首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coenzyme Q 10 (CoQ 10 ) is an essential cofactor of the electron transport gene as well as an important antioxidant, which is particularly effective within mitochondria. A number of prior studies have shown that it can exert efficacy in treating patients with known mitochondrial disorders. We investigated the potential usefulness of coenzyme Q 10 in animal models of Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). It has been demonstrated that CoQ 10 can protect against striatal lesions produced by the mitochondrial toxins malonate and 3-nitropropionic acid. These toxins have been utilized to model the striatal pathology, which occurs in HD. It also protects against 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice. CoQ 10 significantly extended survival in a transgenic mouse model of ALS. CoQ 10 can significantly extend survival, delay motor deficits and delay weight loss and attenuate the development of striatal atrophy in a transgenic mouse model of HD. In this mouse model, it showed additive efficacy when combined with the N -methyl- d -aspartate (NMDA) receptor antagonist, remacemide. CoQ 10 is presently being studied as a potential treatment for early PD as well as in combination with remacemide as a potential treatment for HD.  相似文献   

2.
Coenzyme Q10 as a possible treatment for neurodegenerative diseases   总被引:1,自引:0,他引:1  
Coenzyme Q 10 (CoQ 10 ) is an essential cofactor of the electron transport gene as well as an important antioxidant, which is particularly effective within mitochondria. A number of prior studies have shown that it can exert efficacy in treating patients with known mitochondrial disorders. We investigated the potential usefulness of coenzyme Q 10 in animal models of Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). It has been demonstrated that CoQ 10 can protect against striatal lesions produced by the mitochondrial toxins malonate and 3-nitropropionic acid. These toxins have been utilized to model the striatal pathology, which occurs in HD. It also protects against 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice. CoQ 10 significantly extended survival in a transgenic mouse model of ALS. CoQ 10 can significantly extend survival, delay motor deficits and delay weight loss and attenuate the development of striatal atrophy in a transgenic mouse model of HD. In this mouse model, it showed additive efficacy when combined with the N -methyl- d -aspartate (NMDA) receptor antagonist, remacemide. CoQ 10 is presently being studied as a potential treatment for early PD as well as in combination with remacemide as a potential treatment for HD.  相似文献   

3.
Beal MF 《Amino acids》2011,40(5):1305-1313
There is a substantial body of literature, which has demonstrated that creatine has neuroprotective effects both in vitro and in vivo. Creatine can protect against excitotoxicity as well as against β-amyloid toxicity in vitro. We carried out studies examining the efficacy of creatine as a neuroprotective agent in vivo. We demonstrated that creatine can protect against excitotoxic lesions produced by N-methyl-d-aspartate. We also showed that creatine is neuroprotective against lesions produced by the toxins malonate and 3-nitropropionic acid (3-NP) which are reversible and irreversible inhibitors of succinate dehydrogenase, respectively. Creatine produced dose-dependent neuroprotective effects against MPTP toxicity reducing the loss of dopamine within the striatum and the loss of dopaminergic neurons in the substantia nigra. We carried out a number of studies of the neuroprotective effects of creatine in transgenic mouse models of neurodegenerative diseases. We demonstrated that creatine produced an extension of survival, improved motor performance, and a reduction in loss of motor neurons in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Creatine produced an extension of survival, as well as improved motor function, and a reduction in striatal atrophy in the R6/2 and the N-171-82Q transgenic mouse models of Huntington’s disease (HD), even when its administration was delayed until the onset of disease symptoms. We recently examined the neuroprotective effects of a combination of coenzyme Q10 (CoQ10) with creatine against both MPTP and 3-NP toxicity. We found that the combination of CoQ and creatine together produced additive neuroprotective effects in a chronic MPTP model, and it blocked the development of alpha-synuclein aggregates. In the 3-NP model of HD, CoQ and creatine produced additive neuroprotective effects against the size of the striatal lesions. In the R6/2 transgenic mouse model of HD, the combination of CoQ and creatine produced additive effects on improving survival. Creatine may stabilize mitochondrial creatine kinase, and prevent activation of the mitochondrial permeability transition. Creatine, however, was still neuroprotective in mice, which were deficient in mitochondrial creatine kinase. Administration of creatine increases the brain levels of creatine and phosphocreatine. Due to its neuroprotective effects, creatine is now in clinical trials for the treatment of Parkinson’s disease (PD) and HD. A phase 2 futility trial in PD showed approximately a 50% improvement in Unified Parkinson’s Disease Rating Scale at one year, and the compound was judged to be non futile. Creatine is now in a phase III clinical trial being carried out by the NET PD consortium. Creatine reduced plasma levels of 8-hydroxy-2-deoxyguanosine in HD patients phase II trial and was well-tolerated. Creatine is now being studied in a phase III clinical trial in HD, the CREST trial. Creatine, therefore, shows great promise in the treatment of a variety of neurodegenerative diseases.  相似文献   

