首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Expansion of CD4+CD25+ regulatory T cells (Tregs) in tumor microenvironment was one of the mechanisms by which cancer cells escaped host defense. Thymic stromal lymphopoietin (TSLP) contributes to the generation of natural Tregs in thymus. Therefore, the purpose of this report was to investigate the role of TSLP in the increasing prevalence of Tregs in lung cancer microenvironment. The expression ratio of TSLP protein in tumor tissues was significantly increased compared with that in benign lesion and non-cancer lung tissue. The prevalence of Tregs in tumor microenvironment was correlated with the expression of TSLP in lung cancer. Dendritic cells (DCs) were induced from peripheral blood mononuclear cells (PBMCs) collected from lung cancer patients and left unstimulated (imDCs) or exposed to hTSLP (TSLP-DCs) or LPS (LPS-DCs). TSLP-DCs expressed intermediate levels of CD83 and high levels of CD86, CD11C, and HLA-DR, which showed a characteristic of less mature DCs. TSLP-DCs secreted low levels of IL-6, IL-12, IL-10, TNF-α and IFN-γ, and high levels of TGF-β and MDC. The percentage of Tregs in CD4+CD25− T cells cocultured with TSLP-DCs group was statistically higher than that of LPS-DCs and imDCs. Transwell assays showed that TSLP-DCs exhibited increased ability to attract the migration of CD4+CD25− Tregs, when compared with imDCs. These results indicated that TSLP proteins were expressed in lung tumor tissue and correlated with the prevalence of Tregs. TSLP-DCs could induce CD4+CD25− T cells to differentiate into CD4+CD25+foxp3+ T cells and the migration of CD4+CD25+ T cells.  相似文献   

3.
Xu L  Xu W  Wen Z  Xiong S 《PloS one》2011,6(5):e20282

Background

CD4+CD25+ regulatory T cells (Tregs), a heterogeneous population, were enrichment in tumor mass and played an important role in modulating anti-tumor immunity. Recently, we reported a Treg subset, CCR6+ Tregs but not CCR6Tregs, were enriched in tumor mass and closely related to poor prognosis of breast cancer patients. However, the underlying mechanism remains elusive. Here, we carefully evaluate the enrichment of CCR6+Tregs in tumor mass during progression of breast cancer and explore its possible mechanism.

Methodology/Principal Findings

The frequency of CCR6+Tregs in tumor infiltrating lymphocytes (TILs ) was analyzed at early stage and at late stage of tumor in a murine breast cancer model by FACS respectively. The expansion of CCR6+Tregs and their CCR6 counterpart in tumor mass were determined by BrdU incorporation assay. The effect and its possible mechanism of tumor-resident antigen presenting cells (APCs) on the proliferation of CCR6+Tregs also were evaluated. The role of local expansion of CCR6+Tregs in their enrichment and suppression in vivo also was evaluated in adoptive cell transfer assay. We found that the prior enrichment of CCR6+Tregs but not CCR6Tregs in tumor mass during progression of murine breast cancer, which was dependent on the dominant proliferation of CCR6+ Tregs in situ. Further study demonstrated that tumor-resident DCs triggered the proliferation of CCR6+Treg cells in TGF-β dependent manner. Adoptive transfer of CCR6+Tregs was found to potently inhibit the function of CD8+T cells in vivo, which was dependent on their proliferation and subsequently enrichment in tummor mass.

Conclusions/Significance

Our finding suggested that CCR6+ Tregs, a distinct subset of Tregs, exert its predominant suppressive role in tumor immunity through prior in situ expansion, which might ultimately provide helpful thoughts for the designing of Treg-based immunotherapy for tumor in the future.  相似文献   

4.
CD4+ T cells differentiate into subsets that promote immunity or minimize damage to the host. T helper 17 cells (Th17) are effector cells that function in inflammatory responses. T regulatory cells (Tregs) maintain tolerance and prevent autoimmunity by secreting immunosuppressive cytokines and expressing check point receptors. While the functions of Th17 and Treg cells are different, both cell fate trajectories require T cell receptor (TCR) and TGF-β receptor (TGF-βR) signals, and Th17 polarization requires an additional IL-6 receptor (IL-6R) signal. Utilizing high-resolution phosphoproteomics, we identified that both synergistic and additive interactions between TCR, TGF-βR, and IL-6R shape kinase signaling networks to differentially regulate key pathways during the early phase of Treg versus Th17 induction. Quantitative biochemical analysis revealed that CD4+ T cells integrate receptor signals via SMAD3, which is a mediator of TGF-βR signaling. Treg induction potentiates the formation of the canonical SMAD3/4 trimer to activate a negative feedback loop through kinases PKA and CSK to suppress TCR signaling, phosphatidylinositol metabolism, and mTOR signaling. IL-6R signaling activates STAT3 to bind SMAD3 and block formation of the SMAD3/4 trimer during the early phase of Th17 induction, which leads to elevated TCR and PI3K signaling. These data provide a biochemical mechanism by which CD4+ T cells integrate TCR, TGF-β, and IL-6 signals via generation of alternate SMAD3 complexes that control the development of early signaling networks to potentiate the choice of Treg versus Th17 cell fate.  相似文献   

