首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation has been performed into the biophysical properties of the enveloped mammalian virus, herpes simplex virus type 1 (HSV-1). The dielectrophoretic behaviour of the virus particles was measured as a function of applied frequency (over the range 100 kHz–20 MHz) and conductivity of the suspending medium (over the range 1–100 mS m−1). The dielectric properties of the virus were determined from the dielectrophoretic data using the smeared-out shell model. The data suggest that the intact particle has a surface conductance of 0.3 nS, an internal and membrane permittivity of 75εo and 7.5εo, respectively, an internal conductivity of approximately 0.1 S m−1 and a zeta potential of 70 mV.The dielectric properties were measured for intact, fresh virus particles and also for particles following exposure to various modifying agents, such as treatment with enzymes, ionophores and ageing. It is shown that the observed changes in the dielectrophoretic spectrum, and the variations in the dielectric properties of the virus concur with the expected physiological effects of these agents.  相似文献   

2.
Lab and pilot scale batch cultivations of a CHO K1/dhfr? host cell line were conducted to evaluate on‐line multifrequency permittivity measurements as a process monitoring tool. The β‐dispersion parameters such as the characteristic frequency (fC) and the permittivity increment (Δεmax) were calculated on‐line from the permittivity spectra. The dual‐frequency permittivity signal correlated well with the off‐line measured biovolume and the viable cell density. A significant drop in permittivity was monitored at the transition from exponential growth to a phase with reduced growth rate. Although not reflected in off‐line biovolume measurements, this decrease coincided with a drop in OUR and was probably caused by the depletion of glutamine and a metabolic shift occurring at the same time. Sudden changes in cell density, cell size, viability, capacitance per membrane area (CM), and effects caused by medium conductivity (σm) could be excluded as reasons for the decrease in permittivity. After analysis of the process data, a drop in fC as a result of a fall in intracellular conductivity (σi) was identified as responsible for the observed changes in the dual‐frequency permittivity signal. It is hypothesized that the β‐dispersion parameter fC is indicative of changes in nutrient availability that have an impact on intracellular conductivity σi. On‐line permittivity measurements consequently not only reflect the biovolume but also the physiological state of mammalian cell cultures. These findings should pave the way for a better understanding of the intracellular state of cells and render permittivity measurements an important tool in process development and control. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
Two infected Sf-9 cell cultures were monitored on-line by multi-frequency permittivity measurements using the Fogale BIOMASS SYSTEM® and by applying different off-line methods (CASY®1, Vi-CELL?, packed cell volume) to measure the biovolume and the mean diameter of the cell population. During the growth phase and the early infection phase the measured permittivity at the working frequency correlated well with the different off-line methods for the biovolume. We found a value of 0.67 pF cm?1 permittivity per unit of total biovolume (CASY) (μL mL?1). After the maximum value in the permittivity was reached, i.e. when the viability of the cultures decreased significantly, we observed different time courses for the biovolume depending on the applied method. The differences were compared and could be explained by the underlying measurement principles. Furthermore, the characteristic frequency (fC) was calculated from the on-line scanning permittivity measurements. The fC may provide an indication of changes in cell diameter and membrane properties especially after infection and could also be an indicator for the onset of the virus production phase. The changes in fC were qualitatively explained by the underlying equation that is correlating fC and the properties of the cell population (cell diameter, intracellular conductivity and capacitance per membrane area).  相似文献   

