首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1982, Horace Barlow considered the question of human trichromacy in the context of information theory: according to the Sampling Theorem, three types of receptors covering the visible spectrum (400-700 nm) might be sufficient to reconstruct the color signal. Although Barlow was led to reject the direct application of the Sampling Theorem to explain color dimensionality, the theoretical framework offers a fresh point of view for analyzing the color system in conjunction with the physical characteristics of natural color signals. This review aims to illustrate that if the strict mathematical reconstruction (as implied by the Sampling Theorem) is replaced by a pragmatic approximation of color signals, then trichromacy, with its subsequent opponent-color process, could be regarded as an optimization of color constancy abilities in the spectral environment of primates. Higher dimension systems (tetrachromacy) found in other species can also serve the purpose of color constancy optimization in environments where color signals exhibit a finer spectral structure.  相似文献   

2.
The reaction of color sensitive neural networks to intensity and color steps on logarithmic transformation of the input signals is calculated mathematically. The networks consist of opponent-color cells respectively with (duple system 1) or without a surround (duple system 2) or of double opponent-color cells (quadruple system). The output signals are independent of the intensity level. Both duple systems are able to code the color of homogeneous areas on a dichromatic level. The hue corresponds to the sign, the saturation to the absolute value of the output signal. The coding of saturation becomes incorrect at intensity borders only with duple system 1 (due to a Mach band response) at color borders however with duple system 1 and 2 (due to low-pass properties). The quadruple system (like duple system 2) is insensitive to intensity differences. It only responds to color differences, which are transferred according to a band-pass filter. The system therefore is able to function as a detector of color borders. The results are used in a new model for the processing of color and color borders. A linear transformation has been found to be less suited for color coding.  相似文献   

3.
Light-induced changes of sensitivity in Limulus ventral photoreceptors   总被引:23,自引:22,他引:1       下载免费PDF全文
The responses of Limulus ventral photoreceptors to brief test flashes and to longer adapting lights were measured under voltage clamp conditions. When the cell was dark adapted, there was a range of energy of the test flashes over which the peak amplitude of the responses (light-induced currents) was directly proportional to the flash energy. This was also true when test flashes were superposed on adapting stimuli but the proportionality constant (termed peak currently/photon) was reduced. The peak current/photon was attenuated more by brighter adapting stimuli than by less bright adapting stimuli. The peak current/photon is a measure of the sensitivity of the conductance-increase mechanism underlying the light response of the photo-receptor. The response elicited by an adapting stimulus had a large initial transient which declined to a smaller plateau. The peak current/photon decreased sharply during the declining phase of the transient and was relatively stable during the plateau. This indicates that the onset of light adaptation is delayed with respect to the onset of the response to the adapting stimulus. If the adaptational state just before the onset of each of a series of adapting stimuli was constant, the amplitude of the transient was a nearly linear function of intensity. When the total intensity was rapidly doubled (or halved) during a plateau response, the total current approximately doubled (or halved). We argue that the transition from transient to plateau, light-elicited changes of threshold, and the nonlinear function relating the plateau response to stimulus intensity all reflect changes of the responsiveness of the conductance-increase mechanism.  相似文献   