4.
Parkinson's disease (PD) is a degenerative neurological disorder. Recent studies have demonstrated reduced activity of complex I of the electron transport chain in brain and platelets from patients with PD. Platelet mitochondria from parkinsonian patients were found to have lower levels of coenzyme Q10 (CoQ10) than mitochondria from age/sex-matched controls. There was a strong correlation between the levels of CoQ10 and the activities of complexes I and II/III. Oral CoQ10 was found to protect the nigrostriatal dopaminergic system in one-year-old mice treated with MPTP, a toxin injurious to the nigrostriatal dopaminergic system. We further found that oral CoQ10 was well absorbed in parkinsonian patients and caused a trend toward increased complex I activity. These data suggest that CoQ10 may play a role in cellular dysfunction found in PD and may be a potential protective agent for parkinsonian patients.  相似文献   

5.
Parkinson’s disease is a neurodegenerative disorder characterized by mitochondrial dysfunction and oxidative stress. It is usually accompanied by an imbalance in mitochondrial dynamics and changes in mitochondrial morphology that are associated with impaired function. The objectives of this study were to identify the effects of rotenone, a drug known to mimic the pathophysiology of Parkinson’s disease, on mitochondrial dynamics. Additionally, this study explored the protective effects of water-soluble Coenzyme Q10 (CoQ10) against rotenone-induced cytotoxicity in murine neuronal HT22 cells. Our results demonstrate that rotenone elevates protein expression of mitochondrial fission markers, Drp1 and Fis1, and causes an increase in mitochondrial fragmentation as evidenced through mitochondrial staining and morphological analysis. Water-soluble CoQ10 prevented mitochondrial dynamic imbalance by reducing Drp1 and Fis1 protein expression to pre-rotenone levels, as well as reducing rotenone treatment-associated mitochondrial fragmentation. Hence, water-soluble CoQ10 may have therapeutic potential in treating patients with Parkinson’s disease.  相似文献   

6.
There is substantial evidence that a bioenergetic defect may play a role in the pathogenesis of Huntington's Disease (HD). A potential therapy for remediating defective energy metabolism is the mitochondrial cofactor, coenzyme Q10 (CoQ10). We have reported that CoQ10 is neuroprotective in the R6/2 transgenic mouse model of HD. Based upon the encouraging results of the CARE-HD trial and recent evidence that high-dose CoQ10 slows the progressive functional decline in Parkinson's disease, we performed a dose ranging study administering high levels of CoQ10 from two commercial sources in R6/2 mice to determine enhanced efficacy. High dose CoQ10 significantly extended survival in R6/2 mice, the degree of which was dose- and source-dependent. CoQ10 resulted in a marked improvement in motor performance and grip strength, with a reduction in weight loss, brain atrophy, and huntingtin inclusions in treated R6/2 mice. Brain levels of CoQ10 and CoQ9 were significantly lower in R6/2 mice, in comparison to wild type littermate control mice. Oral administration of CoQ10 elevated CoQ10 plasma levels and significantly increased brain levels of CoQ9, CoQ10, and ATP in R6/2 mice, while reducing 8-hydroxy-2-deoxyguanosine concentrations, a marker of oxidative damage. We demonstrate that high-dose administration of CoQ10 exerts a greater therapeutic benefit in a dose dependent manner in R6/2 mice than previously reported and suggest that clinical trials using high dose CoQ10 in HD patients are warranted.  相似文献   

