首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Spatial and temporal distribution of fish and zooplankton in a shallow lake   总被引:1,自引:0,他引:1  
Summary 1. We performed both a large- and a small-scale echo sounding study on the spatial and temporal distribution of fish (mainly roach, Rutilus rutilus and perch, Perca fluviatlis ), as well as a small-scale study of zooplankton distribution in the small, shallow and eutrophic Lake Hanebjerg in Denmark. In the small-scale study, sampling was conducted in open water as well as in the edge zone immediately outside two different types of vegetation.
2. Fish daytime abundances differed between the northern and the southern parts of the lake and, on a small scale, small fish aggregated in the edge zones during day, preferably outside dense emergent vegetation. Copepods avoided emergent vegetation, while cladocerans showed no habitat preference. Both small fish and cladoceran numbers were found to be higher during night than day.
3. The relative abundance (number per sample) of cladocerans in the edge zone immediately outside vegetation was negatively correlated with the relative abundance of fish in that zone. There was no correlation between cladoceran and fish abundance in open water, or between the relative abundance of copepods and fish.
4. The presence of pelagic piscivores in combination with avoidance behaviour of both fish and zooplankton is a likely explanation for the observed distribution of small fish and cladocerans in Lake Hanebjerg. Both small- and large-scale distribution patterns may be dependent on the type and distribution of complex structure in the lake. Even in a small lake, large-scale patterns may affect the interpretation of small-scale data.  相似文献   

2.
We analysed the spatio-temporal distribution of zooplankton along a profile of 10 stations from the shore to the pelagic zone from April to September 1988, the period when the larvae and juveniles Rutilus rutilus, the most abundant species in the Lake, are in the littoral zone. The digestive tracts of the young roach were analysed. They fed essentially on rotifers and on cladocerans. For comparison, zooplankton was also analysed at one littoral area without fish fry. There was an increase of cladoceran density from the vegetated nearshore zone to the offshore zone. Considering the density of Bosmina longirostris, Daphnia longispina, Chydorus sphaericus and Ceriodaphnia quadrangula, we observed a different distribution pattern in the course of the year. In the nearshore zone, the relative abundance of small species, Bosmina and Chydorus, was much higher than that of the larger Daphnia. From April to September, predation pressure mainly affected the smallest species: in contrast to the inshore station without fish fry, the density of Bosmina decreased in May in the littoral with fish. Chydorus was concentrated in the littoral between February and April, then grew into the pelagic zone, where predation pressure obviously was low during the warm season. The number of Daphnia, which was eaten by the fish fry at any time, remained low in the nearshore zone, which suggests that the presence of fish may cause Daphnia to avoid this zone. Ceriodaphnia which was not affected by this predation, was scarce in the nearshore zone during mid-summer. The low density of the cladocerans in the nearshore zone is likely associated with vertebrate predation by roach fry and juveniles, the result of such a process being either a depletion in density of the prey, or an avoidance behaviour.  相似文献   

3.
Behaviour and diet of sea trout post-smolts in a Norwegian fjord system   总被引:3,自引:0,他引:3  
In order to study the behaviour of sea trout Salmo trutta L., in the early post-smolt phase, reared smolts were tagged with acoustic transmitters and released in the estuary of the River Aurland (Western Norway) and observed for 31–137·5 h. The study was conducted in May-June 1991 and 1995 on a total of seven tagged smolts. The fish moved back and forth along the littoral zone close to the surface and migrated net distances of 100–8000 m. In 1991 the tagged fish were usually observed in schools averaging 24–55 fish, while the tendency to school was less pronounced in 1995. Post-smolts of wild and reared origin were caught by 25 m long gillnets in the littoral zone. In 1991 the mean distance to shore at capture was 4·3 m and the mean depth 0·6 m, and the corresponding numbers in 1995 were 8·0 and 0·8 m. The distribution of the post-smolts is explained by a general preference for shallow water caused by osmoregulatory problems in high-salinity deep water, together with a preference for the sheltered littoral zone and a strong predation pressure in the open sea from fast swimming pelagic fish predators and gulls Larus sp. Schooling seemed to restrict predation by cod Gadus morhua L., in the littoral zone in 1991, while no cod were observed in this habitat in 1995. In both years the stomach contents of the netted fish consisted mainly of terrestrial insects. Reared fish chose prey items similar to those taken by wild fish, but consumed less food.  相似文献   

