首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The effect of lignocellulose degradation in wheat straw, rice straw, and sugarcane bagasse on the accumulation and antioxidant activity of extra- (EPS) and intracellular polysaccharides (IPS) of Inonotus obliquus under submerged fermentation were first evaluated. The wheat straw, rice straw, and sugarcane bagasse increased the EPS accumulation by 91.4, 78.6, and 74.3 % compared with control, respectively. The EPS and IPS extracts from the three lignocellulose media had significantly higher hydroxyl radical- and 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity than those from the control medium. Of the three materials, wheat straw was the most effective lignocellulose in enhancing the mycelia growth, accumulation and antioxidant activity of I. obliquus polysaccharides (PS). The carbohydrate and protein content, as well as the monosaccharide compositions of the EPS and IPS extracts, were correlated with sugar compositions and dynamic contents during fermentation of individual lignocellulosic materials. The enhanced accumulation of bioactive PS of cultured I. obliquus supplemented with rice straw, wheat straw, and bagasse was evident.  相似文献   

2.
The ligninolytic fungus Pleurotus eryngii grown in liquid medium secreted extracellular polysaccharide (87% glucose) and the H2O2-producing enzyme aryl-alcohol oxidase (AAO). The production of both was stimulated by wheat-straw. Polyclonal antibodies against purified AAO were obtained, and a complex of glucanase and colloidal gold was prepared. With these tools, the localization of AAO and extracellular glucan in mycelium from liquid medium and straw degraded under solid-state fermentation conditions was investigated by transmission electron microscopy (TEM) and fluorescence microscopy. These studies revealed that P. eryngii produces a hyphal sheath consisting of a thin glucan layer. This sheath appeared to be involved in both mycelial adhesion to the straw cell wall during degradation and AAO immobilization on hyphal surfaces, with the latter evidenced by double labeling. AAO distribution during differential degradation of straw tissues was observed by immunofluorescence microscopy. Finally, TEM immunogold studies confirmed that AAO penetrates the plant cell wall during P. eryngii degradation of wheat straw.  相似文献   

3.
The presence of rotting barley straw in a dis used canal reduced the amount of filamentous algae. No effect on algae was observed during the first season after the introduction of straw but algae were decreased in three subsequent years. Algal growth on microscope slides suspended in the water downstream of the straw was reduced by 90%, compared with slides upstream of the straw. A similar result was obtained forCladophora glomerata grown in chambers in the canal. Phosphate, nitrate and ammonium concentrations were not altered significantly by the presence of straw, but nitrite concentrations were increased during summer months. Neither the nitrite increase, nor the possibility of pesticides being washed off the straw were considered likely causes of algal growth inhibition. Growth ofC. glomerata was inhibited in cages from which macro-invertebrate grazers were excluded. No obvious deleterious environmental effects were noted and the technique shows promise as a long-term method of controlling algae.  相似文献   

4.
《Process Biochemistry》2004,39(11):1433-1439
Rice straw hemicellulosic hydrolysate containing a high xylose concentration was used as fermentation medium to evaluate the kinetic behavior of Candida guilliermondii yeast (FTI 20037) during the bioconversion of xylose into xylitol. Assays were conducted first with detoxified and non-detoxified (raw) hydrolysates and semi-synthetic medium in agitated flasks, and second with detoxified hydrolysate in a stirred-tank bioreactor at a given oxygen transfer rate. The results for the agitated flasks showed that in detoxified hydrolysate the xylose-to-xylitol bioconversion by the yeast was as effective as in synthetic medium and 47% higher than in raw hydrolysate. In the stirred-tank bioreactor, the kinetic behavior of the yeast in detoxified hydrolysate was slower, resulting in smaller values of fermentative parameters, probably due to unsuitability of the oxygen transfer rate employed (KLa=22 h−1).  相似文献   

5.
Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than α-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium.  相似文献   

