首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 1989, Shier and Watt identified a gene which was predicted to encode a new member of the insulin receptor (IR) family, and they called it the insulin receptor-related receptor (IRR) (Shier, P., and Watt, V. M. (1989) J. Biol. Chem. 264, 14605-14608). However, the tissues expressing this receptor, its ligand binding specificity and its signaling capability have remained unknown. In the present studies we report Northern blot analyses and polymerase chain reaction data, which indicate that the IRR mRNA is expressed in a variety of tissues, including the human kidney, heart, skeletal muscle, liver, and pancreas. In order to examine the ligand(s) recognized by IRR, we constructed a chimeric receptor with the extracellular domain of the IR replaced with that of IRR. This chimera was found not to bind radioactively labeled insulin, insulin-like growth factor I (IGF-I), or IGF-II. These ligands and relaxin, the only other known member of the mammalian insulin family, also failed to stimulate the tyrosine kinase activity of this chimeric receptor. A second chimeric receptor with the extracellular domain of IR and the kinase domain of IRR was also constructed and utilized to study the signaling capabilities of the kinase domain of IRR. This chimera exhibited high affinity insulin binding and insulin-stimulated tyrosine kinase activity. The kinase domains of the IR and IRR were found capable of phosphorylating the same spectrum of exogenous and endogenous substrates. However, Chinese hamster ovary (CHO) cells stably overexpressing the kinase domain of IRR exhibited elevated basal thymidine incorporation and 2-deoxyglucose uptake compared with CHO cells and CHO cells overexpressing wild-type IR. We conclude that: 1) IRR is expressed in the human kidney, heart, skeletal muscle, liver, and pancreas, 2) IRR does not appear to be the receptor of any known member of the insulin family, and 3) the tyrosine kinase of IRR appears to be similar to that of IR in both the spectrum of substrates phosphorylated and the biological responses stimulated.  相似文献   

2.
3.
The insulin receptor-related receptor (IRR) is a member of the insulin receptor family. So far no ligand has yet been discovered for this receptor type (orphan receptor). IRR, insulin receptor (IR), and insulin-like growth factor-I receptor (IGF-I-R) are all tyrosine kinases. The cellular function of the IRR is not known. The expression of IRR mRNA is restricted to a few, e.g. neuronal tissues, and has also been found in neuroblastomas. Since tyrosine kinase receptors, including the IGF-I-R, may be involved in tumor genesis, we examined the expression of IRR mRNA and IGF-I-mRNA in 18 tumor cell lines using RT-PCR and the solution hybridization/RNAse protection assay. In particular, the mRNA levels of IRR and IGF-I-R were compared by semi-quantitative RT-PCR in seven neuroblastomas and 11 soft tissue sarcomas (STS), five of which were of neuronal origin. In all of the seven neuroblastoma cell lines and in five of the 11 STS cell lines, the IRR mRNA was detected. In addition, the IRR mRNA was expressed in rhabdomyosarcoma, in leiomyosarcoma, in one of the Ewing sarcoma and in the neurofibrosarcoma cell line. The last two tumor cell types are of neuronal origin. The levels of expression of IGF-I-R and IRR mRNA of the neuroblastoma cell lines were closely related (r = 0.82, P < 0.002). Furthermore, IRR mRNA was found only in cell lines that also expressed IGF-I-R mRNA. In conclusion, cell lines from pediatric tumors of neuronal origin express IRR mRNA simultaneously with a another tyrosine kinase receptor (IGF-I-R) mRNA. The tight coupling of their mRNA expression suggests a functional association of both receptors in the tumor cells.  相似文献   

