharyngeal regulation. Therefore, we assessed whether these three peptides mediated their actions either directly on the pharynx or indirectly via the neural circuit controlling its activity by comparing actions between wild‐type and mutants with deficits in synaptic signaling. Our data support the conclusion that AF1 and SAEPFGTMRFamide regulate the activity of the pharynx indirectly, whereas APEASPFIRFamide exerts its action directly. These results are in agreement with the expression pattern for the genes encoding the neuropeptides (Kim and Li, 1999) as both flp‐8 and flp‐3 are expressed in extrapharyngeal neurons, whereas flp‐13 is expressed in I5, a neuron with synaptic output to the pharyngeal muscle. These results provide the first, direct, functional information on the action of neuropeptides in C. elegans. Furthermore, we provide evidence for a putative inhibitory peptidergic synapse, which is likely to have a role in the control of feeding. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 235–244, 2001  相似文献   

17.
18.
Caenorhabditis elegans is an informative model to study the neural basis of feeding. A useful paradigm is one in which adult nematodes feed on a bacterial lawn which has been pre-loaded with pharmacological agents and the effect on pharyngeal pumping rate scored. A crucial aspect of this assay is the availability of good quality bacteria to stimulate pumping to maximal levels. A potential confound is the possibility that the pharmacological agent impacts bacterial viability and indirectly influences feeding rate. Here, the actions of nicotine on pharyngeal pumping of C. elegans and on the Escherichia coli bacterial food source were investigated. Nicotine caused an immediate and concentration-dependent inhibition of C. elegans pharyngeal pumping, IC50 4 mM (95% CI?=?3.4 mM to 4.8 mM). At concentrations between 5 and 25 mM, nicotine also affected the growth and viability of E. coli lawns. To test whether this food depletion by nicotine caused the reduced pumping, we modified the experimental paradigm. We investigated pharyngeal pumping stimulated by 10 mM 5-HT, a food ‘mimic’, before testing if nicotine still inhibited this behaviour. The IC50 for nicotine in these assays was 2.9 mM (95% CI?=?3.1 mM to 5.1 mM) indicating the depletion of food lawn does not underpin the potency of nicotine at inhibiting feeding. These studies show that the inhibitory effect of nicotine on C. elegans pharyngeal pumping is mediated by a direct effect rather than by its poorly reported bactericidal actions.  相似文献   

19.
The nervous system of C. elegans has a remarkable abundance of flp genes encoding FMRFamide‐like (FLP) neuropeptides. To provide insight into the physiological relevance of this neuropeptide diversity, we have tested more than 30 FLPs (encoded by 23 flps) for bioactivity on C. elegans pharynx. Eleven flp genes encode peptides that inhibit pharyngeal activity, while eight flp genes encode peptides that are excitatory. Three potent peptides (inhibitory, FLP‐13A, APEASPFIRFamide; excitatory, FLP‐17A, KSAFVRFamide; excitatory, FLP‐17B, KSQYIRFamide) are encoded by flp genes, which, according to reporter gene constructs, are expressed in pharyngeal motoneurons. Thus, they may act through receptors localized on the pharyngeal muscle. The two other potent peptides, FLP‐8 (excitatory AF1, KNEFIRFamide,) and FLP‐11A (inhibitory, AMRNALVRFamide), appear to be expressed in extrapharyngeal neurons and are therefore likely to act either indirectly or as neurohormones. Intriguingly, a single neuron can express peptides that have potent but opposing biological activity in the pharynx. Only five flp genes encode neuropeptides that have no observable effect on the pharynx, but none of these have shown reporter gene expression in the pharyngeal nervous system. To examine the roles of multiple peptides produced from single precursors, a comparison was made between the bioactivity of different neuropeptides for five flp genes (flp‐3, flp‐13, flp‐14, flp‐17, and flp‐18). For all but one gene (flp‐14), the effects of peptides encoded by the same gene were similar. Overall, this study demonstrates the impressive neurochemical complexity of the simple circuit that regulates feeding in the nematode, C. elegans. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

20.
Genetic defects in the dystrophin-associated protein complex (DAPC) are responsible for a variety of pathological conditions including muscular dystrophy, cardiomyopathy, and vasospasm. Conserved DAPC components from humans to Caenorhabditis elegans suggest a similar molecular function. C. elegans DAPC mutants exhibit a unique locomotory deficit resulting from prolonged muscle excitation and contraction. Here we show that the C. elegans DAPC is essential for proper localization of SLO-1, the large conductance, voltage-, and calcium-dependent potassium (BK) channel, which conducts a major outward rectifying current in muscle under the normal physiological condition. Through analysis of mutants with the same phenotype as the DAPC mutants, we identified the novel islo-1 gene that encodes a protein with two predicted transmembrane domains. We demonstrate that ISLO-1 acts as a novel adapter molecule that links the DAPC to SLO-1 in muscle. We show that a defect in either the DAPC or ISLO-1 disrupts normal SLO-1 localization in muscle. Consistent with observations that SLO-1 requires a high calcium concentration for full activation, we find that SLO-1 is localized near L-type calcium channels in muscle, thereby providing a mechanism coupling calcium influx with the outward rectifying current. Our results indicate that the DAPC modulates muscle excitability by localizing the SLO-1 channel to calcium-rich regions of C. elegans muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号