6.
Penicillium urticae Bainier synthesized patulin in potato-dextrose medium at temperatures ranging from 5 to 30°C. Maximum patulin yield was 2700 μg/ml of culture fluid in 14 days at 25°C. Two distinctive intervals affected patulin formation: 15 to 20°C and 30 to 35°C, the former favorable and the latter detrimental. An incubation period of 11 to 14 days made a nonsterile mixture of weathered wheat straw and soil a favorable medium for patulin formation. Autoclaved weathered wheat straw, inoculated withP. urticae alone, or in combination withTrichoderma sp., was a medium comparable to nonsterile, incubated weathered wheat straw in soil. Both carbon source and accessory growth factors were important for patulin formation. Of seven media tested, potato-dextrose was superior to potatodextrose supplemented with 70 ppm Zn-ions and 16 ppm Fe-ions, potatosucrose, Raulin-Thom, autoclaved weathered wheat straw in pure culture, weathered wheat straw in nonsterile soil, and autoclaved weathered wheat straw in mixed culture, in that order. Patulin production ranged from 337.5 to 0.2 mg/g of C in the medium. Contribution from the Northern Plains Branch, Soil and Water Conservation Research Division, Agricultural Research Service, U.S. Department of Agriculture, in cooperation with the Nebraska Agricultural Experiment Station, Lincoln. Published as Paper No.2621, Journal Series, Nebraska Agricultural Experiment Station.  相似文献   

7.
For the first time the production of poly(β-l -malic acid) (PMA) has been achieved using agricultural biomass substrates by the yeast-like fungus Aureobasidium pullulans. Strains NRRL Y-2311-1, NRRL 50382, NRRL 50383, and NRRL 50384, representing diverse isolation sources and phylogenetic clades, produced PMA from alkaline H2O2-pretreated corn fiber and wheat straw as sole carbon sources. Pretreated wheat straw was better than pretreated corn fiber, and strain NRRL 50383 gave the highest overall yields of PMA. The addition of CaCO3 plus supplementary hydrolytic enzymes enhanced PMA production. Four basal media were compared for PMA production, and the best was found to be a N-limited pullulan production medium (PM). In this medium, PMA production took place during growth limitation. Under optimal conditions, strain NRRL 50383 produced more than 20 g PMA/l from 5 % (w/v) pretreated wheat straw in PM with 3 % (w/v) CaCO3 and supplementary enzymes.  相似文献   

8.
Two experiments were conducted to assess the feeding value of ammoniated and untreated flax straw, wheat straw and wheat chaff in comparison to a mixed bromegrass/alfalfa hay. Anhydrous ammonia was applied to the crop residues at the rate of 35 kg t−1 dry matter. In the first experiment, the effect of ammoniation on crude protein, acid detergent fibre (ADF), neutral detergent fibre (NDF) and acid detergent lignin (ADL), digestible organic matter in vitro and in vivo (DOM%), ADF and NDF digestibility of the crop residues was determined. In the second experiment, ammoniated flax straw, ammoniated wheat straw, ammoniated and untreated wheat chaff, each supplemented with barley, were compared to bromegrass/alfalfa hay as feed sources for wintering beef cows.Ammoniation increased the crude protein content of the crop residues ∼2-fold. Wheat straw DOM in vitro and in vivo was not increased by ammoniation. Ammoniation increased the DOM in vitro of wheat chaff from 36.3 to 46% and flax straw from 35.2 to 46.3%. The DOM in vivo increased from 53.3 to 63.4% (P < 0.05) for wheat chaff and from 33.9 to 58.4% (P < 0.05) for flax straw following ammoniation. Digestibility of ADF increased from 9.9 to 43.9% (P < 0.05) and of NDF from −0.6 to 37.9% (P < 0.05) in flax straw with ammoniation. Non-significant increases in ADF and NDF digestibility were observed for all other crop residues. Lignin content was not changed in the crop residues by ammoniation.In the winter feeding trial, young cows gained more weight than older cows (P < 0.05). Average daily gains of cows were greatest for hay followed by ammoniated flax straw, ammoniated chaff, untreated chaff and ammoniated wheat straw rations (P < 0.05). Increases in backfat in the younger cows was greatest with hay and ammoniated flax straw, followed by ammoniated chaff and ammoniated wheat straw (P < 0.05). Untreated chaff caused no increase in backfat thickness.Ammoniated flax straw (3.2 kg day−1) given with barley (5.6 kg day−1), is similar in feeding value to medium quality bromegrass/alfalfa hay. Furthermore, wheat chaff and ammoniated wheat chaff show good potential as alternatives to hay in winter feeding.  相似文献   