4.
The expression of insulin receptor mRNA was studied in human and rodent tissues by Northern analysis. Human EBV-transformed lymphocytes contained four receptor mRNA species of sufficient length to encode the entire proreceptor: 9.5, 7.9, 7.1, and 5.7 kb. In human fibroblasts, the same four species were observed; however, the 7.9 and 5.7 kb mRNAs were markedly decreased. In mouse liver, rat hepatoma cells, and normal rat brain, kidney, liver, and muscle only two mRNA species (7.4 and 9.6 kb) were detected. Each of these human and rodent mRNAs hybridized equally well with cDNA sequences encoding the binding and kinase domains of the insulin receptor. Several smaller polyadenylated mRNAs (approximately 1.8 to 3.3 kb) were also identified in human cell lines that appeared to separately encode either alpha- or beta-subunit sequences of the receptor. In rats, liver had the highest content of insulin receptor mRNA, followed by kidney, brain, and muscle. The relative amount of the two mRNA species also varied among the rat tissues. The ratio of the 9.6-7.4 kb species was 2.7 in brain but only 1.0 to 1.6 in the other tissues (P less than 0.025). Dexamethasone treatment increased the content of the two insulin receptor mRNAs in rat liver by 2-fold. The half-life of both mRNA species was 70 min in rat hepatoma cells. These findings indicate that insulin receptor gene expression is complex and regulated with differential expression of insulin receptor mRNA and/or alterations in mRNA processing among various tissues.  相似文献   

5.
The molecular phylogeny of the vertebrate insulin receptor (IR) family was reconstructed under maximum likelihood (ML) to establish homologous relationships among its members. A sister group relationship between the orphan insulin-related receptor (IRR) and the insulin-like growth factor 1 receptor (IGF1R) to the exclusion of the IR obtained maximal bootstrap support. Although both IR and IGF1R were identified in all vertebrates, IRR could not be found in any teleost fish. The ancestral character states at each position of the receptor molecule were inferred for IR, IRR + IGF1R, and all 3 paralogous groups based on the recovered phylogeny using ML in order to determine those residues that could be important for the specific function of IR. For 18 residues, ancestral character state of IR was significantly distinct (probability >0.95) with respect to the corresponding inferred ancestral character states both of IRR + IGF1R and of all 3 vertebrate paralogs. Most of these IR distinct (shared derived) residues were located on the extracellular portion of the receptor (because this portion is larger and the rate of generation of IR shared derived sites is uniform along the receptor), suggesting that functional diversification during the evolutionary history of the family was largely generated modifying ligand affinity rather than signal transduction at the tyrosine kinase domain. In addition, 2 residues at positions 436 and 1095 of the human IR sequence were identified as radical cluster-specific sites in IRR + IGF1R. Both Ir and Irr have an extra exon (namely exon 11) with respect to Igf1r. We used the molecular phylogeny to infer the evolution of this additional exon. The Irr exon 11 can be traced back to amphibians, whereas we show that presence and alternative splicing of Ir exon 11 seems to be restricted exclusively to mammals. The highly divergent sequence of both exons and the reconstructed phylogeny of the vertebrate IR family strongly indicate that both exons were acquired independently by each paralog.  相似文献   

6.
Insulin gene expression has been demonstrated in nonpancreatic tissues early in development, suggesting that this hormone might have actions significant for the differentiating embryo. Because such actions imply ligand-receptor binding, we quantified mRNAs encoding the two known forms of insulin receptor in rat liver and yolk sac, two endodermally derived tissues shown to express insulin genes, between gestation days (E) 13 and E21 (mid-organogenesis to parturition). Because of its presumed importance for fetal growth, we estimated the abundance of mRNA encoding insulin-like growth factor 1 (IGF 1) receptor in the same samples for comparison. The abundance of insulin receptor mRNA exceeded that for IGF 1 receptor mRNA in liver and yolk sac at all times studied. This difference was greater in liver, where insulin receptor mRNAs were three to more than 50 times more abundant than IGF 1 receptor mRNA on gestation days E13-E16, times which antedate the development of significant hepatic metabolic actions of insulin. The marked abundance of mRNAs encoding insulin receptors is consistent with the hypothesis that insulin has significant actions in specific tissues during the organogenic period.  相似文献   

