首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inheritance of resistance in the rice cultivars Phalguna, ARC5984, ARC 5158, Veluthacheera, and T1477 to the Asian rice gall midge biotype 2 was studied under both natural and artificial infestation conditions against the susceptible cultivars Jaya and IR20. A single recessive gene in Veluthacheera and two recessive complementary genes in T1477 control resistance. Phalguna and ARC5984 possess a single dominant gene while ARC5158 has a single dominant and a single recessive gene for resistance. Allelism studies showed that genes for resistance in Veluthacheera and T1477 are allelic but non-allelic to the resistance genes in Phalguna and ARC5984, which are allelic to each other. Genes for resistance in ARC5158 are allelic to resistance genes of the other four donors. There was no cytoplasmic inhibition of resistance by the susceptible parents.  相似文献   

2.
Rice seedlings of the resistant variety Phalguna showed premature tillering, browning of central leaf, and tissue necrosis at the apical meristem following artificial infestation with avirulent biotype 1 of the Asian rice gall midge, Orseolia oryzae (Wood-Mason) (Diptera: Cecidomyiidae). Tissue necrosis representing a typical hypersensitive reaction (HR), accompanied by maggot mortality, was observed within 4 days after infestation. However, reinfestation of secondary tillers subsequent to HR in primary tiller, did not lead to HR in secondary tillers though maggot mortality was seen. Artificial infestation with the weed gall midge O. fluvialis did not result in HR either in gall midge susceptible TN 1 or resistant Phalguna rice varieties. Resistance in Phalguna against the virulent biotype 4 could be induced by either prior, simultaneous, or subsequent infestation with the avirulent biotype 1. The duration of effectiveness of such induced resistance varied with the sequence and time lag between infestations.  相似文献   

3.
A rice minisatellite probe detecting DNA fingerprints was used to assess genetic variation in cultivated rice (Oryza sativa L.). Fifty-seven cultivars of rice, including 40 closely related cultivars released in the US, were studied. Rice DNA fingerprinting revealed high levels of polymorphism among distantly related cultivars. The variability of fingerprinting pattern was reduced in the closely related cultivars. A genetic similarity index (S) was computed based on shared fragments between each pair of cultivars, and genetic distance (D) was used to construct the dendrograms depicting genetic relationships among rice cultivars. Cluster analysis of genetic distance tended to group rice cultivars into different units corresponding with their varietal types and breeding pedigrees. However, by comparison with the coefficients of parentage, the criterion of relatedness based on DNA fingerprints appeared to overestimate the genetic relationships between some of the closely related US cultivars. Although this may reduce the power of fingerprints for genetic analysis, we were able to demonstrate that DNA fingerprinting with minisatellite sequences is simpler and more sensitive than most other types of marker systems in detecting genetic variation in rice.This paper reports the results of research only. Mention of a proprietary product does not consititute an endorsement or a recommendation for its use by the USDA or the University of Missouri. Contribution from the US Department of Agriculture, Agricultural Research Service, Plant Genetics Research Unit, and the University of Missouri Agricultural Experiment Station Journal Series No. 12178.  相似文献   

4.
The Pi20(t) gene was determined to confer a broad-spectrum resistance against diverse blast pathotypes (races) in China based on inoculation experiments utilizing 160 Chinese Magnaporthe oryzae (formerly Magnaporthe grisea) isolates, among which isolate 98095 can specifically differentiate the Pi20(t) gene present in cv. IR24. Two flanking and three co-segregating simple sequence repeat (SSR) markers for Pi20(t), located near the centromere region of chromosome 12, were identified using 526 extremely susceptible F2 plants derived from a cross of Asominori, an extremely susceptible cultivar, with resistant cultivar IR24. The SSR OSR32 was mapped at a distance of 0.2 cM from Pi20(t), and the SSR RM28050 was mapped to the other side of Pi20(t) at a distance of 0.4 cM. The other three SSR markers, RM1337, RM5364 and RM7102, co-segregated with Pi20(t). RM1337 and RM5364 were found to be reliable markers of resistance conditioned by Pi20(t) in a wide range of elite rice germplasm in China. As such, they are useful tags in marker-assisted rice breeding programs aimed at incorporating Pi20(t) into advanced rice breeding lines and, ultimately, at obtaining a durable and broad spectrum of resistance to M. oryaze. Wei Li and Cailin Lei contributed equally to this work.  相似文献   