9.
Cellulase yields of 250 to 430 IU/g of cellulose were recorded in a new approach to solid-state fermentation of wheat straw with Trichoderma reesei QMY-1. This is an increase of ca. 72% compared with the yields (160 to 250 IU/g of cellulose) in liquid-state fermentation reported in the literature. High cellulase activity (16 to 17 IU/ml) per unit volume of enzyme broth and high yields of cellulases were attributed to the growth of T. reesei on a hemicellulose fraction during its first phase and then on a cellulose fraction of wheat straw during its later phase for cellulase production, as well as to the close contact of hyphae with the substrate in solid-state fermentation. The cellulase system obtained by the solid-state fermentation of wheat straw contained cellulases (17.2 IU/ml), β-glucosidase (21.2 IU/ml), and xylanases (540 IU/ml). This cellulase system was capable of hydrolyzing 78 to 90% of delignified wheat straw (10% concentration) in 96 h, without the addition of complementary enzymes, β-glucosidase, and xylanases.  相似文献   

10.
When Pseudomonas putida 40 was grown on a variety of liquid media in which oxygen became a limiting factor during growth, the latter stages of growth involved the elongation of cells without septation, which can result in the complete filamentation of the culture (up to several hundred micrometers long). The filaments appeared to consist of a chain of protoplasts within a common sacculus. Later these filaments were capable of a rapid fragmentation by septation to give a population of ordinary rods with a corresponding increase in the number of viable particles but no appreciable change in total bacterial mass. Filamentation did not occur if slow growth rates were maintained by restriction of oxygen availability from the beginning of growth. In complex media filaments were not formed during growth on 1% peptone alone, but the addition of 0.1 M phosphate or 6.6 × 10−4 M EDTA induced extensive filamentation that was reversed by the addition of 6.6 × 10−4 M Mg2+. In minimal media a much higher Mg2+ concentration than that required for active growth or present in the complex media was usually required for filamentation. A very narrow range of Mg2+ concentration promoted filamentation, and this optimum differed markedly depending on the carbon source used. Other medium variations which influenced the level of filamentation are reported. We found that most strains of P. putida (including the neotype strain) and P. fluorescens gave filaments under the conditions developed with strain 40, whereas several strains of P. aeruginosa failed to give filaments on the same media.  相似文献   

11.
《Biological Control》2011,56(3):241-247
Displacement of the fungus Fusarium pseudograminearum from stubble by antagonists is a potential means of biocontrol of crown rot in cereals. The role of carbon and nitrogen nutrition in interactions between the pathogen and the antagonists Fusarium equiseti, Fusarium nygamai, Trichoderma harzianum and the non-antagonistic straw fungus Alternaria infectoria was investigated. Sole carbon source utilization patterns on Biolog plates were similar among the three Fusarium species, suggesting a possible role for competition. However, carbon niche overlap was unlikely to be important in antagonism by T. harzianum. Straw medium supplemented with sugars generally reduced the inhibitory effect of antagonists on growth of F. pseudograminearum in dual culture, indicating that availability of simple carbon sources does not limit antagonism. Adding nitrogen as urea, nitrate or ammonium to straw medium had little effect on antagonism by F. equiseti and F. nygamai, but ammonium addition removed the inhibitory effect of T. harzianum on growth of F. pseudograminearum. Displacement of F. pseudograminearum from straw by all fungi in a Petri dish assay was greater when urea or nitrate was used as a nitrogen source than with ammonium. All forms of nitrogen significantly increased displacement of F. pseudograminearum from straw under simulated field conditions when straws were either inoculated with T. harzianum or exposed to resident soil microbes. However, in 2 out of 3 experiments urea and nitrate were more effective than ammonium. The results suggest that availability of nitrogen, but not carbon, is limiting the activities of antagonists of F. pseudograminearum in straw, and the way nitrogen is applied can influence the rate of displacement and mortality of the pathogen in host residues.  相似文献   