4.
Moore  Paul A. 《Chemical senses》1994,19(1):71-86
Natural odors occur as turbulent plumes resulting in spatiallyand temporally variable odor signals at the chemoreceptor cells.Concentrations can fluctuate widely within discrete packetsof odor and individual packets are very intermittent and unpredictable.Chemoreceptor cells display the temporally dynamic propertiesof adaptation and disadaptation, which serve to alter theirresponses to these fluctuating odor patterns. A computationalmodel, modified from one previously published, was used to investigate,the effect of adaptation and recovery of adaptation (disadaptation)on the spike output of model olfectory receptor cells undernatural stimulus conditions. The response characteristics ofmodel cells were based upon empirically determined dose-response,adaptation, disadaptation and flicker fusion properties of peripheralolfactory cells. The physiological properties of the model cell(adaptation and disadaptation rate and the dose-response relationship)could be modified independently, allowing assessment of therole of each in shaping the responses of the model cell. Completeadaptation and disadaptation time courses ranged from 500 ms(rapid cells) to 10 s (slow cells). The stimuli for the modelcells were quantified odor plume recordings obtained under avariety of biologically relevant flow conditions. As expected,the rapidly adapting model cells displayed different responsecharacteristics than the slowly adapting model cells to identicaltemporal odor profiles. Responses of the model cells dependedupon their adaptation and disadaptation rates, and the frequencycharacteristics of the odor presentation. These results indicatethat adaptation and disadaptation determine the range of concentrationfluctuations over which a particular cell will respond. Thus,these properties function as an olfactory equivalent of a band-passfilter in electronics. This type of filtering has implicationsfor the extraction of information from odor signals, men isthe coding of temporal and intensity features.  相似文献   

5.
A computational model to help explain effects of adaptation to moving signals is compared with established energy (linear regression) models of motion detection. The proposed model assumes that processed image signals are subject to error in both dimensions of space and time. This assumption constrains models of motion perception to be based upon principal component regression rather than linear regression. It is shown that response suppression of model complex cell neurons that input into the model may account for (1) increases in perceived speed after adaptation to static patterns and testing with slowly moving patterns, (2) significant increases in perceived speed after adaptation to patterns moving at a medium speed and testing at high speed, and (3) decreases in perceived speed in the opponent direction to a quickly moving adapting signal. Neither of predictions (2) or (3) are general features of established accounts of motion detection by visual processes based upon linear regression. Comparisons of the proposed model's speed transfer function with existing psychophysical data suggests that the visual system processes motion signals with the tacit assumption that image measurements are subject to error in both space and time. Received: 24 January 2000 / Accepted in revised form: 8 May 2000  相似文献   

6.
Migrating cells typically reach their targets in response to a relatively wide variety of extracellular molecules. Somehow surprisingly, most cells transduce these extracellular signals into a relatively homogeneous set of cellular changes that allow them to accurately find their target position. Here we summarize the characterization of the migratory behaviour of cortical interneurons in their journey to the cerebral cortex, which seems to represent a novel type of cellular adaptation during directional guidance. Similar to other migrating cells, cortical interneurons are highly polarized cells, with a prominent leading process and a short trailing process. However, the leading process of migrating interneurons continuously branches during the migratory cycle of these cells. Leading process branches are generated in response to the extracellular environment, and seem to serve as the main mechanism that determines the migratory direction for the cell. For each migratory cycle, the branch that is best oriented towards an attractive guidance cue will become stabilized, which in turn will allow the subcellular organelles and the nucleus to progress in the right direction. This migratory process is under the strict control, among several other molecules, of members from the small Rho GTPases family proteins. Pharmacological blocking of ROCKI/II abrogates the formation of leading process branches in migrating interneurons. The resulting cells, with a single leading process, do not efficiently modify their orientation in response to extracellular guidance cues, and so they fail to complete their migration.  相似文献   

7.
The early receptor potential (ERP), membrane potential, membrane resistance, and sensitivity were measured during light and/or dark adaptation in the ventral eye of Limulus. After a bright flash, the ERP amplitude recovered with a time constant of 100 ms, whereas the sensitivity recovered with an initial time constant of 20 s. When a strong adapting light was turned off, the recovery of membrane potential and of membrane resistance had time-courses similar to each other, and both recovered more rapidly than the sensitivity. The receptor depolarization was compared during dark adaptation after strong illumination and during light adaptation with weaker illumination; at equal sensitivities the cell was more depolarized during light adaptation than during dark adaptation. Finally, the waveforms of responses to flashes were compared during dark adaptation after strong illumination and during light adaptation with weaker illumination. At equal sensitivities (equal amplitude responses for identical flashes), the responses during light adaptation had faster time-courses than the responses during dark adaptation. Thus neither the photochemical cycle nor the membrane potential nor the membrane resistance is related to sensitivity changes during dark adaptation in the photoreceptors of the ventral eye. By elimination, these results imply that there are (unknown) intermediate process(es) responsible for adaptation interposed between the photochemical cycle and the electrical properties of the photoreceptor.  相似文献   

