首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Forkhead box M1 (FoxM1) drives cell cycle progression and the prevention of growth arrest and is over-expressed in many human malignancies. However, the characteristics of FoxM1 in acute myeloid leukemia (AML) are not clearly understood. We investigated the expression level of FoxM1 and analyzed the correlation of FoxM1 expression with AML patient characteristics and prognoses. Changes in FoxM1 expression were detected after MV4–11 cells, which have an internal tandem duplication (ITD) of the fms-like tyrosine kinase 3 gene (FLT3-ITD), and control THP1 cells (encoding wild-type FLT3) were treated with the FLT3 receptor tyrosine kinase inhibitor AC220 (quizartinib) or FLT3 ligand (FL). Finally, we determined the apoptosis rates after the addition of the FoxM1 inhibitor thiostrepton (TST) to AML cells with or without FLT3-ITD. The expression of FoxM1 in AML patients was correlated with the presence of FLT3-ITD, genetic groups, and possibly overall survival. Inhibition of FLT3-ITD by AC220 down-regulated FoxM1 expression in MV4–11 cells, and stimulation of FLT3 by FL up-regulated FoxM1 expression in MV4–11 and THP1 cells. TST induced the apoptosis of MV4–11 and THP1 cells in a dose-dependent manner. Thus, FoxM1 is a potential prognostic marker and a promising therapeutic target in AML.  相似文献   

3.
FLT3 mutations are one of the most common findings in acute myeloid leukemia (AML). FLT3 inhibitors have been in active clinical development. Midostaurin as the first-in-class FLT3 inhibitor has been approved for treatment of patients with FLT3-mutated AML. In this review, we summarized the preclinical and clinical studies on new FLT3 inhibitors, including sorafenib, lestaurtinib, sunitinib, tandutinib, quizartinib, midostaurin, gilteritinib, crenolanib, cabozantinib, Sel24-B489, G-749, AMG 925, TTT-3002, and FF-10101. New generation FLT3 inhibitors and combination therapies may overcome resistance to first-generation agents.  相似文献   

4.
5.
6.
7.
The success of all-trans retinoic acid (ATRA) in differentiation therapy for patients with acute promyelocytic leukemia (APL) highly encourages researches to apply a new combination therapy based on ATRA. Therefore, research strategies to further sensitize cells to retinoids are urgently needed. In this study, we showed that Dihydromyricetin (DMY), a 2,3-dihydroflavonol compound, exhibited a strong synergy with ATRA to promote APL NB4 cell differentiation. We observed that DMY sensitized the NB4 cells to ATRA-induced cell growth inhibition, CD11b expression, NBT reduction and myeloid regulator expression. PML-RARα might not be essential for DMY-enhanced differentiation when combined with ATRA, while the enhanced differentiation was dependent on the activation of p38-STAT1 signaling pathway. Taken together, our study is the first to evaluate the synergy of DMY and ATRA in NB4 cell differentiation and to assess new opportunities for the combination of DMY and ATRA as a promising approach for future differentiation therapy.  相似文献   

8.
Acriflavine (ACF) is an antiseptic with anticancer properties, blocking the growth of solid and haematopoietic tumour cells. Moreover, this compound has been also shown to overcome the resistance of cancer cells to chemotherapeutic agents. ACF has been shown to target hypoxia‐inducible factors (HIFs) activity, which are key effectors of hypoxia‐mediated chemoresistance. In this study, we showed that ACF inhibits the growth and survival of chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) cell lines in normoxic conditions. We further demonstrated that ACF down‐regulates STAT5 expression in CML and AML cells but activates STAT3 in CML cells in a HIF‐independent manner. In addition, we demonstrated that ACF suppresses the resistance of CML cells to tyrosine kinase inhibitors, such as imatinib. Our data suggest that the dual effect of ACF might be exploited to eradicate de novo or acquired resistance of myeloid leukaemia cells to chemotherapy.  相似文献   

