首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mammalian oocytes have the ability to confer totipotency to terminally differentiated somatic cell nuclei. Viable cloned animals have been produced by somatic cell nuclear transfer (NT) into oocytes in many mammalian species including mouse. However, the success rates of the production were quite low in all species. Many studies have measured differences in gene expression between NT and fertilized embryos in relatively advanced stages of development such as pre- and post-natal stages or the blastocyst stage. In the present study, we compared gene expression patterns using differential display RT-PCR (DDRT-PCR) between the NT and IVF embryos at the 2-cell stage to detect some abnormalities affecting later development of NT embryos. Aberrant gene expression was detected in NT embryos compared with IVF embryos, and MuERV-L and Dnaja2 genes were down-regulated and Inpp5b and Chst12 genes were up-regulated in the NT embryos. Further analysis showed that the expression of zygotically activated genes such as Interferon-gamma, Dub-1, Spz1, DD2106 (unknown gene), and DD2111 (unknown gene) were suppressed in NT embryos, suggesting that the cellular process involved in the nuclear reprogramming of somatic nucleus is not appropriately regulated.  相似文献   

4.
The mouse genome has been subjected to two successive amplification bursts of the murine endogenous retrovirus MuERV-L after the Mus/Rattus split. The main objective of this work is to characterize in detail the intragenomic spread giving rise to these two murine bursts using full-length MuERV-L proviruses taken from public databases. Phylogenetic analyses led to the identification of elements putatively amplifying during each one of the two burst. Likelihood-ratio tests were used to confirm that elements supposedly arisen during the first burst have been evolving under lower selective constrains, as expected for older insertions. The data reported here suggested an evolutionary dynamics for MuERV-L amplification characterized by the existence of multiple elements simultaneously active during each one of the bursts while only one or very few closely related proviruses from the first burst gave rise to the second one. Finally, more than one third of the proviruses present 100% identity between the 5' and 3' LTRs, strongly indicating that MuERV-L is currently active within the mouse genome.  相似文献   

5.
6.
7.
8.
Paternal exposure to chronic low doses of cyclophosphamide, an anticancer agent, results in aberrant embryonic development of the progeny. We hypothesized that paternal exposure to cyclophosphamide disturbs zygotic gene activity regulating proper progression through preimplantation development and that this disturbance results in improper cell-cell interactions. To test this hypothesis, we analyzed cell-cell interactions and the expression of cytoskeletal elements in preimplantation embryos sired by male rats gavaged with saline or 6 mg kg(-1) day(-1) cyclophosphamide for 5 wk. Embryos from control litters had 4-12 cells on Day 2 of gestation; cell-cell contacts were observed consistently. Embryos from litters sired by cyclophosphamide-treated males were frequently abnormal and had lower cell numbers and decreased cell-cell contacts. Steady state concentrations of the mRNAs for cell adhesion molecules (cadherins and connexin 43) and structural proteins (beta-actin, collagen, and vimentin) were low in two- and four-cell control embryos; expression increased dramatically by the eight-cell stage. In contrast, embryos sired by cyclophosphamide-treated males displayed the highest expression of most trancripts at the two-cell stage. In parallel with the mRNA profiles, E-cadherin immmunoreactivity was nearly absent in two-cell control embryos and was strong by the eight-cell stage; immunoreactivity in embryos sired by drug-treated fathers was strong at the two-cell stage but absent at later stages. Thus, drug exposure of the paternal genome led to dysregulated expression of structural elements and decreased cell interactions during preimplantation embryonic development.  相似文献   

9.
We examined the relationship between the bulk elastic modulus (epsilon) of an individual leaf obtained by the pressure-volume (P-V) technique and the mechanical properties of cell walls in the leaf. The plants used were Quercus glauca and Q. serrata, an evergreen and a deciduous broad-leaved tree species, respectively. We compared epsilon and Young's modulus of leaf specimens determined by the stretch technique at various stages of their leaf development. The results showed that epsilon increased from approximately 5 to 20 MPa during leaf development, although other potential determinants of epsilon such as the apoplastic water content in the leaf and the diameter of a palisade tissue cells remained almost constant. epsilon in these two species was similar at every developmental stages, although the apparent mechanical strength of the leaf lamina and thickness of mesophyll cell walls were greater in Q. glauca. There were significant linear relationships between Young's modulus and epsilon (P < 0.01; R (2) = 0.78 and 0.84 in Q. glauca and Q. serrata, respectively) with small y-intercepts. From these results, we conclude that epsilon is closely related to the reversible properties of the cell walls. From the estimation of epsilon based on a physical model, we suggest that the effective thickness of cell walls responsible for epsilon is smaller than the observed wall thickness.  相似文献   