12.
Tail biting is a common problem in pigs kept in conventional fully slatted pens. Suitable enrichment materials can help to prevent the occurrence of this behavioural disorder by encouraging pigs to increase exploration behaviour. We investigated whether additional flavours can increase exploration behaviour in undocked pigs. Therefore, we offered straw pellets flavoured with either fried onion (FO), strawberry (SB), ginger, almond (AL), vanilla or without flavour (control) during rearing (eight groups in total) and fattening (16 groups in total). Flavoured pellets were offered in an altering order during intervals of 1 week in material dispensers. Exploration duration at the material dispensers was continuously recorded via an ultra-high-frequency radio-frequency identification system. Pigs were weighed weekly and their tail lengths and tail injuries were scored in four categories. For analysis, changes in tail length scores compared to the previous week were calculated as Δ-tail length. The different flavours affected pigs’ exploration durations in both rearing (factor flavour, P < 0.0001) and fattening (factor flavour, P < 0.0001). Highest exploration durations during rearing were recorded when straw pellets were flavoured with FO and AL compared to all others. During fattening, exploration duration was highest towards controls without significant difference to SB. Exploration durations additionally were affected by temporal effects, i.e. week and day during rearing (both factors: P < 0.0001) and fattening (both factors: P < 0.0001). During rearing, highest exploration durations were recorded in the first week and on the first day within week after changing the flavour of the straw pellets. During fattening, exploration durations varied between weeks and within weeks. The highest durations were recorded at the end of weeks, i.e. on the fifth and seventh days after material change. During rearing, tail injuries were affected by week (P < 0.0001). From the fourth week of rearing, the prevalence of tail injuries significantly increased. During the fattening period, tail injuries were affected by flavour (P < 0.05). Fattening pigs had fewest tail injuries after straw pellets flavoured with AL were offered. Altogether, based on the exploration durations, rearing pigs showed different preferences for the flavoured straw pellets but highly explored flavours differed between rearing and fattening pigs. Despite a weekly change of the flavour of straw pellets, exploration durations decreased during rearing but increased again in the transition between rearing and fattening. Thus, straw pellets with alternating flavours are a suitable possibility to provide environmental enrichment to pigs but will not prevent tail biting.  相似文献   

13.
Liamocins are unique heavier-than-water “oils” produced by certain strains of the fungus Aureobasidium pullulans. Liamocins have antibacterial activity with specificity for Streptococcus sp. Previous studies reported that liamocin yields were highest from strains of A. pullulans belonging to phylogenetic clades 8, 9, and 11, cultured on medium containing sucrose. In this study, 27 strains from these clades were examined for the first time for production of liamocins from agricultural biomass substrates. Liamocin yields were highest from strains in phylogenetic clade 11, and yields were higher from cultures grown on sucrose than from those grown on pretreated wheat straw. However, when supplementary enzymes (cellulase, β-glucosidase, and xylanase) were added, liamocin production on pretreated wheat straw was equivalent to that on sucrose. Liamocins produced from wheat straw were free of the melanin contamination common in sucrose-grown cultures. Furthermore, MALDI-TOF MS analysis showed that liamocins produced from wheat straw were under-acetylated, resulting in higher proportions of the mannitol A1 and B1 species of liamocin, the latter of which has the highest biological activity against Streptococcus sp.  相似文献   