7.
In previous works we have demonstrated plasma CoQ10 alterations in pituitary diseases, such as acromegaly or secondary hypothyroidism. However, pituitary lesions can induce complex clinical pictures due to alterations of different endocrine axes controlled by pituitary itself. A further rationale for studying CoQ10 in pituitary-adrenal diseases is related to the common biosynthetic pathway of cholesterol and ubiquinone. We have therefore assayed plasma CoQ10 levels in different conditions with increased or defective activity of pituitary-adrenal axis (3 subjects with ACTH-dependent adrenal hyperplasia, 2 cases of Cushing's disease and 1 case of 17-alpha-hydroxylase deficiency; 10 subjects with secondary hypoadrenalism, including three subjects with also secondary hypothyroidism). CoQ10 levels were significantly lower in isolated hypoadrenalism than in patients with adrenal hyperplasia and multiple pituitary deficiencies (mean +/- SEM: 0.57 +/- 0.04 vs 1.08 +/- 0.08 and 1.10 +/- 0.11 microg/ml, respectively); when corrected for cholesterol levels, the same trend was observed, but did not reach statistical significance. These preliminary data indicate that secretion of adrenal hormones is in some way related to CoQ10 levels, both in augmented and reduced conditions. However, since thyroid hormones have an important role in modulating CoQ10 levels and metabolism, when coexistent, thyroid deficiency seems to play a prevalent role in comparison with adrenal deficiency.  相似文献   

8.
Coenzyme Q10 (CoQ10) is an antioxidant, a membrane stabilizer, and a vital cofactor in the mitochondrial electron transport chain, enabling the generation of adenosine triphosphate. It additionally regulates gene expression and apoptosis; is an essential cofactor of uncoupling proteins; and has anti-inflammatory, redox modulatory, and neuroprotective effects. This paper reviews the known physiological role of CoQ10 in cellular metabolism, cell death, differentiation and gene regulation, and examines the potential repercussions of CoQ10 depletion including its role in illnesses such as Parkinson’s disease, depression, myalgic encephalomyelitis/chronic fatigue syndrome, and fibromyalgia. CoQ10 depletion may play a role in the pathophysiology of these disorders by modulating cellular processes including hydrogen peroxide formation, gene regulation, cytoprotection, bioenegetic performance, and regulation of cellular metabolism. CoQ10 treatment improves quality of life in patients with Parkinson’s disease and may play a role in delaying the progression of that disorder. Administration of CoQ10 has antidepressive effects. CoQ10 treatment significantly reduces fatigue and improves ergonomic performance during exercise and thus may have potential in alleviating the exercise intolerance and exhaustion displayed by people with myalgic encepholamyletis/chronic fatigue syndrome. Administration of CoQ10 improves hyperalgesia and quality of life in patients with fibromyalgia. The evidence base for the effectiveness of treatment with CoQ10 may be explained via its ability to ameliorate oxidative stress and protect mitochondria.  相似文献   

9.
In previous works we demonstrated an inverse correlation between plasma Coenzyme Q 10 (CoQ10) and thyroid hormones; in fact, CoQ10 levels in hyperthyroid patients were found among the lowest detected in human diseases. On the contrary, CoQ10 is elevated in hypothyroid subjects, also in subclinical conditions, suggesting the usefulness of this index in assessing metabolic status in thyroid disorders. On the other hand, a low-T3 syndrome, due to reduced peripheral conversion from the prohormone T4, is observed in different chronic diseases: this condition is considered an adaptation mechanism, usually not to be corrected by replacement therapy. In order to perform a metabolic evaluation, we have studied a group of 15 patients, aged 69-82 ys, affected by chronic obstructive pulmonary disease (COPD), comparing respiratory indexes, thyroid hormones and CoQ10 levels (also normalized with cholesterol levels) in patients with low (group A) or normal (group B) free-T3 (FT3) concentrations. We found that CoQ10 levels were significantly higher in patients of group A than in B (0.91+/- 0.03 vs 0.7 +/- 0.04 microg/ml respectively); the same difference was observed when comparing the ratios between CoQ10/cholesterol in the two groups (200.16 +/- 8.96 vs 161.08 +/- 7.03 nmol/mmol respectively). These preliminary data seem to indicate that low T3 levels are accompanied by metabolic indexes of a true hypothyroidism in COPD patients. Whether this datum supports the need to perform a replacement therapy in such a condition requires further studies.  相似文献   