4.
Fish assemblage patterns in the littoral zone of a European reservoir   总被引:1,自引:0,他引:1  
1. Although reservoirs are common aquatic habitats in Europe, there is little quantitative information on the spatial organisation of fish assemblages inhabiting their littoral zones. Consequently, we characterised fish assemblage structure in the littoral zone of a reservoir (Lake Pareloup) in SW France during late spring, summer and early autumn (the growing season).
2. We measured the relative abundance of fish weekly, from mid-May to mid-October, using point abundance sampling by electrofishing. We identified temporal patterns in assemblage structure using hierarchical cluster analysis, and then characterised the spatial distribution of 17 defined ecospecies using a Kohonen self-organising map (SOM, an unsupervised Artificial Neural Network).
3. Our analyses revealed three distinct faunal structures within the littoral zone. From mid-May to mid-July, adults and young-of-the-year (0+) occupied separate habitats, with most 0+ fish in vegetated habitats and adults in open water. From mid-July to late August, some 0+ co-occurred with adults, but most 0+ fishes remained in vegetated areas. Finally, from late August to mid-October, most fish (both 0+ and adults) left the vegetation for unvegetated littoral habitats, the exception being fish species known to be dependent on macrophytes.
4. Contrary to patterns for adult fishes, the 0+ fish assemblage was dynamic. These dynamics were driven by ontogenetic species-specific habitat changes. Consequently, there was little evidence of stable assemblages or strong assemblage–habitat relationships that would be expected of an 'interactive' assemblage. It is likely that the patterns observed are a result of species-specific response to habitat availability in the lake.  相似文献   

5.
1. Fish play a key role in the functioning of temperate shallow lakes by affecting nutrient exchange among habitats as well as lake trophic structure and dynamics. These processes are, in turn, strongly influenced by the abundance of submerged macrophytes, because piscivorous fish are often abundant at high macrophyte density. Whether this applies to warmer climates as well is virtually unknown. 2. To compare fish community structure and dynamics in plant beds between subtropical and temperate shallow lakes we conducted experiments with artificial submerged and free‐floating plant beds in a set of 10 shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N), paired along a gradient of limnological characteristics. 3. The differences between regions were more pronounced than differences attributable to trophic state. The subtropical littoral fish communities were characterised by higher species richness, higher densities, higher biomass, higher trophic diversity (with predominance of omnivores and lack of true piscivores) and smaller body size than in the comparable temperate lakes. On average, fish densities were 93 ind. m−2 (±10 SE) in the subtropical and 10 ind. m−2 (±2 SE) in the temperate lakes. We found a twofold higher total fish biomass per unit of total phosphorus in the subtropical than in the temperate lakes, and as fish size is smaller in the former, the implication is that more energy reaches the littoral zone fish community of the warmer lakes. 4. Plant architecture affected the spatial distribution of fish within each climate zone. Thus, in the temperate zone fish exhibited higher densities among the artificial free‐floating plants while subtropical fish were denser in the artificial submerged plant beds. These patterns appeared in most lakes, regardless of water turbidity or trophic state. 5. The subtropical littoral fish communities resembled the fish communities typically occurring in temperate eutrophic and hypertrophic lakes. Our results add to the growing evidence that climate warming may lead to more complex and omnivory‐dominated food webs and higher density and dominance of smaller‐sized fish. This type of community structure may lead to a weakening of the trophic cascading effects commonly observed in temperate shallow lakes and a higher risk of eutrophication.  相似文献   