14.
Summary F-actin distribution during male meiosis in Magnolia soulangeana was studied by means of fluorescence microscopy following staining with rhodaminephalloidin. Actin filaments were observed to persist during all of the developmental stages of meiosis. Four main types of configurations were recognized: (1) peripheral filaments underlying the plasma membrane (cortical network); (2) filaments dispersed throughout the inner cytoplasm (central cytoplasmic network); (3) filaments associated with the meiotic spindles; (4) filaments associated with the phragmoplasts. The cortical and central cytoplasmic filaments exhibited different behaviours. Whereas the cortical network remained present in an apparently unchanged form during all of the meiotic stages, the central cytoplasmic filaments, although they never completely disappeared, were reduced and concentrated around the nucleus at the end of prophase. At metaphase, fluorescent spindles consisting of filament bundles running from pole to pole or being interrupted at the equatorial zone could be seen. At the end of both the first and second division of meiosis, fluorescent bands of filaments (disks) appeared at the level of the cell division planes (equatorial regions) where cleavage furrows were constituted. These cleavage furrows did not form when floral buds were cultivated in a cytochalasin-containing medium. Our results show that during microsporogenesis in M. soulangeana the actin filaments constitute a highly complex and dynamic system that is involved in particular in cytoplasm cleavage of the meiocytes.  相似文献   

15.
The role of filaments in consistency changes and movement in a motile cytoplasmic extract of Amoeba proteus was investigated by correlating light and electron microscopic observations with viscosity measurements. The extract is prepared by the method of Thompson and Wolpert (1963). At 0°C, this extract is nonmotile and similar in structure to ameba cytoplasm, consisting of groundplasm, vesicles, mitochondria, and a few 160 A filaments. The extract undergoes striking ATP-stimulated streaming when warmed to 22°C. Two phases of movement are distinguished. During the first phase, the apparent viscosity usually increases and numerous 50–70 A filaments appear in samples of the extract prepared for electron microscopy, suggesting that the increase in viscosity in caused, at least in part, by the formation of these thin filaments. During this initial phase of ATP-stimulated movement, these thin filaments are not detectable by phase-contrast or polarization microscopy, but later, in the second phase of movement, 70 A filaments aggregate to form birefringent microscopic fibrils. A preparation of pure groundplasm with no 160 A filaments or membranous organelles exhibits little or no ATP-stimulated movement, but 50–70 A filaments form and aggregate into birefringent fibrils. This observation and the structural relationship of the 70 A and the 160 A filaments in the motile extract suggest that both types of filaments may be required for movement. These two types of filaments, 50–70 A and 160 A, are also present in the cytoplasm of intact amebas. Fixed cells could not be used to study the distribution of these filaments during natural ameboid movement because of difficulties in preserving the normal structure of the ameba during preparation for electron microscopy.  相似文献   

16.

Background

The protein kinases Mps1 and Polo, which are required for proper cell cycle regulation in meiosis and mitosis, localize to numerous ooplasmic filaments during prometaphase in Drosophila oocytes. These filaments first appear throughout the oocyte at the end of prophase and are disassembled after egg activation.

Methodology/Principal Findings

We showed here that Mps1 and Polo proteins undergo dynamic and reversible localization to static ooplasmic filaments as part of an oocyte-specific response to hypoxia. The observation that Mps1- and Polo-associated filaments reappear in the same locations through multiple cycles of oxygen deprivation demonstrates that underlying structural components of the filaments must still be present during normoxic conditions. Using immuno-electron microscopy, we observed triple-helical binding of Mps1 to numerous electron-dense filaments, with the gold label wrapped around the outside of the filaments like a garland. In addition, we showed that in live oocytes the relocalization of Mps1 and Polo to filaments is sensitive to injection of collagenase, suggesting that the structural components of the filaments are composed of collagen-like fibrils. However, the collagen-like genes we have been able to test so far (vkg and CG42453) did not appear to be associated with the filaments, demonstrating that the collagenase-sensitive component of the filaments is one of a number of other Drosophila proteins bearing a collagenase cleavage site. Finally, as hypoxia is known to cause Mps1 protein to accumulate at kinetochores in syncytial embryos, we also show that GFP-Polo accumulates at both kinetochores and centrosomes in hypoxic syncytial embryos.