5.
BackgroundLung cancer is a significant health concern worldwide due to high mortality and morbidity, despite the advances in diagnosis, treatment, and management. Recent experimental evidence from different models suggested long non-coding RNAs (lncRNAs) as major modulators of cancer stem cells (CSCs) in the tumor microenvironment (TME) to support metastasis and drug resistance in lung cancer. Evidence-based studies demonstrated that natural products interfere with TME functions.Purpose of studyTo establish lncRNAs of TME as novel targets of natural compounds for lung cancer management.Study designCurrent study used a combination of TME and lung CSCs, lncRNAs and enrichment and stemness maintenance, natural products and stem cell management, natural products and lncRNAs, natural products and targeted delivery as keywords to retrieve the literature from Scopus, Web of Science, PubMed, and Google Scholar. This study critically reviewed the current literature and presented cancer stem cells' ability in reprogramming lung TME.ResultsThis review found that TME related oncogenic and tumor suppressor lncRNAs and their signaling pathways control the maintenance of stemness in lung TME. This review explored natural phenolic compounds and found that curcumin, genistein, quercetin epigallocatechin gallate and ginsenoside Rh2 are efficient in managing lung CSCs. They modulate lncRNAs and their upstream mediators by targeting signaling and epigenetic pathways. This review also identified relevant nanotechnology-based phytochemical delivery approaches for targeting lung cancer.ConclusionBy critical literature analysis, TME related lncRNAs were identified as potential therapeutic targets, aiming to develop natural product-based therapeutics to treat metastatic and drug-resistant lung cancers.  相似文献   

6.
IntroductionHigh Tregs infiltration within the tumour microenvironment (TME) of various cancers shows a positive correlation with poor prognosis. Despite the fact that tumour draining lymph nodes (TDLNs) are recognized as key organs playing a crucial role in response to immunotherapy and modulating anti-cancer immunity, the distribution of Tregs and their role in TDLNs remain uncertain thus far. The purpose of this project is to investigate the density of Tregs in TDLNs and non-TDLNs and their expression of immune checkpoint molecules – PD-1 and CTLA-4.MethodsSamples including TDLNs, non-TDLNs and metastatic lymph nodes (LNs) from 23 patients with oral squamous cell carcinoma (OSCC) were analyzed by multicolour flow cytometry with a focus on Tregs population and expression of CTLA-4 and PD-1.ResultsTDLNs and metastatic LNs were characterized by a significantly higher infiltration of Tregs defined as CD4+FoxP3+CD25highCD127low cells and significantly higher expression of CTLA-4 and PD-1 on Tregs compared with non-TDLNs. Tregs in TDLNs and metastatic LNs co-expressed CTLA-4 and PD-1 abundantly. High expression of these immune check-point molecules correlated with positive N-stage but not with T-stage.ConclusionTDLNs and metastatic LNs are characterized by a high accumulation of Tregs expressing high levels of CTLA-4 and PD-1. High infiltration of Tregs can be a potential driver of an immunosuppressive milieu in TDLNs that can, in turn, favour cancer progression. High accumulation of Tregs expressing CTLA-4 and PD-1 in TDLNs is associated with lymph node involvement, but not with the size of the primary tumour.  相似文献   

7.
8.
Lunasin is a naturally occurring peptide isolated from soybeans and has been explored in cancer treatment. Lunasin inhibits NF-κB activation and thus pro-inflammatory cytokine and mediator production in macrophages. In this study we demonstrate that lunasin can effectively suppress allergic airway inflammation in two murine models of asthma. In an OVA+Alum sensitization model, intranasal lunasin treatment at the time of OVA challenges significantly reduced total cells counts in bronchoalveolar lavage (BAL) fluid and eosinophilia, peribronchiolar inflammatory infiltration, goblet cell metaplasia and airway IL-4 production. In an OVA+LPS intranasal sensitization model, lunasin treatment either at the time of sensitization or challenge has similar effects in suppress allergic airway inflammation including significantly reduced total cell and eosinophil counts in BAL fluid, inflammatory gene Fizz1 expression in the lung, and IL-4 production by OVA re-stimulated cells from mediastinal lymph nodes. We further show that intranasal instillation of OVA+lunasin significantly increases OVA-specific regulatory T cell (Treg) accumulation in the lung comparing to OVA only treatment. Taken together, our results suggest lunasin as an anti-inflammatory agent can be potentially used in asthma therapy or as an adjuvant to enhance the induction of antigen-specific Tregs and thus boost the efficacy of allergy immunotherapy.  相似文献   