6.
In lentic freshwater systems, vertical acoustics may underestimate fish abundance in the acoustic dead zone where fish detection capability is limited. To estimate this bias, the height of fish above the lead‐line of a benthic multi‐mesh gillnet (1.5 m high) was used to quantify both the vertical distribution of fish near the bottom and the proportion residing within the acoustic dead zone. The study was carried out at the percid‐dominated Biesbosch Reservoirs in the Netherlands. Acoustic dead zones were estimated at 7 cm above flat bottoms, and 12–34 cm above 8° sloped bottoms at depths of 5–27 m, respectively. Depending on the habitat, 36 to 75% of the gillnet catch by number was present in the acoustic dead zone, representing 5–51% of the biomass. Near‐bottom depths were highly preferred by ruffe Gymnocephalus cernua, often used by perch Perca fluviatilis and pikeperch Sander lucioperca, plus seemingly devoid of smelt Osmerus eperlanus. The total amount of fish hidden in the acoustic dead zone was estimated to be 13–39% of the whole water column. The proportion of biomass obscured in the dead zone was lower (1–12%). The conclusion is that undetected fish in the acoustic dead zone can seriously bias density assessment, which can be corrected by concurrent sampling with benthic gillnets.  相似文献   

7.
Synopsis Most of the lakes in The Netherlands are turbid and without vegetation. This is regarded as the result of increasing eutrophication within the last decades. Under these conditions common bream, roach, and white bream are the most common cyprinids. In six shallow (1–3 m), wind exposed lakes the abundance of common bream and roach was linked to the abundance of pikeperch; bream dominated when pikeperch was abundant, but when the latter species was rare, roach was dominant and the biomass of bream was reduced. The biomass of white bream was always relatively low. In lake Tjeukemeer the distribution of roach < 20 cm fork length (FL) and bream was also related to the distribution of pikeperch. Only roach > 20 cm FL managed to coexist with pikeperch in the open water area, whereas roach < 20 cm was confined to the littoral zone where pikeperch was nearly absent. Bream occurred mainly in the open water and avoided the littoral zone where it competed with roach. White bream occupied an intermediate position, occurring in relatively low density both in the littoral zone and in open water. The importance of predation and competition in determining the distribution and abundance of roach and common bream in the eutrophic lakes of The Netherlands is discussed.  相似文献   

8.
Meta-analyses of published data for 19 marine reserves reveal that marine protected areas enhance species richness consistently, but their effect on fish abundance is more variable. Overall, there was a slight (11%) but significant increase in fish species number inside marine reserves, with all reserves sharing a common effect. There was a substantial but non-significant increase in overall fish abundance inside marine reserves compared to adjacent, non-reserve areas. When only species that are the target of fisheries were considered, fish abundance was significantly higher (by 28%) within reserve boundaries. Marine reserves vary significantly in the extent and direction of their response. This variability in relative abundance was not attributable to differences in survey methodology among studies, nor correlated with reserve characteristics such as reserve area, years since protection, latitude nor species diversity. The effectiveness of marine reserves in enhancing fish abundance may be largely related to the intensity of exploitation outside reserve boundaries and to the composition of the fish community within boundaries. It is recommended that studies of marine reserve effectiveness should routinely report fishing intensity, effectiveness of enforcement and habitat characteristics.  相似文献   

9.
The effect of diel period and littoral habitats on the distribution of age-0 fish was tested in a deep-valley reservoir using boat-modified point abundance sampling by electrofishing (PASE). Day and night samplings unveiled differences in abundance of age-0 fish while recognizing most of the commonly present age-0 fish species in the littoral zone. Night survey provided better information about the abundance of age-0 fish since most species appeared in higher numbers at night. Alternatively, night sampling underestimated bleak (Alburnus alburnus) and gudgeon (Gobio gobio), which were predominantly found in the littoral zone in the daytime. The structure of the age-0 fish assemblage was determined primarily by the characteristics of the littoral habitats, i.e. slope steepness and structure, and three different patterns of habitat use were detected among the fish species. To obtain the most comprehensive assessment of a littoral age-0 fish assemblage and to register all species-specific patterns of habitat use, it is necessary that all littoral habitats in the reservoir are sampled during both day and night periods. The boat-modified PASE could be also used as a standard monitoring tool for routine age-0 fish sampling under difficult conditions of steep-sloped shorelines in large inland waterbodies.  相似文献   