Conclusions/Significance

These findings identify both a novel cellular structure (the ooplasmic filaments) as well as a new localization pattern for Mps1 and Polo and demonstrate that hypoxia affects Polo localization in Drosophila.  相似文献   

17.
Thielaviopsis basicola is a hemibiotrophic root pathogen causing black root rot in a wide range of economically important crops. Our initial attempts to transform T. basicola using standard Agrobacterium tumefaciens–mediated transformation (ATMT) protocols were unsuccessful. Successful transformation required the addition of V8 juice (to induce germination of T. basicola chlamydospores) and higher concentrations of acetosyringone in the co-cultivation medium, and of chlamydospores/endoconidia, A. tumefaciens cells during co-cultivation. With these modifications, two T. basicola strains were successfully transformed with the green (egfp) or red (AsRed) fluorescent protein genes. Chlamydospores/endoconidia transformed with the egfp gene exhibited strong green fluorescence, but their fluorescence became weaker as the germ tubes emerged. Transformants harbouring the AsRed gene displayed strong red fluorescence in both chlamydospores/endoconidia and germ tubes. Fluorescent microscopic observations of an AsRed-labelled strain colonizing roots of transgenic Nicotiana benthamiana plants, which express the actin filaments labelled with EGFP, at 24 hours post inoculation showed varying levels of fungal germination and penetration. At this stage, the infection appeared to be biotrophic with the EGFP-labelled host actin filaments not being visibly degraded, even in host root cells in close contact with the hyphae. This is the first report of ATMT of T. basicola, and the use of an AsRed-labelled strain to directly observe the root infection process.  相似文献   

18.
There are mutants of Salmonella enterica (with mutations in fliF and fliL) that shed flagella when they are swimming in a viscous medium or on the surface of soft agar. Filaments with hooks and the distal rod segment FlgG are recovered. We tried to extract flagellar filaments from such cells by pulling on them with an optical trap but failed, even when we used forces large enough to straighten the filaments. Thus, flagella are firmly anchored.  相似文献   

19.
Beggiatoa spp. grow optimally in media containing opposed gradients of oxygen and soluble sulfide, although some strains also require an organic substrate. By using microelectrodes, we characterized oxygen and sulfide gradients during their initial development in uninoculated media and in cultures of marine and freshwater strains. In gradient media, Beggiatoa strains always grew some distance below the air/agar interface as a dense “plate” of constantly gliding filaments with sharply demarcated upper and lower boundaries. Within established plates, the maximum oxygen partial pressure was 0.6 to 6.0% of air saturation and not significantly lower if filaments were fixing nitrogen. Oxygen penetrated only 100 to 300 μm into the plate, and the anoxic fraction increased from less than 10% to approximately 90% during later stages of growth. For lithoautotrophically grown marine strains, the linearity of the oxygen profile above the plate plus its drop to zero therein indicated that oxygen uptake for the entire tube occurred only within the Beggiatoa plate. Consequently, oxygen consumption could be predicted solely from the distance between the air/agar interface and the top of a plate, given the diffusion coefficient for oxygen. By contrast, for freshwater strains grown heterotrophically (with sulfide also in the medium), oxygen profiles were frequently nonlinear because of nonbiological reaction with sulfide which had diffused past the aggregated filaments. For all strains tested, microoxic aggregation also occurred in the absence of sulfide, apparently reflecting a step-up phobic response to oxygen.  相似文献   

20.
Wan C  Li Y 《Bioresource technology》2011,102(16):7507-7512
Different types of feedstocks, including corn stover, wheat straw, soybean straw, switchgrass, and hardwood, were tested to evaluate the effectiveness of fungal pretreatment by Ceriporiopsis subvermispora. After 18-d pretreatment, corn stover, switchgrass, and hardwood were effectively delignified by the fungus through manganese peroxidase and laccase. Correspondingly, glucose yields during enzymatic hydrolysis reached 56.50%, 37.15%, and 24.21%, respectively, which were a 2 to 3-fold increase over those of the raw materials. A further 10-30% increase in glucose yields was observed when pretreatment time extended to 35 d. In contrast, cellulose digestibility of wheat straw and soybean straw was not significantly improved by fungal pretreatment. When external carbon sources and enzyme inducers were added during fungal pretreatment of wheat straw and soybean straw, only glucose and malt extract addition improved cellulose digestibility of wheat straw. The cellulose digestibility of soybean straw was not improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号