8.
After an observer adapts to a moving stimulus, texture within a stationary stimulus is perceived to drift in the opposite direction-the traditional motion aftereffect (MAE). It has recently been shown that the perceived position of objects can be markedly influenced by motion adaptation. In the present study, we examine the selectivity of positional shifts resulting from motion adaptation to stimulus attributes such as velocity, relative contrast, and relative spatial frequency. In addition, we ask whether spatial position can be modified in the absence of perceived motion. Results show that when adapting and test stimuli have collinear carrier gratings, the global position of the object shows a substantial shift in the direction of the illusory motion. When the carrier gratings of the adapting and test stimuli are orthogonal (a configuration in which no MAE is experienced), a global positional shift of similar magnitude is found. The illusory positional shift was found to be immune to changes in spatial frequency and to contrast between adapting and test stimuli-manipulations that dramatically reduce the magnitude of the traditional MAE. The lack of sensitivity for stimulus characteristics other than direction of motion suggests that a specialized population of cortical neurones, which are insensitive to changes in a number of rudimentary visual attributes, may modulate positional representation in lower cortical areas.  相似文献   

9.
Abstract Studies in rodents with retinal degeneration indicated that neither the rod nor the cone photoreceptors obligatorily participate in circadian responses to light, including melatonin suppression and photoperiodic response. Yet there is a residual phase-shifting response in melanopsin knockout mice, which suggests an alternate or redundant means for light input to the SCN of the hypothalamus. The findings of Aggelopoulos and Meissl suggest a complex, dynamic interrelationship between the classic visual photoreceptors and SCN cell sensitivity to light stimuli, relative to various adaptive lighting conditions. These studies raised the possibility that the phototransductive physiology of the retinohypothalamic tract in humans might be modulated by the visual rod and cone photoreceptors. The aim of the following two-part study was to test the hypothesis that dim light adaptation will dampen the subsequent suppression of melatonin by monochromatic light in healthy human subjects. Each experiment included 5 female and 3 male human subjects between the ages of 18 and 30 years, with normal color vision. Dim white light and darkness adaptation exposures occurred between midnight and 0200 h, and a full-field 460-nm light exposure subsequently occurred between 0200 and 0330-h for each adaptation condition, at 2 different intensities. Plasma samples were drawn following the 2-h adaptation, as well as after the 460-nm monochromatic light exposure, and melatonin was measured by radioimmunoassay. Comparison of melatonin suppression responses to monochromatic light in both studies revealed a loss of significant suppression after dim white light adaptation compared with dark adaptation (p < 0.04 and p < 0.01). These findings indicate that the activity of the novel circadian photoreceptive system in humans is subject to subthreshold modulation of its sensitivity to subsequent monochromatic light exposure, varying with the conditions of light adaptation prior to exposure.  相似文献   

10.
Intraocular recordings were made from the eyestalks of dark-adapted fiddler crabs (Uca thayeri) during presentation of monochromatic light flashes of different wavelengths and intensities. Two types of signals were recorded in different experiments: slow potentials (electroretinogram) and fast potentials (spikes). The latter were also recorded in the presence of a continuous green or red adapting light. The resulting visual spectral-sensitivity curves, when fitted to rhodopsin-based visual pigment absorption spectra (from Dartnall nomograms), indicated the presence of two visual pigments, one with an absorption maximum near 430 nm, and the other with a peak absorption between 500 nm and 540 nm. The data also provided evidence for some differential bleaching of the pigments in the presence of a colored adapting light, but most of the adaptation effect was probably due to changes in screening pigment and neural desensitization or inhibition. These two observations suggest that an adequate substrate for color vision may exist in this and other species of fiddler crabs. The electroretinogram and spike-recording methods produced similar visual-sensitivity data, suggesting that latter technique, a much more efficient way of collecting data that is physiologically relevant, may be the method of choice for determining spectral sensitivity in crustaceans.  相似文献   