4.
Investigations using electrical impedance spectroscopy to measure the responses of fish embryos to the cryoprotective chemicals, methanol and dimethyl sulphoxide (DMSO), were carried out. Zebrafish (Danio rerio) embryos were used as a model to study the newly proposed technique. The normalised permittivity and conductivity changes of the embryos were measured continuously over a 20-min period in a customised embryo-holding chamber. The normalised permittivity and conductivity spectra were obtained during embryo exposure to different concentrations of methanol (1.0, 2.0 and 3.0 M) and DMSO (0.5, 1.0 and 2.0 M) solutions. The results showed significant permittivity and conductivity changes after embryo exposure to methanol and DMSO at the optimum embryo loading level (six embryos). Embryos in different concentrations of methanol and DMSO also resulted in quantitative responses shown in the normalised permittivity and conductivity spectra. The results demonstrated that fish embryo membrane permeability to cryoprotective chemicals could be monitored in real-time. The measurement of permittivity at a lower frequency range (10–103 Hz) and conductivity at a higher frequency range (104–106 Hz) during fish embryo exposure to cryoprotective chemicals using impedance spectroscopy can be used as a new tool for the fast screening of most effective cryoprotective chemicals. The results from the present study also demonstrated the possibility of quantifying the level of cryoprotective chemicals penetrating the fish embryos.  相似文献   

5.
This study proposes an easy to use in situ device, based on multi-frequency permittivity measurements, to monitor the growth and death of attached Vero cells cultivated on microporous microcarriers, without any cell sampling. Vero cell densities were on-line quantified up to 106 cell mL−1. Some parameters which could potentially impact Vero cell morphological and physiological states were assessed through different culture operating conditions, such as media formulation or medium feed-harvest during cell growth phase. A new method of in situ cell death detection with dielectric spectroscopy was also successfully implemented. Thus, through permittivity frequency scanning, major rises of the apoptotic cell population in bioreactor cultures were detected by monitoring the characteristic frequency of the cell population, fc, which is one of the culture dielectric parameters. Both cell density quantification and cell apoptosis detection are strategic information in cell-based production processes as they are involved in major events of the process, such as scale-up or choice of the viral infection conditions. This new application of dielectric spectroscopy to adherent cell culture processes makes it a very promising tool for risk-mitigation strategy in industrial processes. Therefore, our results contribute to the development of Process Analytical Technology in cell-based industrial processes.  相似文献   

6.
目的:在40Hz~110MHz频率范围观察间断性低氧暴露4周大鼠离体腓肠肌细胞介电性能的改变。方法:采用低压氧舱建立模拟低氧模型,雄性SD大鼠随机分为间断低氧组和正常对照组。利用Agilent 4294A阻抗分析仪测量了离体大鼠腓肠肌的交流阻抗,通过频域介电谱、Cole—Cole图、介电损耗因子频谱、电导率虚部频谱和介电损耗角正切频谱的数据分析,观察间断性低氧暴露对大鼠离体腓肠肌细胞介电性能的影响。结果:间断性低氧暴露4周大鼠腓肠肌的介电常数(εL,εh)降低,介电增量△ε减小,绝缘性降低;低频电导率κL升高,高频电导率κh降低,电导率增量△κ降低;特征频率(f1,f2)增加;介电损失峰值ε”peak、电导率虚部峰值κ”peak和损耗角正切峰值婶谳均降低。结论:间断性低氧暴露致骨骼肌细胞介电性能降低,但其特征频率增加。  相似文献   

7.
The electrical and dielectric properties of Ba2+ and Ca2+ cross‐linked alginate hydrogel beads were studied by means of single‐particle electrorotation. The use of microstructured electrodes allowed the measurements to be performed over a wide range of medium conductivity from about 5 mS/m to 1 S/m. Within a conductivity range, the beads exhibited measurable electrorotation response at frequencies above 0.2 MHz with two well‐resolved co‐ and antifield peaks. With increasing medium conductivity, both peaks shifted toward higher frequency and their magnitudes decreased greatly. The results were analyzed using various dielectric models that consider the beads as homogeneous spheres with conductive loss and allow the complex rotational behavior of beads to be explained in terms of conductivity and permittivity of the hydrogel. The rotation spectra could be fitted very accurately by assuming (a) a linear relationship between the internal hydrogel conductivity and the medium conductivity, and (b) a broad internal dispersion of the hydrogel centered between 20 and 40 MHz. We attribute this dispersion to the relaxation of water bound to the polysaccharide matrix of the beads. The dielectric characterization of alginate hydrogels is of enormous interest for biotechnology and medicine, where alginate beads are widely used for immobilization of cells and enzymes, for drug delivery, and as microcarriers for cell cultivation. © 1999 John Wiley & Sons, Inc. Biopoly 50: 227–237, 1999  相似文献   