10.
We measured bacterioplankton (phylotypes detected by fluorescent in situ hybridisation, morphometric forms, abundance and production) in samples collected in summer in the littoral and pelagic zones of 10 subtropical shallow lakes of contrasting area (from 13 to 80,800 ha). Compared to the pelagic zones, the littoral zones were overall characterised by higher macrophyte dominance and lower concentrations of total phosphorus and alkalinity and higher concentrations of dissolved organic carbon (DOC) and humic substances. Similarities of bacterial production and biomass turnover and density of active phylotypes and morphotype proportions were related to similarities in a set of environmental variables (including nutrients, humic substances content, predator density and phytoplankton biomass), and some additionally to lake area. Horizontal heterogeneity in bacterioplankton variables (littoral versus pelagic) increased with lake area. Bacterioplankton biomass and production tended to be lower in the littoral zone than in the pelagic zone despite higher concentrations of DOC and humic substances. A likely explanation is higher predation on bacterioplankton in the littoral zone, although allelophatic effects exerted by macrophytes cannot be excluded. Our results indicate that organic cycling via bacterioplankton may be less efficient in the littoral zone than in the pelagic zone of shallow lakes.  相似文献   

11.
1. The distribution of zooplankton in shallow lakes is negatively related to macrophyte density. However, the abundance of their food along density gradients of macrophytes is unknown. A common but untested assumption is that food quantity and quality for pelagic zooplankton is poor in the littoral zone owing to the deleterious influence of macrophytes on phytoplankton. 2. We tested this assumption with a combination of a field survey and laboratory experiments. We collected seston samples from the littoral and pelagic zones of four shallow temperate lakes and related food quantity (phytoplankton biovolume) and quality to macrophyte abundance (per cent volume infested). Seston food quality was assessed in three ways: N/C and P/C ratios, polyunsaturated fatty acid content and phytoplankton community composition. In the laboratory, we measured the growth and reproduction of Daphnia pulicaria on diets consisting of seston from the littoral and pelagic zones in one lake. 3. In our four study lakes, food quantity was not significantly influenced by macrophyte abundance, and food quality was generally high. Laboratory experiments showed increased juvenile growth, but no significant change in D. pulicaria reproduction, when feeding on littoral resources compared to pelagic resources. 4. Our results suggest that there is no nutritional cost to pelagic zooplankton inhabiting the littoral zone. Therefore, it is likely that other factors (e.g. predation, abiotic factors) are involved in determining zooplankton habitat use.  相似文献   

12.
Residential development on lake shores is regularly associated with the conversion of natural littoral habitats to riprap, sheet piles, beaches, parks, or marinas. The subsequent loss of littoral vegetation induces a decline of structural diversity and impacts littoral fish communities. These impacts may be shaped by lake morphology. Using boosted regression trees (BRT) to relate fish abundance data from 57 north-east German lowland lakes to various factors characterizing trophic state, lake morphology, and shoreline development, we investigated the response of 11 fish species to shoreline development. The analyses revealed that mean depth followed by trophic level and shoreline length (SL) contributed most in explaining littoral fish abundance. BRT models built for deep and shallow lakes separately confirmed that primarily trophic level and SL influenced fish abundance but that littoral vegetation was relatively more important in deep compared to shallow lakes, indicating that the effects of shoreline development may be more pronounced in deep lakes where the littoral makes up a smaller proportion of the lake area as compared to shallow lakes. The BRT further demonstrated species-specific responses to shoreline degradation, indicating that the reliability of ecological quality assessments of lakes can be improved by applying separate metrics for individual species.  相似文献   

13.
Lyons  J.  Lucas  M. C. 《Hydrobiologia》2002,483(1-3):265-273
Spatial behaviour and distribution of fishes along a 7.6-km lowland reach of the River Trent, England, were examined using two complementary telemetry techniques: acoustic tracking to assess the movement and activity of common bream Abramis brama (L.) and quantitative echosounding for measuring the density and distribution of fish shoals. Nine adult bream (39.3–53.2 cm) were tracked by means of intraperitoneally implanted acoustic transmitters from 19 July to 12 September 2000. Home range size varied between 0.35 and 5.40 km of river length over this period. Bream were relatively inactive during daylight hours, began moving near dusk, and tended to move throughout the night. A distinct daytime residence area was occupied by most tagged fish on most occasions, while river use at night was more variable between individuals. Mobile echosounding surveys, with the transducer beaming horizontally across the river, conducted at night between July and September 2000, showed a highly contagious fish distribution within the study reach. For 200-m sections of river, there was a negative correlation between the relative frequency of acoustic tracking fixes at night and mean fish densities, as measured by echosounding for targets larger than –50 dB (c. 5-cm long). However, there was a highly significant positive rank correlation between the relative frequency of acoustic tracking fixes and acoustic targets larger than –30 dB (c. 22-cm long), most of which in this river are bream. This suggests that telemetry and echosounding can, in this part of the River Trent, be combined to provide valuable spatial information at individual and population scales for bream.  相似文献   