9.
Complex interactions between effector T cells and Foxp3+ regulatory T cells (Treg) contribute to clinical outcomes in cancer, and autoimmune and infectious diseases. Previous work showed that IL-12 reversed Treg-mediated suppression of CD4+Foxp3 T cell (Tconv) proliferation. We and others have also shown that Tregs express T-bet and IFN-γ at sites of Th1 inflammation and that IL-12 induces IFN-γ production by Tregs in vitro. To investigate whether loss of immunosuppression occurs when IFN-γ is expressed by Tregs we treated mouse lymphocyte cultures with IL-12. IFN-γ expression did not decrease the ability of Tregs to suppress Tconv proliferation. Rather, IL-12 treatment decreased Treg frequency and Foxp3 levels in Tregs. We further showed that IL-12 increased IL-2R expression on Tconv and CD8 T cells, diminished its expression on Tregs and decreased IL-2 production by Tconv and CD8 T cells. Together, these IL-12 mediated changes favored the outgrowth of non-Tregs. Additionally, we showed that treatment with a second cytokine, IL-27, decreased IL-2 expression without augmenting Tconv and CD8 T cell proliferation. Notably, IL-27 only slightly modified levels of IL-2R on non-Treg T cells. Together, these results show that IL-12 has multiple effects that modify the balance between Tregs and non-Tregs and support an important role for relative levels of IL-2R but not for IFN-γ expression in IL-12-mediated reversal of Treg immunosuppression.  相似文献   

10.
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture–based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.  相似文献   

11.
Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit the antitumor immune response. T cell surface receptors and surface proteins that influence interactions and function in the TME are proven targets for cancer immunotherapy. However, how the entire surface proteome remodels in primary human T cells in response to specific suppressive factors in the TME remains to be broadly and systematically characterized. Here, using a reductionist cell culture approach with primary human T cells and stable isotopic labeling with amino acids in cell culture–based quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors, regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8+ surface proteome (surfaceome). Surprisingly, coculturing primary CD8+ T cells with Tregs only modestly affected the CD8+ surfaceome but did partially reverse activation-induced surfaceomic changes. In contrast, hypoxia drastically altered the CD8+ surfaceome in a manner consistent with both metabolic reprogramming and induction of an immunosuppressed state. The CD4+ T cell surfaceome similarly responded to hypoxia, revealing a common hypoxia-induced surface receptor program. Our surfaceomics findings suggest that hypoxic environments create a challenge for T cell activation. These studies provide global insight into how Tregs and hypoxia remodel the T cell surfaceome and we believe represent a valuable resource to inform future therapeutic efforts to enhance T cell function.  相似文献   

12.
The progranulin (PGRN) is known to protect regulatory T cells (Tregs) from a negative regulation by TNF-α, and its levels are elevated in various kinds of autoimmune diseases. Whether PGRN directly regulates the conversion of CD4+CD25-T cells into Foxp3-expressing regulatory T cells (iTreg), and whether PGRN affects the immunosuppressive function of Tregs, however, remain unknown. In this study we provide evidences demonstrating that PGRN is able to stimulate the conversion of CD4+CD25-T cells into iTreg in a dose-dependent manner in vitro. In addition, PGRN showed synergistic effects with TGF-β1 on the induction of iTreg. PGRN was required for the immunosuppressive function of Tregs, since PGRN-deficient Tregs have a significant decreased ability to suppress the proliferation of effector T cells (Teff). In addition, PGRN deficiency caused a marked reduction in Tregs number in the course of inflammatory arthritis, although no significant difference was observed in the numbers of Tregs between wild type and PGRN deficient mice during development. Furthermore, PGRN deficiency led to significant upregulation of the Wnt receptor gene Fzd2. Collectively, this study reveals that PGRN directly regulates the numbers and function of Tregs under inflammatory conditions, and provides new insight into the immune regulatory mechanism of PGRN in the pathogenesis of inflammatory and immune-related diseases.  相似文献   