10.
COENZYME Q10 IN PHYSICAL EXERCISE. We identified eleven studies in which CoQ10 was tested for an effect on exercise capacity, six showed a modest improvement in exercise capacity with CoQ10 supplementation but five showed no effect. CoQ10 IN HYPERTENSION. We identified eight published trials of CoQ10 in hypertension. Altogether in the eight studies the mean decrease in systolic blood pressure was 16 mm Hg and in diastolic blood pressure, 10 mm Hg. Being devoid of significant side effects CoQ10 may have a role as an adjunct or alternative to conventional agents in the treatment of hypertension. CoQ10 IN HEART FAILURE. We performed a randomised double blind placebo-controlled pilot trial of CoQ10 therapy in 35 patients with heart failure. Over 3 months, in the CoQ10 patients but not in the placebo patients there were significant improvements in symptom class and a trend towards improvements in exercise time. META-ANALYSIS OF RANDOMISED TRIALS OF COENZYME Q10 IN HEART FAILURE. In nine randomised trials of CoQ10 in heart failure published up to 2003 there were non-significant trends towards increased ejection fraction and reduced mortality. There were insufficient numbers of patients for meaningful results. To make more definitive conclusions regarding the effect of CoQ10 in cardiac failure we recommend a prospective, randomised trial with 200-300 patients per study group. Further trials of CoQ10 in physical exercise and in hypertension are recommended.  相似文献   

11.
It has been shown that treating hypercholesterolemic patients (HPC) with statins leads to a decrease, at least in plasma, not only in cholesterol, but also in important non-sterol compounds such as ubiquinone (CoQ10), and possibly dolichols, that derive from the same biosynthetic pathway. Plasma CoQ10 decrease might result in impaired antioxidant protection, therefore leading to oxidative stress. In the present paper we investigated the levels in plasma, lymphocytes and erythrocytes, of ubiquinol and ubiquinone, other enzymatic and non-enzymatic lipophilic and hydrophilic antioxidants, polyunsaturated fatty acids of phosfolipids and cholesterol ester fractions, as well as unsaturated lipid and protein oxidation in 42 hypercholesterolemic patients treated for 3 months. The patients were treated with different doses of 3 different statins, i.e. atorvastatin 10 mg (n = 10) and 20 mg (n = 7), simvastatin, 10 mg (n = 5) and 20 mg (n = 10), and pravastatin, 20 mg (n = 5) and 40 mg (n = 5). Simvastatin, atorvastatin and pravastatin produced a dose dependent plasma depletion of total cholesterol (t-CH), LDL-C, CoQ10H2, and CoQ10, without affecting the CoQ10H2/CoQ10 ratio. The other lipophilic antioxidants (d-RRR-alpha-tocopherol-vit E-, gamma-tocopherol, vit A, lycopene, and beta-carotene), hydrophilic antioxidants (vit C and uric acid), as well as, TBA-RS and protein carbonyls were also unaffected. Similarly the erythrocyte concentrations of GSH and PUFA, and the activities of enzymatic antioxidants (Cu,Zn-SOD, GPx, and CAT) were not significantly different from those of the patients before therapy. In lymphocytes the reduction concerned CoQ10H2, CoQ10, and vit E; other parameters were not investigated. The observed decline of the levels of CoQ10H2 and CoQ10 in plasma and of CoQ10H2, CoQ10 and vit E in lymphocytes following a 3 month statin therapy might lead to a reduced antioxidant capacity of LDL and lymphocytes, and probably of tissues such as liver, that have an elevated HMG-CoA reductase enzymatic activity. However, this reduction did not appear to induce a significant oxidative stress in blood, since the levels of the other antioxidants, the pattern of PUFA as well as the oxidative damage to PUFA and proteins resulted unchanged. The concomitant administration of ubiquinone with statins, leading to its increase in plasma, lymphocytes and liver may cooperate in counteracting the adverse effects of statins, as already pointed out by various authors on the basis of human and animal studies.  相似文献   