8.
Complex Dielectric Properties of Sulfate-Reducing Bacteria Suspensions   总被引:2,自引:0,他引:2  
Sulfate-reducing bacteria (SRB) can potentially enhance the remediation of heavy metals in the subsurface. Previous geophysical research has demonstrated the sensitivity of electrical measurements to SRB-mediated mineral transformation in porous media. However, the inherent dielectric properties of SRB and their direct contribution to the electrical properties of porous media are poorly understood. We studied the complex dielectric properties of SRB (Desulfovibrio vulgaris) suspensions at different concentrations and at different growth stages using a two-electrode dielectric spectroscopy measurement over the frequency range of 20 Hz to 1 MHz. Our results show higher dielectric responses (relative dielectric permittivity, real and imaginary conductivity) occurred with higher bacteria concentration at frequencies <10 kHz. Additionally, permittivity and conductivity both decreased as cells aged from mid-log phase to late stationary phase. Our results suggest that dielectric spectroscopy measurements can be used to noninvasively monitor biomass and various growth stages of SRB. Our work advances the interpretation of electrical signals associated with SRB observed in the subsurface.  相似文献   

9.
Studies of low electric fields (LEFs) effects on the permeability of the cell membrane are of great interest in molecular medicine. Electroendocytosis is a novel technique depends on using LEFs to incorporate macromolecules as anticancer drugs or genes into the cells. There are wide debates about the optimum electric conditions for electroendocytosis. In this article, Ehrlich tumor tissues were exposed to different LEFs voltages and frequencies in vitro. Dielectric properties before and after the exposure were determined. The results indicated that the exposed groups have significant high permittivity and conductivity compared to unexposed group, as well as having significant low impedance. The results indicated that dielectric measurements can be used to indicate the efficiency of electroendocytosis that as permittivity and conductivity of cell membranes increase, more molecules can passed into the cells. It was also indicated that, as the pulse amplitude increases, the LEFs influence increases, while changing pulse frequency has no obvious effect on dielectric properties of Ehrlich tumor.  相似文献   

10.
The electrical properties of the cytoplasmatic membrane of human erythrocyte cells have been evaluated by means of dielectric spectroscopy measurements in the radiowave frequency range, using the so-called ``suspension method'. Measurements have been carried out at different volume fractions of the corpuscular phase (the cell haematocrit) in order to investigate the influence of the cell-cell interactions on the electrical parameters (the membrane permittivity ε and the membrane conductivity σ) of the cell membrane and a set of new values are proposed. Moreover, the influence of different alkali metal ions (Na+, K+, Cs+, Li+) on the ion permeation properties of the membrane are investigated and the structural alterations in the membrane organized briefly discussed. Received: 29 October 1996 / Accepted: 13 March 1997  相似文献   

11.
Frequency dependence of relative permittivity (dielectric constant) and conductivity, or the 'dielectric dispersion', of cultured cells (RBL-1 line) in suspension was measured using a fast impedance analyzer system capable of scanning 92 frequency points over a 10 kHz-500 MHz range within 80 s. Examination of the resulting dispersion curves of an improved reliability revealed that the dispersions consisted of at least two separate components. The low-frequency component (dispersion 1) had a permittivity increment (delta epsilon) of 10(3)-10(4) and a characteristic frequency (fc) at several hundred kHz; for the high-frequency component (dispersion 2), delta epsilon was smaller by a factor of 10(2) and fc = 10-30 MHz. Increments delta epsilon for both components increased with the volume fraction of cell suspension, while fc did not change appreciably as long as the conductivity of suspending medium was fixed. By fitting a model for shelled spheres (the 'single-shell' model) to the data of dispersion 1, the dielectric capacity of the plasma membrane phase (Cm) was estimated to be approx. 1.4 microF/cm2 for the cells in an isotonic medium. However, simulation by this particular shell model failed to reproduce the entire dispersion profile leaving a sizable discrepancy between theory and experiment especially at frequencies above 1 MHz where dispersion 2 took place. This discrepancy could not be filled up even by taking into consideration either the effect of cell size distribution actually determined or that of possible heterogeneity in the intracellular conductivity. The present data strongly indicate the need for a more penetrating model that effectively accounts for the behavior of dispersion 2.  相似文献   