7.
Gene expression, receptor binding and growth-promoting activity of insulin-like growth factor I (IGF I) was studied in cultured astrocytes from developing rat brain. Northern blot analysis of poly(A)+ RNAs from astrocytes revealed an IGF I mRNA of 1.9 kb. Competitive binding and receptor labelling techniques revealed two types of IGF receptor in astroglial cells. Type I IGF receptors consist of alpha-subunits (Mr 130,000) which bind IGF I with significantly higher affinity than IGF II, and beta-subunits (Mr 94,000) which show IGF I-sensitive tyrosine kinase activity. Type II IGF receptors are monomers (Mr 250,000) which bind IGF II with three times higher affinity than IGF I. Both types of IGF receptor recognize insulin weakly. DNA synthesis measured by cellular thymidine incorporation was stimulated 2-fold by IGF I and IGF II. IGF I was more potent than IGF II, and both were significantly more potent than insulin. Our findings suggest that IGF I is synthesized in fetal rat astrocytes and acts as a growth promoter for the same cells by activation of the type I IGF receptor tyrosine kinase. We propose that IGF I acts through autocrine or paracrine mechanisms to stimulate astroglial cell growth during normal brain development.  相似文献   

8.
The insulin receptor related receptor (IRR) is a heterotetrameric transmembrane receptor with intrinsic tyrosine kinase activity. The IRR shares large homology with the insulin and the insulin-like growth factor-1 (IGF-I) receptor with regard to amino acid sequence and protein structure. So far, only a partial human sequence containing the complete 3' end has been reported, although the full-length human IRR cDNA had been used for transfection studies and functional analysis of the receptor. We have isolated a full-length human IRR cDNA and report on the 5' translated and untranslated region of the human IRR gene. The full length IRR sequence contains 4150 bases and shares a high degree of homology with the guinea pig IRR cDNA sequence and rat IRR sequences that had been reported earlier on by others. Sequencing of the IRR cDNA revealed that the human IRR cDNA contains 341 bases corresponding to the IRR 5' end in addition to the bases that had been reported on before. Also, this sequence contains the start codon of translation. The full length cDNA for the human IRR can now be used for functional expression studies and to elucidate the nature of the ligand for this receptor type.  相似文献   

9.
Kang HM  Park S  Kim H 《Cell proliferation》2011,44(3):254-263
Objectives: Previously, we have isolated stem cells (HEAC) from human eyelid adipose tissue and functionally differentiated them into insulin‐secreting cells. In the present study, we examined whether insulin family members might influence insulinogenic differentiation of HEAC. Materials and methods: Following culture in differentiation media containing insulin family member or not, cells were examined for gene expression, protein expression and, particularly, insulin and C‐peptide secretion, in response to high glucose challenge. Using antibodies against the specific receptor, target receptor mediating effect of the insulin family member was investigated. Results: Insulin treatment during culture had little effect on either insulin or C‐peptide secretion from HEAC, against high glucose challenge after culture. However, insulin‐like growth factor (IGF) 1 treatment decreased both secretions, and interestingly, IGF2 greatly increased the secretions. HEAC treated with IGF2 had strong expression of Pdx1, Isl1, Pax6 and PC1/3 genes, and distinct staining after insulin and C‐peptide antibodies, and dithizone. IGF2‐enhanced insulinogenic differentiation was totally blocked by antibody against insulin receptor (IR), but not by anti‐IGF1 receptor (IGF1R). Differentiated HEAC expressed both IR and IGF1R genes, whereas they expressed neither IGF2 nor IGF2R genes. Conclusions: From these results, it is suggested that IGF1 might inhibit insulinogenic differentiation of HEAC, whereas IGF2 enhances differentiation, and that enhancement of IGF2 appeared to be mediated via IR.  相似文献   

10.
Although insulin receptor (InsR) and type I insulin-like growth factor receptor (IGF-IR) elicit different physiological effects in their target tissues, their signaling capabilities are similar to a large extent. In the present work, we investigated the potential of the third member of the family, insulin receptor-related receptor (IRR), to associate with known interaction partners of the InsR and the IGF-I receptor in a yeast two-hybrid assay. Using the intracellular part of the IRR we found no association with any of the tested signaling molecules. Phosphotyrosine detection revealed a lack in the constitutive activation of the IRR described for analogous constructs of the two other members of the family. Replacement of the kinase domain of the IGF-IR or its C-terminal lobe alone into the IRR caused a complete restoration of the tyrosine phosphorylation of the IRR. The reestablishment of autophosphorylation was paralleled by restoration of interaction with a specific range of signaling molecules.  相似文献   