14.
Hydroacoustic surveys were performed in an oxbow lake (Lake Laojianghe, China) along the Yangtze River. The study took place during the day and night in October 2012 using the Simrad EY60 split beam echo sounder. A clear day‐night difference in fish densities was observed in selected transect areas. The mean density estimate at night was three times higher than during the day, while at night densities were similar in the two adjacent areas. Significantly positive relationships were found between fish density and average depth for the night and daytime transects, however, the regression slope for the daytime density estimates was much smaller than for the surveys at night. Small fish dominated the acoustic size structure during both day and night, but were more accessible at night. The average biomass estimate from the daytime transects was nearly 60% lower than those from the corresponding night transects. These results indicate that an entire lake estimate of a fish population may be severely biased if fish tend to aggregate temporarily in the bottom or littoral zone or display diurnal behaviour. The conclusion is that acoustic sampling in Lake Laojianghe is best done at night. Diel differences in the lake should be further investigated by carrying out additional day‐night comparison experiments and also by using control catches.  相似文献   

15.
A near-shore belt 50 km in length was surveyed parallel to the shoreline of Lake Constance, central Europe, with a single-beam echosounder five times between July 1993 and February 1994. The species and age composition of fish in the survey area was investigated by gillnet fishing and SCUBA-diving. In summer, the horizontal distribution of perch was patchy. Population density declined from east to west, and highest densities occurred in one shallow bay and close to ports and jetties at steeper shores. During daytime, perch stayed in the sublittoral zone between 3 and 15 m depth and between 2 and 6 m above the thermocline. Within this layer age classes were separated spatially: the relative number of young-of-the-year perch declined with depth whereas the relative number of adult perch (2+ and older) increased with depth. At dusk the fish migrated to the littoral zone, where they spent the night resting on the bottom. In winter, under almost homothermal conditions, perch of all ages were located between the 35 and 70 m depth contours, where they performed pronounced diel vertical migrations. They rested on, or close to, the bottom during daytime and ascended up to 20 m below the surface at night. During this season, horizontal distribution of perch was much more homogeneous than in summer.  相似文献   

16.
We investigated whether predatory fish exert a top‐down control on reed leaf packs processing in a lake littoral zone through a trophic cascade. Exclosure experiments were repeated in summer and winter, under high and low natural fish abundance, respectively. Fish exclusion effects on detritus processing and fungal conditioning were consistent with trophic cascade predictions only in summer. In winter, however, results indicated that a trophic cascade was induced by predatory invertebrates. In both seasons, variations in detritivores abundance generally supported a cascade scenario, whereas several taxon‐specific departures occurred during the experimental periods. We conclude suggesting that predators may continuously regulate leaf detritus processing in lake littoral zones, through a seasonal shift in the relative contribution of fish and invertebrate predation. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
1. We experimentally reduced densities of predatory fish in replicated 2 m2 areas of the littoral zone in two ponds to test whether density and biomass of invertebrates would respond to release from fish predation. The ponds are of similar size and in close proximity, but support different fish assemblages: bluegills ( Lepomis macrochirus Rafinesque) and largemouth bass ( Micropterus salmoides (Lacepede)) in one pond, and bluespotted sunfish ( Enneacanthus gloriosus (Holbrook)) and chain pickerel ( Esox niger Lesueur) in the other. Fish densities were reduced to less than 15% of ambient levels in both experiments.
2. In the bluegill–bass pond, density and biomass of most invertebrate taxa and size classes were unaffected by the fish manipulation. Total invertebrate densities did not differ significantly between fish treatments, but total invertebrate biomass was significantly greater where fish density was reduced, averaging 30% higher over the course of the study. Likewise, manipulation of fish in the bluespotted sunfish–pickerel pond had few significant effects on individual taxa and size classes. There were no significant effects on total invertebrate abundance in the bluespotted sunfish–pickerel pond.
3. Our results provide direct experimental evidence consistent with the collective evidence from previous work, suggesting that the impact of fish predation on density and biomass of invertebrate prey in littoral habitats is variable, but generally weak. Invertebrates that coexist successfully with fish in littoral systems probably are adept at taking advantage of refugia offered by the structurally complex physical environment.  相似文献   