12.
Dielectric spectroscopy was used to analyze typical batch and fed‐batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole–Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The β‐dispersion was analyzed using the Cole–Cole distribution parameters Δε (magnitude of the permittivity drop), fc (critical frequency), and α (Cole–Cole parameter). Furthermore, the dielectric parameters static internal conductivity (σi) and membrane capacitance per area (Cm) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

13.
We report a critical analysis of a typical method of dielectric spectroscopy consisting in impedance measurements as a function of frequency. Experimental data were obtained by measuring impedance on human erythrocyte suspensions. Since these cells do not have a nucleus they represent an ideal material for the application of the well established single shell model. This allows the evaluation of permittivity and conductivity of the plasma membrane. We discuss the influence on the reliability of results of parameters such as fractional volume, average dimensions and membrane thickness of cells.  相似文献   

14.
Employing optical spectroscopy we have performed a comparative study of the dielectric response of extracellular matrix and filaments of electrogenic bacteria Shewanella oneidensis MR-1, cytochrome c, and bovine serum albumin. Combining infrared transmission measurements on thin layers with data of the terahertz spectra, we obtain the dielectric permittivity and AC conductivity spectra of the materials in a broad frequency band from a few cm?1 up to 7000 cm?1 in the temperature range from 5 to 300 K. Strong absorption bands are observed in the three materials that cover the range from 10 to 300 cm?1 and mainly determine the terahertz absorption. When cooled down to liquid helium temperatures, the bands in Shewanella oneidensis MR-1 and cytochrome c reveal a distinct fine structure. In all three materials, we identify the presence of liquid bound water in the form of librational and translational absorption bands at ≈ 200 and ≈ 600 cm?1, respectively. The sharp excitations seen above 1000 cm?1 are assigned to intramolecular vibrations.  相似文献   

15.
The effect of conductivity on the dielectric measurements of proteins is studied. For that purpose the dielectric spectra (0.03–13 MHz) of serum albumin and myoglobin in solutions of varying conductivities were recorded. The results presented confirm that Maxwell's prediction of a threshold frequency in conducting materials also holds for protein solutions. The threshold frequency of a serum albumin solution is experimentally determined and the ionic screening of the electric field when performing dielectric spectra of these samples discussed. Three distinct frequency regions must be considered: a low frequency region where the sample behaves like a conductor; an intermediate region centered around the threshold frequency where the free charges partially screen the fixed charges; and a high frequency region where the sample behaves like a good dielectric. Dielectric measurements in the low frequency region defined above, are not possible.  相似文献   

16.
In this work, detailed dielectric measurements are presented on aqueous electrolytic solutions of NaCl and KCl in a broad frequency range, typical for modern telecommunication techniques. The complex dielectric permittivity or equivalently the complex conductivity are systematically studied as function of frequency (100 MHz-40 GHz), temperature (10-60 degrees C) and molar concentration (0.001-1 mol/l). By a detailed analysis of the dielectric results using an asymmetrically broadened Cole-Davidson distribution of relaxation times, in addition to dc conductivity, the dielectric response as function of frequency, temperature, and molar concentration was fully parameterized by a total of 13 parameters. This model ansatz and the 13 parameters include an enormous predictive power, allowing a reasonable estimation of the dielectric constant, loss, and the conductivity for any set of external variables frequency, temperature and concentration. The proposed method is not only useful for rather simple electrolytic solutions, but also for cell suspensions and biological matter, if additional processes, especially at low frequencies, are adequately taken into account.  相似文献   