11.
The insulin receptor (IR), the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor-related receptor (IRR) are covalently-linked homodimers made up of several structural domains. The molecular mechanism of ligand binding to the ectodomain of these receptors and the resulting activation of their tyrosine kinase domain is still not well understood. We have carried out an amino acid residue conservation analysis in order to reconstruct the phylogeny of the IR Family. We have confirmed the location of ligand binding site 1 of the IGF1R and IR. Importantly, we have also predicted the likely location of the insulin binding site 2 on the surface of the fibronectin type III domains of the IR. An evolutionary conserved surface on the second leucine-rich domain that may interact with the ligand could not be detected. We suggest a possible mechanical trigger of the activation of the IR that involves a slight 'twist' rotation of the last two fibronectin type III domains in order to face the likely location of insulin. Finally, a strong selective pressure was found amongst the IRR orthologous sequences, suggesting that this orphan receptor has a yet unknown physiological role which may be conserved from amphibians to mammals.  相似文献   

12.
The insulin receptor-related receptor (IRR), an orphan receptor tyrosine kinase of the insulin receptor family,?can be activated by alkaline media both in?vitro and in?vivo at pH >7.9. The alkali-sensing property of IRR is conserved in frog, mouse, and human. IRR activation is specific, dose-dependent and quickly reversible and demonstrates positive cooperativity. It also triggers receptor conformational changes and elicits intracellular signaling. The pH sensitivity of IRR is primarily defined by its L1F extracellular domains. IRR is predominantly expressed in organs that come in contact with mildly alkaline media. In particular, IRR is expressed in the cell subsets of the kidney that secrete bicarbonate into urine. Disruption of IRR in mice impairs the renal response to alkali loading attested by development of metabolic alkalosis and decreased urinary bicarbonate excretion in response to this challenge. We therefore postulate that IRR is an alkali sensor that functions in the kidney to manage metabolic bicarbonate excess.  相似文献   

13.
Several studies support the idea that the polypeptides belonging to the family of insulin and insulin-like growth factors (IGFs) play an important role in brain development and continue to be produced in discrete areas of the adult brain. In numerous neuronal populations within the olfactory bulb, the cerebral and cerebellar cortex, the hippocampus, some diencephalic and brainstem nuclei, the spinal cord and the retina, specific insulin and IGF receptors, as well as crucial components of the intracellular receptor signaling pathway have been demonstrated. Thus, mature neurons are endowed with the cellular machinery to respond to insulin and IGF stimulation. Studies in vitro and in vivo, using normal and transgenic animals, have led to the hypothesis that, in the adult brain, IGF-I not only acts as a trophic factor, but also as a neuromodulator of some higher brain functions, such as long-term potentiation and depression. Furthermore, a trophic effect on certain neuronal populations becomes clearly evident in the ischemic brain or neurodegenerative disorders. Thus, the analysis of the early intracellular signaling pathway for the insulin/IGF receptor family in the brain is providing us with new intriguing findings on the way the mammalian brain is sculpted and operates.  相似文献   

14.
15.
B Zhang  R A Roth 《Biochemistry》1991,30(21):5113-5117
We constructed and expressed chimeric receptor cDNAs with insulin receptor exon 3 (residues 191-297 of the cysteine-rich region) replaced with either the comparable region of the insulin-like growth factor I receptor (IGF-IR) or the insulin receptor related receptor (IRR). Both chimeric receptors still could bind insulin with as high affinity as the wild-type receptor. In addition, chimeric receptors containing exon 3 of the IGF-IR could also bind with high affinity both IGF-I and IGF-II. In contrast, chimeric receptors containing exon 3 of IRR did not bind either IGF-I, IGF-II, or relaxin. These results indicate that (1) the high affinity of binding of insulin to its receptor can occur in the absence of insulin receptor specific residues encoded by exon 3, the cysteine-rich region; (2) the cysteine-rich region of the IGF-I receptor can confer high-affinity binding to both IGF-I and IGF-II; and 3) the IRR is unlikely to be a receptor for either IGF-I, IGF-II, or relaxin.  相似文献   

