首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent studies show that cancer cells are sometimes able to evade the host immunity in the tumor microenvironment. Cancer cells can express high levels of immune inhibitory signaling proteins. One of the most critical checkpoint pathways in this system is a tumor-induced immune suppression (immune checkpoint) mediated by the programmed cell death protein 1 (PD-1) and its ligand, programmed death ligand 1 (PD-L1). PD-1 is highly expressed by activated T cells, B cells, dendritic cells, and natural killer cells, whereas PD-L1 is expressed on several types of tumor cells. Many studies have shown that blocking the interaction between PD-1 and PD-L1 enhances the T-cell response and mediates antitumor activity. In this review, we highlight a brief overview of the molecular and biochemical events that are regulated by the PD-1 and PD-L1 interaction in various cancers.  相似文献   

2.
Of the inhibitory checkpoints in the immune system, programmed death 1 (PD-1) is one of the most promising targets for cancer immunotherapy. The anti-PD-1 antibodies currently approved for clinical use or under development bind to human PD-1 (hPD-1), but not murine PD-1. To facilitate studies in murine models, we developed a functional antibody against both human and murine PD-1, and compared the epitopes of such antibody to a counterpart that only bound to hPD-1. To quickly identify the epitopes of the 2 antibodies, we used alanine scanning and mammalian cell expression cassette. The epitope identification was based on PD-1-binding ELISA and supported by affinity ranking of surface plasmon resonance results. The hPD-1 epitopes of the 2 functional antibodies were also compared with the binding region on hPD-1 that is responsible for PD-L1 interaction. In silico modeling were conducted to explain the different binding modes of the 2 antibodies, suggesting a potential mechanism of the antibody cross-species binding.  相似文献   

3.
4.
Proper targeting of the βPAK-interacting exchange factor (βPIX)/G protein-coupled receptor kinase-interacting target protein (GIT) complex into distinct cellular compartments is essential for its diverse functions including neurite extension and synaptogenesis. However, the mechanism for translocation of this complex is still unknown. In the present study, we reported that the conventional kinesin, called kinesin-1, can transport the βPIX/GIT complex. Additionally, βPIX bind to KIF5A, a neuronal isoform of kinesin-1 heavy chain, but not KIF1 and KIF3. Mapping analysis revealed that the tail of KIF5s and LZ domain of βPIX were the respective binding domains. Silencing KIF5A or the expression of a variety of mutant forms of KIF5A inhibited βPIX targeting the neurite tips in PC12 cells. Fur-thermore, truncated mutants of βPIX without LZ domain did not interact with KIF5A, and were unable to target the neurite tips in PC12 cells. These results defined kinesin-1 as a motor protein of βPIX, and may provide new insights into βPIX/GIT complex-dependent neuronal pathophysiology.  相似文献   

5.
6.
7.
8.
9.
Reactive astrocytes are implicated in traumatic spinal cord injury (TSCI). Interestingly, naïve astrocytes can easily transform into neurotoxic reactive astrocytes (A1s) with inflammatory stimulation. Previous studies demonstrated that microRNA(miR)-21a-5p was up-regulated in spinal cord tissue after TSCI; however, it is not clear whether this affected reactive astrocyte polarization. Here, we aim to detect the effects of miR-21a-5p on the induction of A1 formation and the underlying mechanisms. Our study found that the expression of miR-21a-5p was significantly increased while that of Cntfr α was decreased, since naïve astrocytes transformed into A1s 3 days post-TSCI; the binding site between miR-21a-5p and Cntfr α was further confirmed in astrocytes. After treatment with CNTF, the levels of A1 markers decreased while that of A2 increased. The expression of A1 markers significantly decreased with the downregulation of miR-21a-5p, while Cntfr α siRNA treatment caused the opposite both in vitro and in vivo. To summarize, miR-21a-5p/Cntfr α promotes A1 induction and might enhance the inflammatory process of TSCI; furthermore, we identified, for the first time, the effect and potential mechanism by which CNTF inhibits naïve astrocytes transformation into A1s. Collectively, our findings demonstrate that targeting miR-21a-5p represents a prospective therapy for promoting the recovery of TSCI.  相似文献   