11.
In previous work we have presented evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors (1989. J. Gen. Physiol. 93:473-492). This article assesses the contributions to photoreceptor physiology from Na+/Ca2+ exchange. Four separate physiological processes were considered: maintenance of resting sensitivity, light-induced excitation, light adaptation, and dark adaptation. (a) Resting sensitivity: reduction of [Na+]o caused a [Ca2+]o-dependent reduction in light sensitivity and a speeding of the time courses of the responses to individual test flashes; this effect was dependent on the final value to which [Na+]o was reduced. The desensitization caused by Na+ reduction was dependent on the initial sensitivity of the photoreceptor; in fully dark-adapted conditions no desensitization was observed; in light-adapted conditions, extensive desensitization was observed. (b) Excitation: Na+ reduction in fully dark-adapted conditions caused a Ca2+o-dependent depolarizing phase in the receptor potential that persisted beyond the stimulus duration and was evoked by a bright adapting flash. (c) Light adaptation: the degree of desensitization induced by a bright adapting flash was Na+o dependent, being larger with lower [Na+]o. Na+ reduction enhanced light adaptation only at intensities brighter than 4 x 10(-6) W/cm2. In addition to being Na+o dependent, light adaptation was Ca2+o dependent, being greater at higher [Ca2+]o. (d) Dark adaptation: the recovery of light sensitivity after adapting illumination was Na+o dependent. Dark adaptation after bright illumination in voltage-clamped and in unclamped conditions was faster in normal-Na+ saline than in reduced Na+ saline. The final sensitivity to which photoreceptors recovered was lower in reduced-Na+ saline when bright adapting illumination was used. The results suggest the involvement of Na+/Ca2+ exchange in each of these physiological processes. Na+/Ca2+ exchange may contribute to these processes by counteracting normal elevations in [Ca2+]i.  相似文献   

12.
It has been suggested that information in the brain is encoded in temporal spike patterns which are decoded by a combination of time delays and coincidence detection. Here, we show how a multi-compartmental model of a cerebellar Purkinje cell can learn to recognise temporal parallel fibre activity patterns by adapting latencies of calcium responses after activation of metabotropic glutamate receptors (mGluRs). In each compartment of our model, the mGluR signalling cascade is represented by a set of differential equations that reflect the underlying biochemistry. Phosphorylation of the mGluRs changes the concentration of receptors which are available for activation by glutamate and thereby adjusts the time delay between mGluR stimulation and voltage response. The adaptation of a synaptic delay as opposed to a weight represents a novel non-Hebbian learning mechanism that can also implement the adaptive timing of the classically conditioned eye-blink response.  相似文献   

13.
The static and dynamic characteristics of phototransduction were studied in photoreceptors of the compound eye of the fly Phormia regina (Calliphoridae) using a green light emitting diode driven by a controlled current source. The LED provides sufficiently intense light to investigate the behaviour of the receptors over about half of the dark adapted range of the response versus log intensity curve. The effects of constant adapting light intensities upon the step response and upon the frequency response and coherence functions were examined. Using both methods the effect of light adaptation upon receptor sensitivity can be closely approximated by a similar linear dependence of log sensitivity upon log adapting intensity. However, there was no reliably detectable effect of light adaptation upon the time constant of the response over the range of adapting intensities used.Abbreviation LED Light Emitting Diode  相似文献   