16.
We have used differentiated L6 myocytes to investigate the regulation of glucose transporter gene expression by insulin and insulin-like growth factor-1 (IGF-1). Chronic exposure to insulin (1 microM) or IGF-1 (10 nm) resulted in a 2- to 5-fold stimulation of 3H-2-deoxy-D-glucose uptake and a corresponding increase in the expression of rat brain/HepG2-type glucose transporter mRNA (GTmRNA) and immunoreactive transporter protein. The dose responses to both insulin and IGF-1 for stimulation of glucose uptake were paralleled by the expression of GTmRNA. Glucose uptake and GTmRNA levels were half maximally stimulated by 350 and 100 nM insulin, respectively, or by 2 nM IGF-1. Comparison of receptor occupancy with stimulation of glucose uptake and GTmRNA expression suggests that insulin exerts its effects through the IGF-1 receptor. Fibroblast growth factor, epidermal growth factor, platelet-derived growth factor, and phorbol ester had little or no effect on GTmRNA expression. These results demonstrate that the IGF-1 receptor mediates chronic regulation of transporter mRNA expression and protein synthesis and activity in cultured rat muscle cells.  相似文献   

17.
Insulin receptor-related receptor (IRR), an orphan receptor in the insulin receptor (IR) family of receptor tyrosine kinases, is primarily localized to neural crest-derived sensory neurons during embryonic development. Expression of IRR closely resembles that of the nerve growth factor receptor, TrkA. To analyze the signaling properties and function of IRR in PC12 cells, a TrkB/IRR hybrid receptor was used. In contrast to IR activation, brain-derived neurotrophic growth factor-mediated activation of the TrkB/IRR receptor resulted in differentiation rather than proliferation. Analysis of cytoplasmic substrates activated by the TrkB/IRR receptor indicates a signaling pathway similar to that of the IR. Mutagenesis studies further show that only TrkB/IRR receptors able to phosphorylate mitogen-activated protein kinase elicit a differentiation response. Our analysis indicates that prolonged kinetics of mitogen-activated protein kinase activation mediated by the TrkB/IRR chimeric receptor correlates with induction to differentiate.  相似文献   

18.
19.
20.
The insulin receptor and type I IGF receptor are closely related in structure and function. The receptors are heterotetrameric glycoproteins, of structure αββα, which are widely distributed in mammalian tissues. A third member of this receptor family has been described, the insulin receptor-related receptor, for which a ligand has still to be identified. It has also been demonstrated that the insulin receptor and IGF receptor form αββ′α′ hybrids in cells expressing both receptors.The key elements in the function of any receptor are recognition of ligand and transmission of an intracellular signal. In the insulin and IGF receptors, determinants of binding specificity are contained within amino-terminal and cysteine-rich domains of the extracellular α-subunit. Intracellular signalling is dependent on ligand activated tyrosine kinase activity in the transmembrane β-subunit, which phosphorylates both the receptor itself and the specific substrate insulin receptor substrate-1 (IRS-1). Phosphorylated IRS-1 binds the enzyme phosphatidylinositol 3-kinase and may act as a multivalent docking site for SH2 domains of other proteins involved in signalling. The possibility that some signalling molecules interact directly with the receptors has not been ruled out.The specificity of action of insulin and IGFs in vivo depends on differences between the respective receptors in tissue distribution, ligand binding specificity and intrinsic signalling capacity. However, the detailed aspects of gene and receptor structure which underly these functional differences are still poorly understood. Moreover, the issue of specificity is complicated by the existence of hybrid and atypical receptors, which in principle could bind and respond to both insulin and IGF-I, although the physiological significance of these receptor subtypes is at present unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号