12.
13.
Substantial evidence implicates oxidative modification of low density lipoprotein (LDL) as an important event contributing to atherogenesis. As a result, the elucidation of the molecular mechanisms by which LDL is oxidized and how such oxidation is prevented by antioxidants has been a significant research focus. Studies on the antioxidation of LDL lipids have focused primarily on alpha-tocopherol (alpha-TOH), biologically and chemically the most active form of vitamin E and quantitatively the major lipid-soluble antioxidant in extracts prepared from human LDL. In addition to alpha-TOH, plasma LDL also contains low levels of ubiquinol-10 (CoQ10H2; the reduced form of coenzyme Q10). Recent studies have shown that in oxidizing plasma lipoproteins alpha-TOH can exhibit anti- or pro-oxidant activities for the lipoprotein's lipids exposed to a vast array of oxidants. This article reviews the molecular action of alpha-TOH in LDL undergoing "mild" radical-initiated lipid peroxidation, and discusses how small levels of CoQ10H2 can represent an efficient antioxidant defence for lipoprotein lipids. We also comment on the levels alpha-TOH, CoQ10H2 and lipid oxidation products in the intima of patients with coronary artery disease and report on preliminary studies examining the effect of coenzyme Q10 supplementation on atherogenesis in apolipoprotein E knockout mice.  相似文献   

14.
Huntington's disease (HD) is a fatal neurodegenerative disorder of genetic origin with no known therapeutic intervention that can slow or halt disease progression. Transgenic murine models of HD have significantly improved the ability to assess potential therapeutic strategies. The R6/2 murine model of HD, which recapitulates many aspects of human HD, has been used extensively in pre-clinical HD therapeutic treatment trials. Of several potential therapeutic candidates, both minocycline and coenzyme Q10 (CoQ10) have been demonstrated to provide significant improvement in the R6/2 mouse. Given the specific cellular targets of each compound, and the broad array of abnormalities thought to underlie HD, we sought to assess the effects of combined minocycline and CoQ10 treatment in the R6/2 mouse. Combined minocycline and CoQ10 therapy provided an enhanced beneficial effect, ameliorating behavioral and neuropathological alterations in the R6/2 mouse. Minocycline and CoQ10 treatment significantly extended survival and improved rotarod performance to a greater degree than either minocycline or CoQ10 alone. In addition, combined minocycline and CoQ10 treatment attenuated gross brain atrophy, striatal neuron atrophy, and huntingtin aggregation in the R6/2 mice relative to individual treatment. These data suggest that combined minocycline and CoQ10 treatment may offer therapeutic benefit to patients suffering from HD.  相似文献   

15.
Bronchial asthma is a chronic inflammatory disease of respiratory system, with disturbances in the dynamic balance of oxidant-antioxidant capacity of the lungs. Long-term administration of corticosteroids has been shown to result in mitochondrial dysfunction and oxidative damage of mitochondrial and nuclear DNAs. We previously documented decreased coenzyme Q(10) (CoQ(10)) and alpha-tocopherol concentrations in plasma and blood in corticosteroid-dependent bronchial asthma patients. In the present study we demonstrate that CoQ(10) supplementation reduces the dosage of corticosteroids in these patients. PATIENTS AND METHODS: This was an open, cross-over, randomized clinical study with 41 bronchial asthma patients (13 males, 28 females), ages 25-50 years. All patients suffered from persistent mild to moderate asthma. The patients were divided into two groups, one group receiving standard antiasthmatic therapy and clinically stabilized, and the second group receiving, in addition, antioxidants consisting of CoQ(10) as Q-Gel (120 mg) + 400 mg alpha-tocopherol + 250 mg vitamin C a day. The groups were crossed over at 16 weeks for a total duration of 32 weeks. RESULTS AND CONCLUSIONS: Data show that patients with corticosteroid-dependent bronchial asthma have low plasma CoQ(10) concentrations that may contribute to their antioxidant imbalance and oxidative stress. A reduction in the dosage of corticosteroids required by the patients following antioxidant supplementation was observed, indicating lower incidence of potential adverse effects of the drugs, decreased oxidative stress. This study also demonstrates the significant uptake of CoQ(10) by lung tissue in a rat model using hydrosoluble CoQ(10) (Q-Gel).  相似文献   

16.
The COQ2 gene encodes an essential enzyme for biogenesis, coenzyme Q10 (CoQ10). Recessive mutations in this gene have recently been identified in families with multiple system atrophy (MSA). Moreover, specific heterozygous variants in the COQ2 gene have also been reported to confer susceptibility to sporadic MSA in Japanese cohorts. These findings have suggested the potential usefulness of CoQ10 as a blood-based biomarker for diagnosing MSA. This study measured serum levels of CoQ10 in 18 patients with MSA, 20 patients with Parkinson’s disease and 18 control participants. Although differences in total CoQ10 (i.e., total levels of serum CoQ10 and its reduced form) among the three groups were not significant, total CoQ10 level corrected by serum cholesterol was significantly lower in the MSA group than in the Control group. Our findings suggest that serum CoQ10 can be used as a biomarker in the diagnosis of MSA and to provide supportive evidence for the hypothesis that decreased levels of CoQ10 in brain tissue lead to an increased risk of MSA.  相似文献   