10.
Sequence analysis of epsilon and gamma genes and encoded globins and high-pressure liquid chromatography analysis of globin compositions in blood hemolysates obtained from embryos, fetuses and adults show that the prosimian primate Galago crassicaudatus expresses its epsilon and gamma genes only embryonically. Since rabbit, mouse and galago all have embryonic gamma genes but simian primates have fetal gamma genes, we conclude that gamma E evolved into gamma F in stem-simians. An elevated non-synonymous substitution rate characterizes this transition. The alignment of epsilon and gamma nucleotide sequences and the parsimoniously reconstructed evolutionary history of these sequences identify several anciently conserved cis-regulatory elements (phylogenetic footprints) important for gamma expression in primates and also cis-mutations which may have been involved in the recruitment of the gamma gene to a fetal program in simian primates.  相似文献   

11.
In the development of ruminant embryos, the emergence and growth of the allantois is critical for the establishment of the chorioallantoic placenta. The allantoic membrane contributes to all the vasculature that perfuses the placental tissues and the fetal membranes. Using suppressive subtractive hybridization to compare mRNA from Day 13 ovine preimplantation conceptuses (prior to allantoic emergence) with Day 17 allantoic membrane, we identified nine genes whose expression was associated with the emergence of the allantoic sac. Collagen alpha 1 type XII, collagen alpha 2 type I, collagen alpha 2 type V, epsilon 4 beta-globin, osteonectin, and uroplakin were expressed at significantly greater levels in ovine Day 17 allantois compared to Day 13 conceptuses. These genes are associated with the extracellular matrix and most likely are involved in establishing and strengthening the structural integrity of the allantoic sac and in the development of the blood vessels. RalB expression increased with development although at significantly greater levels in the allantois only at Day 19. Hoxa-10 and RhoA showed no differential expression during this period. All these genes showed a similar temporal pattern of expression in bovine conceptuses at equivalent stages of development with significantly greater expression of all these genes, except for Hoxa-10, found in Day 24 allantois compared to Day 14 conceptuses. This suggests that the role they play in allantoic emergence, growth and function is conserved in both ruminant species and that their expression is regulated in a similar manner. The interactions and regulation of this process remains to be fully explained.  相似文献   

12.
Somatic cell nuclear transfer (SCNT) has been performed extensively in fish since the 1960s with a generally low efficiency of approximately 1%. Little is known about somatic nuclear reprogramming in fish. Here, we utilized the zebrafish as a model to study reprogramming events of nuclei from tail, liver and kidney cells by SCNT. We produced a total of 4,796 reconstituted embryos and obtained a high survival rate of 58.9-67.4% initially at the 8-cell stage. The survival rate exhibited two steps of dramatic decrease, leading to 8.7-13.9% at the dome stage and to 1.5-2.96% by the shield stage. Concurrently, we observed that SCNT embryos displayed apparently delayed development also at the two stages, namely the dome stage (1:30 ± 0:40) and the shield stage (2:50 ± 0:50), indicating that the dome and shield stage are critical for the SCNT efficiency. Interestingly, we also revealed that an apparent alteration in klf4 and mycb expression occurred at the dome stage in SCNT embryos from all the three donor cell sources. Taken together, these results suggest that the dome stage is critical for the SCNT efficiency, and that alternated gene expression appears to be common to SCNT embryos independently of the donor cell types, suggesting that balanced mycb and klf4 expression at this stage is important for proper reprogramming of somatic nuclei in zebrafish SCNT embryos. Although the significant alteration in klf4 and mycb expression was not identified at the shield stage between ZD and SCNT embryos, the importance of reprogramming processes at the shield stage should not be underestimated in zebrafish SCNT embryos.  相似文献   

13.
14.
15.
M Hoch  C Schrder  E Seifert    H Jckle 《The EMBO journal》1990,9(8):2587-2595
Krüppel (Kr), a gap gene of Drosophila, shows complex spatial patterns of expression during the different stages of embryogenesis. In order to identify cis-acting sequences required for normal Kr gene expression, we analysed the expression patterns of fusion gene constructs in transgenic embryos. In these constructs, bacterial lacZ expression was placed under the control of Kr sequences in front of a basal promoter. We identified cis-acting Kr control units which drive beta-galactosidase expression in 10 known locations of Kr expression in early and late embryos. More than one cis-regulatory element drives the expression in the anterior domain at the blastoderm stage, in the nervous system, the midline precursor cells and in the amino-serosa. In addition, two cis-acting elements direct the first zygotic expression of Kr in a striped subpattern within the central region of the blastoderm embryo. Both elements respond to alterations in the activities of maternal organizer genes known to be required for Kr expression in establishing the thoracic and anterior abdominal segments in the wild-type embryo.  相似文献   