9.
FMS-like tyrosine kinase 3 (FLT3)-mutant acute myeloid leukemia (AML) which occurs in approximately 30% of all AML patients still has a poor prognosis. This study aimed to examine the effect of decitabine (DAC) on FLT3-ITD positive AML. In our study, we found that expression of FLT3 and its downstream targets was decreased in FLT3-ITD mutant cell lines treated with DAC. DAC treatment could increase the percentage of apoptotic cells and CD11b positive cells tested by flow cytometry and upregulate the expression of cleaved caspase3, cleaved PARP, C/EBPa and PU.1 detected by western blot. To explore the effect of increased expression of PU.1 on FLT3 protein, we transiently transfected MOLM13 and MV4-11 cells with siRNA against PU.1 and a siRNA control. In both FLT3-ITD positive cells, the effect of DAC on downregulation of FLT3 was diminished in PU.1-konckdown MOLM13 and MV4-11 cells and there was a decrease of CD11b expression after PU.1 knockdown. Furthermore, the percentage of apoptotic cells was also decreased in PU.1-konckdown cells compared with siRNA control-expressing cells with the same dose of DAC. These findings indicated that DAC upregulated PU.1 to induce downregulation of FLT3 to trigger apoptosis. DAC was also found efficacious in mouse xenograft models of FLT3-ITD AML in our study. These findings may provide a novel theoretical basis for treatment of FLT3-ITD positive AML patients.  相似文献   

10.
《Cytotherapy》2022,24(4):413-420
Background aimsThe internal tandem duplication of FLT3 (FLT3ITD) and NPM1 mutations (NPM1mut) are well-established prognostic factors in cytogenetically intermediate-risk acute myeloid leukemia (AML) when treated with chemotherapy alone. However, their prognostic value in the setting of allogeneic hematopoietic cell transplantation (HCT) is controversial.MethodsFLT3 and NPM1 mutational status was determined at diagnosis using single-gene polymerase chain reaction or next-generation sequencing in 247 adult patients with cytogenetically intermediate-risk AML who underwent myeloablative HCT. Multivariate Fine–Gray and Cox regression was used to analyze the cumulative incidence of relapse (CIR), relapse-free survival (RFS) and overall survival (OS).ResultsFLT3ITD and NPM1mut were present in 74 of 247 (30%) and 79 of 247 (32%) patients, respectively. There was no significant difference between patients without a FLT3ITD or NPM1mut (FLT3NONITD/NPM1WT) and patients with a FLT3ITD mutation alone (FLT3ITD/NPM1WT) with regard to CIR (P = 0.60), RFS (P = 0.91) or OS (P = 0.66). Similarly, there was no significant difference between FLT3NONITD/NPM1WT and FLT3NONITD/NPM1mut patients with regard to CIR (P = 0.70), RFS (P = 0.75) or OS (P = 0.95). The presence of a concurrent mutation in NPM1 did not appear to modify the impact of having a FLT3ITD mutation.ConclusionsIn contrast to chemotherapy-only treatment, FLT3 and NPM1 mutational status does not appear to predict outcomes in patients with cytogenetically intermediate-risk AML following HCT. These results suggest that HCT may ameliorate the poor prognostic effect of FLT3ITD mutation and that HCT should be considered over chemotherapy-only treatment in FLT3ITD-mutated AML.  相似文献   

11.
BackgroundAcute myeloid leukemia (AML) is a bone marrow malignancy having multiple molecular pathways driving its progress. In recent years, the main causes of AML considered all over the world are genetic variations in cancerous cells. The RUNX1 and FLT3 genes are necessary for the normal hematopoiesis and differentiation process of hematopoietic stem cells into mature blood cells, therefore they are the most common targets for point mutations resulting in AML.MethodsWe screened 32 CN-AML patients for FLT3-ITD (by Allele-specific PCR) and RUNX1 mutations (by Sanger sequencing). The FLT3 mRNA expression was assessed in all AML patients and its subgroups.ResultsEight patients (25%) carried RUNX1 mutation (K83E) while three patients (9.37%) were found to have internal tandem duplications in FLT3 gene. The RUNX1 mutation data were correlated with clinical parameters and FLT3 gene expression profile. The RUNX1 mutations were observed to be significantly prevalent in older males. Moreover, RUNX1 and FLT3-mutated patients had lower complete remission rate, event-free survival rate, and lower overall survival rate than patients with wild-type RUNX1 and FLT3 gene. The RUNX1 and FLT3 mutant patients with up-regulated FLT3 gene expression showed even worse prognosis. Bradford Assay showed that protein concentration was down-regulated in RUNX1 and FLT3 mutants in comparison to RUNX1 and FLT3 wild-type groups.ConclusionThis study constitutes the first report from Pakistan reporting significant molecular mutation analysis of RUNX1 and FLT3 genes including FLT3 expression evaluation with follow-up. This provides an insight that aforementioned mutations are markers of poor prognosis but the study with a large AML cohort will be useful to further investigate their role in disease biology of AML.  相似文献   