14.
The perception of blur in images can be strongly affected by prior adaptation to blurry images or by spatial induction from blurred surrounds. These contextual effects may play a role in calibrating visual responses for the spatial structure of luminance variations in images. We asked whether similar adjustments might also calibrate the visual system for spatial variations in color. Observers adjusted the amplitude spectra of luminance or chromatic images until they appeared correctly focused, and repeated these measurements either before or after adaptation to blurred or sharpened images or in the presence of blurred or sharpened surrounds. Prior adaptation induced large and distinct changes in perceived focus for both luminance and chromatic patterns, suggesting that luminance and chromatic mechanisms are both able to adjust to changes in the level of blur. However, judgments of focus were more variable for color, and unlike luminance there was little effect of surrounding spatial context on perceived blur. In additional measurements we explored the effects of adaptation on threshold contrast sensitivity for luminance and color. Adaptation to filtered noise with a 1/f spectrum characteristic of natural images strongly and selectively elevated thresholds at low spatial frequencies for both luminance and color, thus transforming the chromatic contrast sensitivity function from lowpass to nearly bandpass. These threshold changes were found to reflect interactions between different spatial scales that bias sensitivity against the lowest spatial grain in the image, and may reflect adaptation to different stimulus attributes than the attributes underlying judgments of image focus. Our results suggest that spatial sensitivity for variations in color can be strongly shaped by adaptation to the spatial structure of the stimulus, but point to dissociations in these visual adjustments both between luminance and color and different measures of spatial sensitivity.  相似文献   

15.
Spike-frequency adaptation is the reduction of a neuron’s firing rate to a stimulus of constant intensity. In the locust, the Lobula Giant Movement Detector (LGMD) is a visual interneuron that exhibits rapid adaptation to both current injection and visual stimuli. Here, a reduced compartmental model of the LGMD is employed to explore adaptation’s role in selectivity for stimuli whose intensity changes with time. We show that supralinearly increasing current injection stimuli are best at driving a high spike count in the response, while linearly increasing current injection stimuli (i.e., ramps) are best at attaining large firing rate changes in an adapting neuron. This result is extended with in vivo experiments showing that the LGMD’s response to translating stimuli having a supralinear velocity profile is larger than the response to constant or linearly increasing velocity translation. Furthermore, we show that the LGMD’s preference for approaching versus receding stimuli can partly be accounted for by adaptation. Finally, we show that the LGMD’s adaptation mechanism appears well tuned to minimize sensitivity for the level of basal input. This article is part of a special issue on Neuronal Dynamics of Sensory Coding.  相似文献   

16.
A quantitative model is developed to describe spectral sensitivity functions recorded extracellularly from heterogeneous populations of receptors in different states of adaptation. This treatment identifies the most important influences and clarifies several general features of experimental results. The shapes of retinal spectral sensitivity curves in different states of chromatic adaptation depend in predictable fashion on whether the primary effect of the adapting light on individual receptors is to decrease Vmax (response compression) or to increase the quantum demand for half-saturation. Some response compression is necessary in order for one or more receptors to drop out of the response at modest levels of adaptation. The apparent ease of adaptation also depends on the criterion voltage, particularly in the presence of response compression. The technique of selective adaptation of the ERG is capable of revealing the presence of receptors that comprise only a few percent of the total population. The short wavelength absorption of all visual pigments normally makes it impossible to use uv or violet light to adapt selectively those receptors with maximal sensitivity in the uv or violet region of the spectrum while sparing receptors with maximal sensitivity at longer wavelengths. The presence of cone oil droplets absorbing at short wavelengths, however, can effectively screen visual pigments in some of the receptors from uv or violet adapting lights.  相似文献   

17.
Auditory motion aftereffects of approaching and withdrawing sound sources were investigated in the free field. The approaching and withdrawing of a sound source were simulated by means of differently directed changes in the amplitude of impulses of broadband noise (from 20 Hz to 20 kHz) through two loudspeakers placed 1.1 and 4.5 m away from the listener. Presentation of the adapting approaching and withdrawing stimuli changed the perception of test signals following them: a stationary test signal was perceived by listeners as moving in the direction opposite to one of the movement of the adapting stimulus, whereas a test stimulus slowly moving in same direction as the adapting signal was perceived as stationary. The specific features of the auditory aftereffect of signals moving in a radial direction were similar to those of sound sources moving in a horizontal plane.  相似文献   