13.
14.
S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.  相似文献   

15.
Latency-associated peptide (LAP) - expressing regulatory T cells (Tregs) are important for immunological self-tolerance and immune homeostasis. In order to investigate the role of LAP in human CD4+Foxp3+ Tregs, we designed a cross-sectional study that involved 42 colorectal cancer (CRC) patients. The phenotypes, cytokine-release patterns, and suppressive ability of Tregs isolated from peripheral blood and tumor tissues were analyzed. We found that the population of LAP-positive CD4+Foxp3+ Tregs significantly increased in peripheral blood and cancer tissues of CRC patients as compared to that in the peripheral blood and tissues of healthy subjects. Both LAP+ and LAP Tregs had a similar effector/memory phenotype. However, LAP+ Tregs expressed more effector molecules, including tumor necrosis factor receptor II, granzyme B, perforin, Ki67, and CCR5, than their LAP negative counterparts. The in vitro immunosuppressive activity of LAP+ Tregs, exerted via a transforming growth factor-β–mediated mechanism, was more potent than that of LAP Tregs. Furthermore, the enrichment of LAP+ Treg population in peripheral blood mononuclear cells (PBMCs) of CRC patients correlated with cancer metastases. In conclusion, we found that LAP+ Foxp3+ CD4+ Treg cells represented an activated subgroup of Tregs having more potent regulatory activity in CRC patients. The increased frequency of LAP+ Tregs in PBMCs of CRC patients suggests their potential role in controlling immune response to cancer and presents LAP as a marker of tumor-specific Tregs in CRC patients.  相似文献   

16.
The tumor microenvironment (TME), which comprises cellular and noncellular components, is involved in the complex process of cancer development. Emerging evidence suggests that mesenchymal stem cells (MSCs), one of the vital regulators of the TME, foster tumor progression through paracrine secretion. However, the comprehensive phosphosignaling pathways that are mediated by MSC-secreting factors have not yet been fully established. In this study, we attempt to dissect the MSC-triggered mechanism in lung cancer using quantitative phosphoproteomics. A total of 1958 phosphorylation sites are identified in lung cancer cells stimulated with MSC-conditioned medium. Integrative analysis of the identified phosphoproteins and predicted kinases demonstrates that MSC-conditioned medium functionally promotes the proliferation and migration of lung cancer via the ERK/phospho-c-Fos-S374 pathway. Recent studies have reported that extracellular ATP accumulates in the TME and stimulates the P2X7R on the cancer cell membrane via purinergic signaling. We observe that ectopic ATP synthase is located on the surface of MSCs and excreted extracellular ATP into the lung cancer microenvironment to trigger the ERK/phospho-c-Fos-S374 pathway, which is consistent with these previous findings. Our results suggest that ectopic ATP synthase on the surface of MSCs releases extracellular ATP into the TME, which promotes cancer progression via activation of the ERK/phospho-c-Fos-S374 pathway.  相似文献   

17.
Vasohibin1 (VASH1) is a kind of vasopressor, produced by negative feedback from vascular endothelial growth factor A (VEGFA). Anti-angiogenic therapy targeting VEGFA is currently the first-line treatment for advanced ovarian cancer (OC), but there are still many adverse effects. Regulatory T cells (Tregs) are the main lymphocytes mediating immune escape function in the tumor microenvironment (TME) and have been reported to influence the function of VEGFA. However, whether Tregs are associated with VASH1 and angiogenesis in TME in OC is unclear. We aimed to explore the relationship between angiogenesis and immunosuppression in the TME of OC. We validated the relationship between VEGFA, VASH1, and angiogenesis in ovarian cancer and their prognostic implications. The infiltration level of Tregs and its marker forkhead box protein 3 (FOXP3) were explored in relation to angiogenesis-related molecules. The results showed that VEGFA and VASH1 were associated with clinicopathological stage, microvessel density and poor prognosis of ovarian cancer. Both VEGFA and VASH1 expression were associated with angiogenic pathways and there was a positive correlation between VEGFA and VASH1 expression. Tregs correlated with angiogenesis-related molecules and indicated that high FOXP3 expression is harmful to the prognosis. Gene set enrichment analysis (GSEA) predicted that angiogenesis, IL6/JAK/STAT3 signaling, PI3K/AKT/mTOR signaling, TGF-β signaling, and TNF-α signaling via NF-κB may be common pathways for VEGFA, VASH1, and Tregs to be involved in the development of OC. These findings suggest that Tregs may be involved in the regulation of tumor angiogenesis through VEGFA and VASH1, providing new ideas for synergistic anti-angiogenic therapy and immunotherapy in OC.  相似文献   