12.
13.
Acute myeloid leukemia is an aggressive cancer, which, in spite of increasingly better understanding of its genetic background remains difficult to treat. Mutations in the FLT3 gene are observed in ≈30% of the patients. Most of these mutations are internal tandem duplications (ITDs) of a sequence within the protein coding region, an activation mechanism that is almost non-existent with other genes and cancers. As patients each carry their own unique set of mutations, it is challenging to understand how ITDs activate the protein, and ascertain the risk for each individual patient. Available treatment options are limited due to development of drug resistance. Here, recent studies are reviewed that help to better understand the molecular mechanism behind activation of the FLT3 protein due to mutations. It is argued that difference in mutation sequences and especially location might be coupled to prognosis. When it comes to FLT3 inhibitors, key differences between them can be attributed to the mode of inhibition (type-1 and type-2 inhibitors), effective inhibitory coefficient in the blood plasma and off-target binding. Accounting for the position and length of insertions may in the future be used to predict prognosis and rationalise treatment. Development of new inhibitors must take into account the potential for resistance mutations. Inhibitors aimed at multiple specific targets are currently being developed. These, and as well as combination therapies will hopefully lead to longer periods during which targeted FLT3 therapy will remain effective.  相似文献   

14.
15.

Background:

Acute promyelocytic leukemia (APL) with t (15;17) is a distinct category of acute myeloid leukemia (AML) and is reported to show better response to anthracyclin based chemotherapy. A favorable overall prognosis over other subtypes of AML has been reported for APL patients but still about 15% patients relapse.

Methods:

This study evaluated the presence of Famus like tyrosine kinase-3 (FLT3) and nucleophosmin-1 (NPM1) gene mutations in a cohort of 40 APL patients. Bone marrow/peripheral blood samples from patients at the time of diagnosis and follow-up were processed for immunophenotyping, cytogenetic markers and isolation of DNA and RNA. Samples were screened for the presence of mutations in FLT3 and NPM1 genes using polymerase chain reaction followed by sequencing.

Results:

Frequency of FLT3/internal tandem duplication and FLT3/tyrosine kinase domain was found to be 25% and 7% respectively. We observed a high frequency of NPM1 mutation (45%) in the present population of APL patients.  相似文献   

16.
17.

Background

Molecular characterization of the FMS-like tyrosine kinase 3 receptor (FLT3) in cytogenetically normal acute myeloid leukemia (AML) has recently been incorporated into clinical guidelines based on correlations between FLT3 internal tandem duplications (FLT3-ITD) and decreased disease-free and overall survival. These mutations result in constitutive activation of FLT3, and FLT3 inhibitors are currently undergoing trials in AML patients selected on FLT3 molecular status. However, the transient and partial responses observed suggest that FLT3 mutational status alone does not provide complete information on FLT3 biological activity at the individual patient level. Examination of variation in cellular responsiveness to signaling modulation may be more informative.

Methodology/Principal Findings

Using single cell network profiling (SCNP), cells were treated with extracellular modulators and their functional responses were quantified by multiparametric flow cytometry. Intracellular signaling responses were compared between healthy bone marrow myeloblasts (BMMb) and AML leukemic blasts characterized as FLT3 wild type (FLT3-WT) or FLT3-ITD. Compared to healthy BMMb, FLT3-WT leukemic blasts demonstrated a wide range of signaling responses to FLT3 ligand (FLT3L), including elevated and sustained PI3K and Ras/Raf/Erk signaling. Distinct signaling and apoptosis profiles were observed in FLT3-WT and FLT3-ITD AML samples, with more uniform signaling observed in FLT3-ITD AML samples. Specifically, increased basal p-Stat5 levels, decreased FLT3L induced activation of the PI3K and Ras/Raf/Erk pathways, decreased IL-27 induced activation of the Jak/Stat pathway, and heightened apoptotic responses to agents inducing DNA damage were observed in FLT3-ITD AML samples. Preliminary analysis correlating these findings with clinical outcomes suggests that classification of patient samples based on signaling profiles may more accurately reflect FLT3 signaling deregulation and provide additional information for disease characterization and management.

Conclusions/Significance

These studies show the feasibility of SCNP to assess modulated intracellular signaling pathways and characterize the biology of individual AML samples in the context of genetic alterations.  相似文献   

18.
Comment on: Elf S, et al. Blood 2011; 117:6885-94.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号