18.
Impulse activity of neurons of brainstem auditory nuclei (medulla dorsal nucleus and midbrain torus semicircularis) of the grass frog (Rana temporaria) was recorded under action of long amplitude-modulated tonal signals. After adaptation of neuronal response to acting stimulus (30–60 s after its onset), we performed a sharp change (by 20–40 dB) of the mean signal level with preservation of unchanged frequency and depth of modulation. We also recorded a change of density impulsation and of degree of its synchronization with the modulation period as well as the phase of maximum reaction at the modulation period and phase of the response every 2 or 4 s. In the adapted state, the sharp change of the mean level had been provided, while maintaining frequency and depth unchanged. During the adaptation to long signals with small modulation indexes the firing rate continuously decreased, but synchronization with envelope usually increased considerably. A sharp rise in the mean level resulted in an increase of firing rate, which could be accompanied either by a continuation of synchronization growth (the effect is more typical of the dorsal nucleus) or by a sharp fall in synchrony with its subsequent slow recovery (the effect is more typical of the torus semicircularis). Nature of the changes following the change of the intensity of the reaction could depend on the signal parameters (initial level, magnitude of the jump, frequency and depth of modulation). The connection between the observed physiological data and the psychophysics of differential intensity coding is discussed.  相似文献   

19.
We recorded the total pulse response of the optic nerve in frogs to varying degrees of increase and decrease of light from the original adapting level. On the basis of these data, we plotted curves of dependence of the magnitude of response on the logarithm of relative value of increase and decrease of light (the amplitude characteristic — AC). The AC is steepest in the zone of adapting background and sloped on either side of it. It follows that under stationary conditions of illumination, the eye is capable of finely differentiating light intensity only within a narrow range (one logarithmic unit). After adaptation to a new level of illumination, the AC shifts along the scale of light intensity in such a way that the steepest portion corresponds to the adapting brightness. Increase in steepness of the AC occurs precisely during the process of adaptation. The contrast sensitivity of the human visual system is greatest near the adapting level and declines on either side of it. It follows that in man steepness of the visual system AC is greatest in the zone of the adapting background. Both increase and decrease of intensity of the adapting background are accompanied by a decline of contrast sensitivity, which rises again during the process of adaptation to a new level. Thanks to adaptive shift of the steep portion of the AC along the scale of light intensity, a visual system having a high contrast sensitivity only within a narrow "working" range is capable of finely differentiating light intensity in significantly changing conditions of illumination.Institute of Problems of Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 81–89, July–August, 1969.  相似文献   

20.
Perception of approaching and withdrawing sound sources and their action on auditory aftereffects were studied in the free field. Motion of adapting stimuli was mimicked in two ways: (1) simultaneous opposite changes of amplitude of broadband noise impulses at two loudspeakers placed at 1.1 and 4.5 m from the listener; (2) an increase or a decrease of amplitude of broadband noise impulses in only one loudspeaker, the nearer or the remote one. Motion of test stimuli was mimicked in the former way. Listeners determined direction of the test stimuli motion without any adaptation (control) or after adaptation to stationary, slowly moving (with an amplitude change of 2 dB) and rapidly moving (amplitude change of 12 dB) stimuli. Percentages of “withdrawal” reports were used for construction of psychometric curves. Three phenomena of auditory perception were observed. In the absence of adaptation, a growing-louder effect was revealed, i.e., listeners reported more frequently the test sounds as the approaching ones. Once adapted to stationary or slowly moving stimuli, listeners showed a location-dependent aftereffect. Test stimuli were reported as withdrawing more often as compared with control. The effect was associated with the previous one and was weaker when the distance to the loudspeaker producing adapting stimuli was greater. After adaptation to rapidly moving stimuli, a motion aftereffect was revealed. In this case, listeners reported a direction of test stimuli motion as being opposite to that of adapting stimuli. The motion aftereffect was more pronounced when the adapting stimuli motion was mimicked in the former way, as this method allows estimation of their trajectory. There was no relationship between the motion aftereffect and the growing-louder effect, whichever way the adapting stimuli were produced. There was observed a tendency for reduction of aftereffects of approaching and for intensification of aftereffects of withdrawal with growing distance from source of adapting stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号