18.
Poor survival rates from lung cancer can largely be attributed to metastatic cells that invade and spread throughout the body. The tumor microenvironment (TME) is composed of multiple cell types, as well as non-cellular components. The TME plays a critical role in the development of metastatic cancers by providing migratory cues and changing the properties of the tumor cells. The Extracellular Matrix (ECM), a main component of the TME, has been shown to change composition during tumor progression, contributing to cancer cell invasion and survival away from the primary cancer site. Although the ECM is well-known to influence the fate of tumor progression, little is known about the molecular mechanisms that are affected by the cancer cell-ECM interactions. It is imperative that these mechanisms are elucidated in order to properly understand and prevent lung cancer dissemination. However, common in vitro studies do not incorporate these interactions into everyday cell culture assays. We have adopted a model that examines decellularized human fibroblast-derived ECM as a 3-dimensional substrate for growth of lung adenocarcinoma cell lines. Here, we have characterized the effect of fibroblast-derived matrices on the properties of various lung-derived epithelial cell lines, including cancerous and non-transformed cells. This work highlights the significance of the cell-ECM interaction and its requirement for incorporation into in vitro experiments. Implementation of a fibroblast-derived ECM as an in vitro technique will provide researchers with an important factor to manipulate to better recreate and study the TME.  相似文献   

19.
4-1BB (CD137), a member of the tumor necrosis factor receptor superfamily (TNFRSF), is primarily expressed on activated T cells and is known to enhance proliferation of T cells, prevent activation-induced cell death, and promote memory formation of CD8+ T cells. In particular, it is well acknowledged that 4-1BB triggering preferentially enhances the expansion of CD8+ T cells rather than CD4+ T cells, but the underlying mechanism remains unclear. Here we found that 4-1BB triggering markedly increased IL-2Rα (CD25) and IL-2 expressions of CD8+ T cells but minimally for CD4+ T cells. Proliferation of CD8+ T cells was moderately enhanced by direct 4-1BB triggering in the absence of signaling through IL-2Rα/IL-2 interactions, but further promoted in the presence of IL-2Rα/IL-2 interactions. Among the TNFRSF members including OX40, GITR, CD30, and CD27, 4-1BB was superior in the ability to induce IL-2Rα expression on CD8+ T cells. When the primary and secondary expansions of CD8+ T cells in vivo were examined by adoptively transferring OVA-specific CD8+ T cells along with the treatment with agonistic anti-4-1BB and/or antagonistic anti-CD25 F(ab’)2 mAb, 4-1BB triggering enhanced both primary and secondary expansion of CD8+ T cells in vivo, and the 4-1BB effects were moderately suppressed in primary expansion while completely abolished in secondary expansion of OVA-specific CD8+ T cells by blocking IL-2Rα. These results suggest that 4-1BB-mediated increases of IL-2Rα and IL-2 prolong the effects of transient TCR- and 4-1BB-mediated signaling in CD8+ T cells, and that 4-1BB triggering preferentially enhances the expansion of CD8+ T cells through the amplification of autocrine IL-2/IL-2R signaling loop.  相似文献   

20.

Background

Both regulatory T cells (Tregs) and T helper IL-17-producing cells (Th17 cells) have been found to be involved in human malignancies, however, the possible implication of Tregs in regulating generation and differentiation of Th17 cells in malignant pleural effusion remains to be elucidated.

Methods

The numbers of both CD39+Tregs and Th17 cells in malignant pleural effusion and peripheral blood from patients with lung cancer were determined by flow cytometry. The regulation and mechanism of Tregs on generation and differentiation of Th17 cells were explored.

Results

Both CD39+Tregs and Th17 cells were increased in malignant pleural effusion when compared with blood, and the numbers of CD39+Tregs were correlated negatively with those of Th17 cells. It was also noted that high levels of IL-1β, IL-6, and TGF-β1 could be observed in malignant pleural effusion when compared the corresponding serum, and that pleural CD39+Tregs could express latency-associated peptide on their surface. When naïve CD4+ T cells were cocultured with CD39+Tregs, Th17 cell numbers decreased as CD39+Treg numbers increased, addition of the anti-latency-associated peptide mAb to the coculture reverted the inhibitory effect exerted by CD39+Tregs.

Conclusions

Therefore, the above results indicate that CD39+Tregs inhibit generation and differentiation of Th17 cells via a latency-associated peptide-dependent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号