5.
Gm2 is dominant gene conferring resistance to biotype 1 of gall midge (Orseolia oryzae Wood-Mason), the major dipteran pest of rice. The gene was mapped by restriction fragment length polymorphism (RFLP) analysis of a set of 40 recombinant inbred lines derived from a cross between the resistant variety Phalguna and the susceptible landrace ARC 6650. The gene is located on chromosome 4 at a position 1.3 cM from marker RG329 and 3.4 cM from RG476. Since the low (28%) polymorphism of this indica x indica cross hindered full coverage of the genome with RFLP markers, the mapping was checked by random amplified polymorphic DNA (RAPD)/bulked segregant analysis. Through the use of 160 RAPD primers, the number of polymorphic markers was increased from 43 to 231. Two RAPD primers amplified loci that co-segregated with resistance/susceptibility. RFLP mapping of these loci showed that they are located 0.7 cM and 2.0 cM from RG476, confirming the location of Gm2 in this region of chromosome 4. Use of these DNA markers will accelerate breeding for gall midge resistance by permitting selection of the Gm2 gene independently of the availability of the insect.  相似文献   

6.
A rice mutant,G069, characteristic of few tiller numbers, was found in anther culture progeny from theF 1 hybrid between anindica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent,G069 was further backcrossed with the recurrent parent,02428, for two turns to develop aBC 2F2 population. Genetic analysis in theBC 2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants inBC 2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C424 and S13984 with a genetic distance of 2.4 cM and 0.6 cM, respectively. The gene is designatedft1.  相似文献   

7.
The Pik m gene in rice confers a high and stable resistance to many isolates of Magnaporthe oryzae collected from southern China. This gene locus was roughly mapped to the long arm of rice chromosome 11 with restriction fragment length polymorphic (RFLP) markers in the previous study. To effectively utilize the resistance, a linkage analysis was performed in a mapping population consisting of 659 highly susceptible plants collected from four F2 populations using the publicly available simple sequence repeat (SSR) markers. The result showed that the locus was linked to the six SSR markers and defined by RM254 and RM144 with ≈13.4 and ≈1.2 cM, respectively. To fine map this locus, additional 10 PCR-based markers were developed in a region flanked by RM254 and RM144 through bioinformatics analysis (BIA) using the reference sequence of cv. Nipponbare. The linkage analysis with these 10 markers showed that the locus was further delimited to a 0.3-cM region flanked by K34 and K10, in which three markers, K27, K28, and K33, completely co-segregated with the locus. To physically map the locus, the Pik m -linked markers were anchored to bacterial artificial chromosome clones of the reference cv. Nipponbare by BIA. A physical map spanning ≈278 kb in length was constructed by alignment of sequences of the clones anchored by BIA, in which only six candidate genes having the R gene conserved structure, protein kinase, were further identified in an 84-kb segment.  相似文献   

8.
Summary Nearly isogenic lines (NILs) of rice (Oryza sativa) differing at a locus conferring resistance to the pathogen Xanthomonas oryzae pv. oryzae were surveyed with 123 DNA markers and 985 random primers using restriction fragment length plymorphism (RFLP) and random amplified polymorphic DNA (RAPD) analysis. One chromosome 11 marker (RG103) detected polymorphism between the NILs that cosegregated with Xa21. All other chromosome 11 DNA markers tested were monomorphic between the NILs, localizing the Xa21 introgressed region to an 8.3 cM interval on chromosome 11. Furthermore, we identified two polymerase chain reaction (PCR) products (RAPD2148 and RAPD818) that detected polymorphisms between the NILs. Genomic sequences hybridizing with RAPD818, RAPD248 and RG103 were duplicated specifically in the Xa21 NIL. All three markers cosegregated with the resistance locus, Xa21, in a F2 population of 386 progeny. Based on the frequency with which we recovered polymorphic Xa21-linked markers, we estimated the physical size of the introgressed region to be approximately 800 kb. This estimation was supported by physical mapping (using pulsed field gel electrophoresis) of the sequences hybridizing with the three Xa21-linked DNA markers. The results showed that the three Xa21-linked markers are physically close to each other, with one copy of the RAPD818 sequences located within 60 kb of RAPD248 and the other copy within 270 kb of RG103. None of the enzymes tested generated a DNA fragment that hybridized with all three of the markers indicating that the introgressed region containing the resistance locus Xa21 is probably larger than 270 kb.  相似文献   