18.
Littoral age 0+ fish were studied with respect to spatio-temporal heterogeneity in the deep-valley ?ímov Reservoir (Czech Republic) from June to October 2007 using point abundance sampling by electrofishing. The abundance and diversity of age 0+ fish in different types of littoral habitats were examined along the longitudinal gradient of the reservoir during daytime. The impact of some physical attributes of the studied littoral habitats, e.g. slope steepness and substrate size, along with the season was the main factors affecting the distribution of age 0+ fish. The level of structural complexity was not a strong determinant, because the overall diversity and structural complexity of the available littoral habitats were relatively too low to have greater impact on the age 0+ fish distribution. The physical factors markedly influenced the spatial segregation between the two most important taxa in the reservoir—percids and cyprinids. Perch was the only representative of age 0+ percids in the littoral zone, which occupied steep-sloped habitats early in the season. In contrast, gently sloped habitats were mainly occupied by cyprinids later in the season. Species diversity was reflected in the occurrence of age 0+ cyprinids, achieving a maximum in gently sloped habitats in October. The effect of the longitudinal gradients on age 0+ fish distribution and diversity was generally far less significant, but was rather decisive during the period of a pronounced longitudinal trophic gradient during the summer season.  相似文献   

19.
1. We experimentally reduced densities of predatory fish in replicated 2 m2 areas of the littoral zone in two ponds to test whether density and biomass of invertebrates would respond to release from fish predation. The ponds are of similar size and in close proximity, but support different fish assemblages: bluegills ( Lepomis macrochirus Rafinesque) and largemouth bass ( Micropterus salmoides (Lacepede)) in one pond, and bluespotted sunfish ( Enneacanthus gloriosus (Holbrook)) and chain pickerel ( Esox niger Lesueur) in the other. Fish densities were reduced to less than 15% of ambient levels in both experiments.
2. In the bluegill–bass pond, density and biomass of most invertebrate taxa and size classes were unaffected by the fish manipulation. Total invertebrate densities did not differ significantly between fish treatments, but total invertebrate biomass was significantly greater where fish density was reduced, averaging 30% higher over the course of the study. Likewise, manipulation of fish in the bluespotted sunfish–pickerel pond had few significant effects on individual taxa and size classes. There were no significant effects on total invertebrate abundance in the bluespotted sunfish–pickerel pond.
3. Our results provide direct experimental evidence consistent with the collective evidence from previous work, suggesting that the impact of fish predation on density and biomass of invertebrate prey in littoral habitats is variable, but generally weak. Invertebrates that coexist successfully with fish in littoral systems probably are adept at taking advantage of refugia offered by the structurally complex physical environment.  相似文献   

20.
Mamani  A.  Koncurat  M. L.  Boveri  M. 《Hydrobiologia》2019,829(1):19-29

Whether macrophytes offer an effective refuge for zooplankton in all shallow lakes is subject to debate. To explore potential constraints between different predator threats and the related habitat choice by zooplankton, we conducted a mesocosm experiment in 12 large-sized pools mimicking the nearshore environment with part of its length being covered by submersed macrophytes (Egeria densa) and holding a mixed zooplankton community. Four treatments were used: (i) young zooplanktivorous fish (3 silverside, Odontesthes bonariensis) in the “open-water” zone; (ii) macroinvertebrate predator (31 grass shrimp, Palaemonetes argentinus) in the vegetated zone; (iii) both, fish in the open-water and shrimp in the vegetated zones; and (iv) control with no predators. Our results show specific effects of each predator on the abundance, composition, and size of cladocerans. Regarding distribution, in control and shrimp mesocosms, no differences were found between the two zones, while cladocerans were clearly more abundant in the vegetated side in the presence of fish. When both fish and shrimp were present, cladocerans preferred the vegetated zone too, but in a smaller proportion, and their abundance was less. The presence of predatory macroinvertebrates in vegetated littoral zone reduces the refuge value of this habitat, at least for cladocerans.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号