17.
Primary coenzyme Q10 deficiency and the brain   总被引:3,自引:0,他引:3  
Our findings in 19 new patients with cerebellar ataxia establish the existence of an ataxic syndrome due to primary CoQ10 deficiency and responsive to CoQ10 therapy. As all patients presented cerebellar ataxia and cerebellar atrophy, this suggests a selective vulnerability of the cerebellum to CoQ10 deficiency. We investigated the regional distribution of coenzyme Q10 in the brain of adult rats and in the brain of one human subject. We also evaluated the levels of coenzyme Q9 (CoQ9) and CoQ10 in different brain regions and in visceral tissues of rats before and after oral administration of CoQ10. Our results show that in rats, amongst the seven brain regions studied, cerebellum contains the lowest level of CoQ. However, the relative proportion of CoQ10 was the same (about 30% of total CoQ) in all regions studied. The level of CoQ10 is much higher in brain than in blood or visceral tissue, such as liver, heart, or kidney. Daily oral administration of CoQ10 led to substantial increases of CoQ10 concentrations only in blood and liver. Of the four regions of one human brain studied, cerebellum again had the lowest CoQ10y concentration.  相似文献   

18.
Coenzyme Q10, a cutaneous antioxidant and energizer.   总被引:14,自引:0,他引:14  
The processes of aging and photoaging are associated with an increase in cellular oxidation. This may be in part due to a decline in the levels of the endogenous cellular antioxidant coenzyme Q10 (ubiquinone, CoQ10). Therefore, we have investigated whether topical application of CoQ10 has the beneficial effect of preventing photoaging. We were able to demonstrate that CoQ10 penetrated into the viable layers of the epidermis and reduce the level of oxidation measured by weak photon emission. Furthermore, a reduction in wrinkle depth following CoQ10 application was also shown. CoQ10 was determined to be effective against UVA mediated oxidative stress in human keratinocytes in terms of thiol depletion, activation of specific phosphotyrosine kinases and prevention of oxidative DNA damage. CoQ10 was also able to significantly suppress the expression of collagenase in human dermal fibroblasts following UVA irradiation. These results indicate that CoQ10 has the efficacy to prevent many of the detrimental effects of photoaging.  相似文献   

19.
Cyclosporine A (CsA) plays a pivotal role in controlling Ca2+ movement in the cell modulating also the mitochondrial permeability transition pore. We investigated if chronic administration of CsA may have some effects on the lipophilic and hydrophilic antioxidant pattern of rat liver mitochondria and on their morphological structure. It seems that CsA administration does not statistically affect the redox status of the antioxidants investigated and their amounts (vitamin E, CoQ9, CoQ10, glutathione, uric acid and ascorbic acid) despite the variety of effects that this treatment produces at physiological and morphological levels. However, some kind of derangement could occur in the liver biochemical machinery since CsA treatment induces a markedly increased variability in antioxidant contents.  相似文献   

20.
Overview of the use of CoQ10 in cardiovascular disease.   总被引:5,自引:0,他引:5  
The clinical experience in cardiology with CoQ10 includes studies on congestive heart failure, ischemic heart disease, hypertensive heart disease, diastolic dysfunction of the left ventricle, and reperfusion injury as it relates to coronary artery bypass graft surgery. The CoQ10-lowering effect of HMG-CoA reductase inhibitors and the potential adverse consequences are of growing concern. Supplemental CoQ10 alters the natural history of cardiovascular illnesses and has the potential for prevention of cardiovascular disease through the inhibition of LDL cholesterol oxidation and by the maintenance of optimal cellular and mitochondrial function throughout the ravages of time and internal and external stresses. The attainment of higher blood levels of CoQ10 (> 3.5 micrograms/ml) with the use of higher doses of CoQ10 appears to enhance both the magnitude and rate of clinical improvement. In this communication, 34 controlled trials and several open-label and long-term studies on the clinical effects of CoQ10 in cardiovascular diseases are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号