9.
Four genes of rice,Oryza sativa L., conditioning resistance to the bacterial blight pathogenXanthomonas oryzae pv.oryzae (X. o. pv.oryzae), were tagged by restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers. No recombinants were observed betweenxa-5 and RFLP marker lociRZ390, RG556 orRG207 on chromosome 5.Xa-3 andXa-4 were linked to RFLP locusXNpb181 at the top of chromosome 11, at distances of 2.3 cM and 1.7 cM, respectively. The nearest marker toXa-10, also located on chromosome 11, was the RAPD locusO07 2000 at a distance of 5.3 cM. From this study, the conventional map [19, 28] and two RFLP linkage maps of chromosome 11 [14, 26] were partially integrated. Using the RFLP and RAPD markers linked to the resistance genes, we selected rice lines homozygous for pairs of resistance genes,Xa-4 +xa-5 andXa-4 +Xa-10. Lines carryingXa-4 +xa-5 andXa-4 +Xa-10 were evaluated for reaction to eight strains of the bacterial blight pathogen, representing eight pathotypes and three genetic lineages. As expected, the lines carrying pairs of genes were resistant to more of the isolates than their single-gene parental lines. Lines carryingXa-4 +xa-5 were more resistant to isolates of race 4 than were either of the parental lines (quantitative complementation). No such effects were seen forXa-4 +Xa-10. Thus, combinations of resistance genes provide broader spectra of resistance through both ordinary gene action expected and quantitative complementation.  相似文献   

10.
RAPD and RFLP mapping of the bacterial blight resistance gene xa-13 in rice   总被引:12,自引:0,他引:12  
Bacterial blight (BB) caused by Xanthomonas oryzae pv oryzae (Xoo) is one of the most serious diseases of rice. The recessive gene xa-13 confers resistance to Philippine race 6 of Xoo. To tag xa-13 with molecular markers, RAPD analysis was conducted with the combined use of near-isogenic lines and bulked segregant analysis. From the survey of 260 arbitrary 10-nucleotide primers, one primer (OPAC05) was detected to amplify specifically a 0.9-kb band from the DNA of susceptible plants. The distance between the RAPD marker OPAC05-900 and xa-13 was estimated to be 5.3 cM. The RAPD marker was then mapped on chromosome 8 using a mapping population of doubled haploid lines derived from the cross of IR64/Azucena. The linkage between RFLP markers and the RAPD marker was analyzed using an F2 population of 135 plants derived from a cross between a near-isogenic line for xa-13, IR66699-5-5-4-2, and IR24. No recombinants were found between RZ28 and CDO116 and their distance from xa-13 was estimated to be 4.8 cM. RG136 was located at 3.7 cM on the other side of xa-13. The mapping of xa-13 with closely linked DNA markers provides the basis for marker-aided selection for rice improvement.Department of Agronomy, South China Agricultural University, Guangzhou, China  相似文献   

11.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

12.
    
Summary DNA from three families of rice plants selected in Northern China (each comprising the male sterile, the restorer, the hybrid F1 and the maintainer lines) has been extracted and amplified by PCR with different random DNA primers (RAPD analysis). Then, DNA has been analysed by agarose gel electrophoresis and DNA bands scored as present or absent. The generated matrices are reproducible and amenable for identification of each single plant line. Thus, RAPD fingerprinting of the inbred parental lines and of the resulting hybrid is proposed as a convenient tool for the identification, protection and parentage determination of plant hybrids. Furthermore, by offering a molecular tool to verify the degree of dissimilarity between the parental lines, the RAPD analysis may also be used to search for new parental combinations.  相似文献   

13.
水稻抗稻瘟病基因的标记辅助选择及定位克隆   总被引:8,自引:0,他引:8  
王忠华 《生命科学》2005,17(2):183-188
水稻抗稻瘟病基因-稻瘟病菌无毒基因相互作用体系是当今植物分子病理学和抗病育种学研究领域的模式体系之一,其中抗病基因的分子定位与克隆及其标记辅助选择已成为该体系的重要内容。本文就这方面的研究进展作一简要综述,以期为水稻抗病育种提供有益的信息。  相似文献   

14.
15.
A complete sequence of the rice sucrose synthase-1 (RSs1) gene   总被引:5,自引:0,他引:5  
Using a fragment of the maize sucrose synthase gene Sh-1 as probe, the rice genome was shown to contain at least three genes encoding sucrose synthase. One of these genes was isolated from a genomic library, and its full sequence, including 1.7 kb of 5 flanking sequence and 0.9 kb of 3 flanking sequence, is reported. The new rice gene, designated RSs1, is highly homologous to maize Sh-1 (approx. 94% identity in derived amino acid sequence), and contains an identical intron-exon structure (16 exons and 15 introns). Both RSs1 and maize Sh-1 show similar sequence homologies to a second rice sucrose synthase gene described recently (designated RSs2, Yu et al. (1992) Plant Mol Biol 18: 139–142), although both the rice genes predict an extra 6 amino acids at the C-terminus of the protein when compared to the maize gene. The RSs1 5 flanking sequence contains a number of promoter-like sequences, including putative protein-binding regions similar to maize zein genes.  相似文献   

16.
    