16.
In vertebrates, the positioning of the internal organs relative to the midline is asymmetric and evolutionarily conserved. A number of molecules have been shown to play critical roles in left-right patterning. Using representational difference analysis to identify genes that are differentially expressed on the left and right sides of the chick embryo, we cloned chick Claudin-1, an integral component of epithelial tight junctions. Here, we demonstrate that retroviral overexpression of Claudin-1, but not Claudin-3, on the right side of the chick embryo between HH stages 4 and 7 randomizes the direction of heart looping. This effect was not observed when Claudin-1 was overexpressed on the left side of the embryo. A small, but reproducible, induction of Nodal expression in the perinodal region on the right side of the embryo was noted in embryos that were injected with Claudin-1 retroviral particles on their right sides. However, no changes in Lefty,Pitx2 or cSnR expression were observed. In addition, Flectin expression remained higher in the left dorsal mesocardial folds of embryos with leftwardly looped hearts resulting from Claudin-1 overexpression on the right side of the embryo. We demonstrated that Claudin-1's C-terminal cytoplasmic tail is essential for this effect: mutation of a PKC phosphorylation site in the Claudin-1 C-terminal cytoplasmic domain at threonine-206 eliminates Claudin-1's ability to randomize the direction of heart looping. Taken together, our data provide evidence that appropriate expression of the tight junction protein Claudin-1 is required for normal heart looping and suggest that phosphorylation of its cytoplasmic tail is responsible for mediating this function.  相似文献   

17.
The efficiency of transgenic animal production would increase if microinjected embryos with a successfully integrated transgene could be identified prior to transfer. It is possible to detect microinjected DNA in embryos. However, no reliable system is able to distinguish between transgenes merely present as extrachromosomal DNA and those that have been integrated into chromatin. The experiments reported here were designed to determine if the inclusion of matrix attachment regions (MARs) would enhance the efficiency of transgenic embryos identification using a selection scheme based on the expression of green fluorescent protein (GFP). Pronuclei of mouse embryos were microinjected with GFP reporter gene under the control of three different promoters and flanked or not by three different MAR elements. Transgene expression profiles were followed by direct visualization of GFP in cultured microinjected embryos. Embryos at different developmental stages were classified according to their GFP expression and groups with the same expression pattern were transferred into oviducts of pseudopregnant female mice. Fetuses were collected between days 12–15, and their genomic DNA was purified and analyzed to detect transgene integration. We did not find any statistically significant difference between the percentage of transgenic fetuses produced from GFP-positive or GFP-negative embryos transferred at 4-cell, morula, or blastocyst stage. However, when MAR elements were included in the construct, we found that GFP-positive embryos transferred at the 2-cell stage produced a significantly higher percentage of transgenic fetuses than GFP-negative embryos, but MAR sequences did not completely eliminate false positives.  相似文献   

18.
19.
Myomaker (also called Tmem8c), a new membrane activator of myocyte fusion was recently discovered in mice. Using whole mount in situ hybridization on zebrafish embryos at different stages of embryonic development, we show that myomaker is transiently expressed in fast myocytes forming the bulk of zebrafish myotome. Zebrafish embryos injected with morpholino targeted against myomaker were alive after yolk resorption and appeared morphologically normal, but they were unable to swim, even under effect of a tactile stimulation. Confocal observations showed a marked phenotype characterized by the persistence of mononucleated muscle cells in the fast myotome at developmental stages where these cells normally fuse to form multinucleated myotubes. This indicates that myomaker is essential for myocyte fusion in zebrafish. Thus, there is an evolutionary conservation of myomaker expression and function among Teleostomi.  相似文献   

20.
为鉴定鱼类肌肉组织特异性顺式调控元件,通过分析斑马鱼多个组织的转录组数据,筛选出肌肉高表达基因及低表达基因.通过MEME对肌肉高表达基因和低表达基因非编码区序列特征进行分析,在5个肌肉高表达基因的转录起始位点上游发现了序列保守的DNA区域,包含6个排列顺序一致的DNA基序.将其中一段目标片段插入具有Tol2转座子元件的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号