10.
11.
12.
13.
拟南芥AtDAD1 超量表达植株对H2O2抗性的研究   总被引:1,自引:0,他引:1  
构建拟南芥AtDAD1超量表达载体,以农杆菌介导的方法转化拟南芥哥伦比亚生态型,比较AtDAD1超量表达植株和野生型植株表现型的差异,以及两者对H2O2抗性的不同。实验显示,AtDAD1转基因拟南芥生长较野生型拟南芥更为强壮,对高浓度H2O2有较强的耐受力。测定两者糖含量,发现AtDAD1转基因拟南芥叶片糖的含量明显高于野生型拟南芥叶片。以上结果表明,AtDAD1基因可能参与植物生长发育,并可能在拟南芥抵抗凋亡的过程中发挥重要的作用。  相似文献   

14.
Although E3 ubiquitin ligases are deemed to play key roles in normal cell function and homeostasis, whether their alterations contribute to cancer pathogenesis remains unclear. In this study, we sought to investigate potential mechanisms that govern WWP1/Tiul1 (WWP1) ubiquitin ligase activity, focusing on its ability to trigger degradation of TGFβ type I receptor (TβRI) in conjunction with Smad7. Our data reveal that the WWP1 protein is very stable at steady states because its autopolyubiquitination activity is silenced due to an intra-interaction between the C2 and/or WW and Hect domains that favors WWP1 monoubiquitination at the expense of its polyubiquitination or polyubiquitination of TβRI. Upon binding of WWP1 to Smad7, this functional interplay is disabled, switching its monoubiquitination activity toward a polyubiquitination activity, thereby driving its own degradation and that of TβRI as well. Intriguingly, a WWP1 point mutation found in human prostate cancer disrupts this regulatory mechanism by relieving the inhibitory effects of C2 and WW on Hect and thereby causing WWP1 hyperactivation. That cancer-driven alteration of WWP1 culminates in excessive TβRI degradation and attenuated TGFβ cytostatic signaling, a consequence that could conceivably confer tumorigenic properties to WWP1.  相似文献   

15.
Signalling through the IGF1R [type 1 IGF (insulin-like growth factor) receptor] and canonical Wnt signalling are two signalling pathways that play critical roles in regulating neural cell generation and growth. To determine whether the signalling through the IGF1R can interact with the canonical Wnt signalling pathway in neural cells in vivo, we studied mutant mice with altered IGF signalling. We found that in mice with blunted IGF1R expression specifically in nestin-expressing neural cells (IGF1RNestin−KO mice) the abundance of neural β-catenin was significantly reduced. Blunting IGF1R expression also markedly decreased: (i) the activity of a LacZ (β-galactosidase) reporter transgene that responds to Wnt nuclear signalling (LacZTCF reporter transgene) and (ii) the number of proliferating neural precursors. In contrast, overexpressing IGF-I (insulin-like growth factor I) in brain markedly increased the activity of the LacZTCF reporter transgene. Consistently, IGF-I treatment also markedly increased the activity of the LacZTCF reporter transgene in embryonic neuron cultures that are derived from LacZTCF Tg (transgenic) mice. Importantly, increasing the abundance of β-catenin in IGF1RNestin−KO embryonic brains by suppressing the activity of GSK3β (glycogen synthase kinase-3β) significantly alleviated the phenotypic changes induced by IGF1R deficiency. These phenotypic changes includes: (i) retarded brain growth, (ii) reduced precursor proliferation and (iii) decreased neuronal number. Our current data, consistent with our previous study of cultured oligodendrocytes, strongly support the concept that IGF signalling interacts with canonical Wnt signalling in the developing brain to promote neural proliferation. The interaction of IGF and canonical Wnt signalling plays an important role in normal brain development by promoting neural precursor proliferation.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号