17.
The influence of the cell shape on the dielectric and conductometric properties of biological cell suspensions has been investigated from a theoretical point of view presenting an analytical solution of the electrostatic problem in the case of prolate and oblate spheroidal geometries. The model, which extends to spheroidal geometries the approach developed by other researchers in the case of a spherical geometry, takes explicitly into account the charge distributions at the cell membrane interfaces. The presence of these charge distributions, which govern the trans-membrane potential ΔV, produces composite dielectric spectra with two contiguous relaxation processes, known as the α-dispersion and the β-dispersion. By using this approach, we present a series of dielectric spectra for different values of the different electrical parameters (the permittivity ɛ and the electrical conductivity σ, together with the surface conductivity γ due to the surface charge distribution) that define the whole behavior of the system. In particular, we analyze the interplay between the parameters governing the α-dispersion and those influencing the β-dispersion. Even if these relaxation processes generally occur in well-separated frequency ranges, it is worth noting that, for certain values of the membrane conductivity, the high-frequency dispersion attributed to the Maxwell-Wagner effect is influenced not only by the bulk electrical parameters of the different adjacent media, but also by the surface conductivity at the two membrane interfaces.  相似文献   

18.
We made anatomical and physiological observations of the breathing mechanisms in Pacific hagfish Eptatretus stoutii, with measurements of nostril flow and pressure, mouth and pharyngo-cutaneous duct (PCD) pressure and velum and heart impedance and observations of dye flow patterns. Resting animals frequently exhibit spontaneous apnea. During normal breathing, water flow is continuous at a high rate (~125 ml kg−1 min−1 at 12°C) powered by a two-phase unidirectional pumping system with a fast suction pump (the velum, ~22 min−1) for inhalation through the single nostril and a much slower force pump (gill pouches and PCD ~4.4 min−1) for exhalation. The mouth joins the pharynx posterior to the velum and plays no role in ventilation at rest or during swimming. Increases in flow up to >400 ml kg−1 min−1 can be achieved by increases in both velum frequency and stroke volume and the ventilatory index (product of frequency x nostril pressure amplitude) provides a useful proxy for ventilatory flow rate. Two types of coughing (flow reversals) are described. During spontaneous swimming, ventilatory pressure and flow pulsatility becomes synchronised with rhythmic body undulations.  相似文献   

19.
In this article, we propose and validate theoretical and experimental methods to quantitatively assess the Debye dielectric model of membrane lipid bi‐layers. This consists of two steps: permittivity measurements of biological solutions (liposomes), and estimation of the model parameters by inverse application of the Effective Medium Theory. The measurements are conducted in the frequency domain between 100 MHz and 2 GHz using a modified coaxial connector, at the temperatures of 27 and 30 °C. Estimations have been performed using a three‐layered model based on the Maxwell–Wagner formulation. Debye parameters (mean value ± standard error) found from fitting experimental data are: εs = 11.69 ± 0.09, ε = 4.00 ± 0.07, frelax = 179.85 ± 6.20 MHz and εs = (1.1 ± 0.1) × 10?7 S/m. This model can be used in microdosimetric studies aiming to precisely determine the E‐field distribution in a biological target down to the single cell level. In this context the use of an accurate membrane dielectric model, valid through a wide frequency range, is particularly appropriate. Bioelectromagnetics 30:286–298, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Dielectric measurements were performed on the suspensions of synaptosomes isolated from rat brain cortex. The synaptosomes in buffered salt media showed typical dielectric dispersions caused by the presence of a thin limiting membrane of sufficiently low conductivity. An analysis of the dielectric data revealed that the electric conductivity of the synaptosome interior was about 37 % of the external medium conductivity under isotonic conditions and that the dielectric constant for the interior phase was about 35. The membrane capacitance (0.7 ΜF cm−2) remained constant irrespective of nature and concentration of the univalent salts examined. Significant reduction in both the conductivity and the dielectric constant of the internal phase can be explained theoretically provided that some intra-synaptosomal structure (synaptic vesicles and/or small mitochondria) of non-conducting nature occupies about 50 % of the particulate volume, the remainder being in equilibrium with the external salt medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号