Nilaparvata lugens Stål (brown planthopper, BPH), is one of the major insect pests of rice (Oryza sativa L.) in the temperate rice-growing region. In this study, ASD7 harboring a BPH resistance gene bph2 was crossed to a susceptible cultivar C418, a japonica restorer line. BPH resistance was evaluated using 134 F2:3 lines derived from the cross between “ASD7” and “C418”. SSR assay and linkage analysis were carried out to detect bph2. As a result, the resistant gene bph2 in ASD7 was successfully mapped between RM7102 and RM463 on the long arm of chromosome 12, with distances of 7.6 cM and 7.2 cM, respectively. Meanwhile, both phenotypic selection and marker-assisted selection (MAS) were conducted in the BC1F1 and BC2F1 populations. Selection efficiencies of RM7102 and RM463 were determined to be 89.9% and 91.2%, respectively. It would be very beneficial for BPH resistance improvement by using MAS of this gene.  相似文献   

17.
We have developed a polymerase chain reaction (PCR)-based assay that could effectively reduce the time period required to screen and select for Gall Midgeresistant rice lines under field conditions. The primers for the assay were designed on the basis of sequence information of two phenotype specific random amplified polymorphic DNA fragments which were found to be tightly linked to Gall Midge biotype-1 resistance gene (Gm2). The two RAPD fragments, F81700 in the susceptible parent ARC6650 and F10600 in the resistant parent Phalguna, were identified after screening 5450 loci using 520 random primers on genomic DNAs of ARC6650 and Phalguna. These primers, when used in a multiplexed PCR, amplified specifically a 1.7-kb and 0.6-kb fragment in the susceptible and resistant parents, respectively. When this assay was performed on genomic DNAs of 44 recombinant inbred lines derived from ARC6650 x Phalguna and 5 lines derived from other crosses where one of the parents was Phalguna, ARC6650 or their derivatives, the primers amplified a 1.7-kb fragment in all of the susceptible lines or a 0.6-kb fragment in all of the resistant ones. These markers can be of potential use in the marker-aided selection of Gall Midge biotype-1 resistant phenotypes. As screening for resistance can now be conducted independent of the availability of insects, the breeding of resistant varieties can be hastened.  相似文献   

18.
We used particle bombardment to transform two elite Thai rice varieties, Khao Dawk Mali 105 (KDML105) and Supanburi 60 (SP60), with the snowdrop lectin gene gna (Galanthus nivalis agglutinin). This gene confers resistance to sap-sucking insects such as the brown planthopper (BPH; Nilaparvata lugens), which is one of the most damaging pests of rice. Traditionally, KDML105 and SP60 have been regarded as recalcitrant to transformation, and this is the first account of successful gene transfer to these varieties. By molecular analysis, we confirmed the recovery of over thirty gna-transgenic lines. GNA protein expression was characterised by western blot analysis, and we achieved expression levels of up to 0.25% total soluble protein. GNA-producing R1 transgenic plants were significantly more resistant to BPH than control plants (P<0.0001), with 37% and 42% reduction in nymphal survival for constitutive and phloem-specific expression, respectively. Transferring the gna gene to these superior rice varieties thus represents a major step forward for crop improvement in Thailand, and should help to reduce the damage caused by rice pests, and hence increase yields for this vital domestic and export market.  相似文献   

19.
The rice bacterial blight resistance gene, Xa2, confers resistance to T7147 of the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. It is located on the long arm of chromosome 4. Here, we report the fine mapping of Xa2 by genetic recombination analysis with simple sequence repeat (SSR) markers according to the genome sequence. Two F2 populations are constructed to localize Xa2. In a primary analysis with 136 random F2 plants of Zhenzhuai/IRBB2, it was found that Xa2 was located in approximately 20 cM region. To accurately determine the locus of Xa2, 120 new SSR markers were developed in this region by screening the sequence. Twelve new SSR markers were successfully used in genetic recombination analysis in IR24/IRBB2 population, while 20 in ZZA/IRBB2 population. We found that the nearest SSR markers to Xa2 are HZR950-5 and HZR970-4, which cover approximately 190-kb region. The sequence analysis of this 190-kb region revealed the presence of a homologous sequence of leucine rich repeat (LRR)-kinase. These results are very useful for transferring or pyramiding Xa2 by molecular marker-assistant selection in rice breeding programs and for cloning Xa2 by map-based cloning in combination with a long-range PCR strategy. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

20.
  总被引:3,自引:0,他引:3  
Content of endogenous abscisic acid (ABA) increased in rice plants under salt stress. Pre- or post-treatment by jasmonic acid (JA) mostly further increased ABA content. In the presence of salt stress also content of gibberellins (GAs) mostly increased more after treatment by JA. Endogenous content of bioactive GA1 was higher in post-treatment by JA than in pre-treatment by JA.This study was supported by the Korea Science and Engineering Foundation (2000-2-20100-001-3)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号