首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The apical surface of the retinal pigment epithelium (RPE) faces the neural retina whereas its basal surface faces the choroid. Taurine, which is necessary for normal vision, is released from the retina following light exposure and is actively transported from retina to choroid by the RPE. In these experiments, we have studied the effects of taurine on the electrical properties of the isolated RPE of the bullfrog, with a particular focus on the effects of taurine on the apical Na+–K+ pump.Acute exposure of the apical, but not basal, membrane of the RPE to taurine decreased the normally apical positive transepithelial potential (TEP). This TEP decrease was generated by a depolarization of the RPE apical membrane and did not occur when the apical bath contained sodium-free medium. With continued taurine exposure, the initial TEP decrease was sometimes followed by a recovery of the TEP toward baseline. This recovery was abolished by strophanthidin or ouabain, indicating involvement of the apical Na+–K+ pump.To further explore the effects of taurine on the Na+–K+ pump, barium was used to block apical K+ conductance and unmask a stimulation of the pump that is produced by increasing apical [K+] 0 . Under these conditions, increasing [K+] 0 hyperpolarized the apical membrane and increased TEP. Taurine reversibly doubled these responses, but did not change total epithelial resistance or the ratio of apical-to-basal membrane resistance, and ouabain abolished these responses.Collectively, these findings indicate the presence of an electrogenic Na+/taurine cotransport mechanism in the apical membrane of the bullfrog RPE. They also provide direct evidence that taurine produces a sodium-dependent increase in electrogenic pumping by the apical Na+–K+ pump.  相似文献   

2.
Summary It was previously shown that ouabain decreases the potential difference across anin vitro preparation of bullfrog retinal pigment epithelium (RPE) when applied to the apical, but not the basal, membrane and that the net basal-to-apical Na+ transport is also inhibited by apical ouabain. This suggested the presence of a Na+–K+ pump on the apical membrane of the RPE. In the present experiments, intracellular recordings from RPE cells show that this pump is electrogenic and contributes approximately –10 mV to the apical membrane potential (V AP). Apical ouabain depolarizedV AP in two phases. The initial, fast phase was due to the removal of the direct, electrogenic component. In the first one minute of the response to ouabain,V AP depolarized at an average rate of 4.4±0.42 mV/min (n=10, mean ±sem), andV AP depolarized an average of 9.6±0.5 mV during the entire fast phase. A slow phase of membrane depolarization, due to ionic gradients running down across both membranes, continued for hours at a much slower rate, 0.4 mV/min. Using a simple diffusion model and K+-specific microelectrodes, it was possible to infer that the onset of the ouabain-induced depolarization coincided with the arrival of ouabain molecules at the apical membrane. This result must occur if ouabain affects an electrogenic pump. Other metabolic inhibitors, such as DNP and cold, also produced a fast depolarization of the apical membrane. For a decrease in temperature of 10°C, the average depolarization of the apical membrane was 7.1±3.4 mV (n=5) and the average decrease in transepithelial potential was 3.9±0.3 mV (n=10). These changes in potential were much larger than could be explained by the effect of temperature on anRT/F electrodiffusion factor. Cooling the tissue inhibited the same mechanism as ouabain, since prior exposure to ouabain greatly reduced the magnitude of the cold effect. Bathing the tissue in 0mm [K+] solution for 2 hr inhibited the electrogenic pump, and subsequent re-introduction of 2mm [K+] solution produced a rapid membrane hyperpolarization. We conclude that the electrogenic nature of this pump is important to retinal function, since its contribution to the apical membrane potential is likely to affect the transport of ions, metabolites, and fluid across the RPE.  相似文献   

3.
+ concentration ([K+]o) on the membrane potential (Em) of Chara corallina was studied. Em more negative than -100 mV was maintained even at 100 mM [K+]o. Addition of Ca2+ to the external medium further increased this tendency. However, Em responded sensitively to the increase in [K+]o, when the electrogenic proton pump of the plasma membrane was inhibited by treating cells with dicyclohexylcarbodiimide, an inhibitor of proton pump. Analysis using equivalent circuit model of the plasma membrane suggested that the electrogenic proton pump was activated by the increase in [K+]o. In the presence of 100 mM K+, action potentials were generated by electric stimuli. The ionic mechanism of generation of action potentials in the presence of K+ at high concentration was discussed. Received 3 October 2000/ Accepted in revised form 6 January 2001  相似文献   

4.
The current-voltage (I/V) profiles of Ventricaria (formerly Valonia) membranes were measured at a range of external potassium concentrations, [K+] o , from 0.1 to 100 mm. The conductance-voltage (G/V) characteristics were computed to facilitate better resolution of the profile change with time after exposure to different [K+] o . The resistance-voltage (R/V) characteristics were computed to attempt resolution of plasmalemma and tonoplast. Four basic electrophysiological stages emerged: (1) Uniform low resistance between −60 and +60 mV after the cell impalement. (2) High resistance between +50 and +150 for [K+] o from 0.1 to 1.0 mm and hypotonic media. (3) High resistance between −150 and −20 mV for [K+] o of 10 mm (close to natural seawater) and hypertonic media. (4) High resistance between −150 and +170 mV at [K+] o of 100 mm. The changes between these states were slow, requiring minutes to hours and sometimes exhibiting spontaneous oscillations of the membrane p.d. (potential difference). Our analysis of the I/V data supports a previous hypothesis, that Ventricaria tonoplast is the more resistive membrane containing a pump, which transports K+ into the vacuole to regulate turgor. We associate state (1) with the plasmalemma conductance being dominant and the K+ pump at the tonoplast short-circuited probably by a K+ channel, state (2) with the K+ pump ``off' or short-circuited at p.d.s more negative than +50 mV, state (3) with the K+ pump ``on,' and state (4) with the pump dominant, but affected by high K+. A model for the Ventricaria membrane system is proposed. Received: 5 November 1998/Revised: 11 May 1999  相似文献   

5.
Summary The ionic dependencies of the transepithelial and intracellular electrical parameters were measured in the isolated frog cornea. In NaCl Ringer's the intracellular potential differenceV sc measured under short-circuit conditions depolarized by nearly the same amount after either increasing the stromal-side KCl concentration from 2.5 to 25mm or exposure to 2mm BaCl2 (K+ channel blocker). With Ba2+ the depolarization of theV sc by 25mm K+ was reduced to one-quarter of the control change. If the Cl-permselective apical membrane resistanceR o remained unchanged, the relative basolateral membrane resistanceR i, which includes the lateral intercellular space, increased at the most by less than twofold after Ba2+. These effects in conjunction with the depolarization of theV sc by 62 mV after increasing the stromal-side K+ from 2.5 to 100mm in Cl-free Ringer's as well as the increase of the apparent ratio of membrane resistances (a=R o/Ri) from 13 to 32 are all indicative of an appreciable basolateral membrane K+ conductance. This ratio decreased significantly after exposure to either 25mm K+ or Ba2+. The decline ofR o/Ri with 25mm K+ appears to be anomalous since this decrease is not consistent with just an increase of basolateral membrane conductance by 25mm K+, but rather perhaps a larger decrease ofR o thanR iAlso an increase of lateral space resistance may offset the effect of decreasingR i with 25mm K+. In contrast,R o/Ri did transiently increase during voltage clamping of the apical membrane potential differenceV o and exposure to 25mm K+ on the stromal side. This increase and subsequent decrease ofR o/Ri supports the idea that increases in stromal K+ concentration may produce secondary membrane resistance changes. These effects onR o/Ri show that the presence of asymmetric ionic conductance properties in the apical and basolateral membranes can limit the interpretative value of this parameter. The complete substitution of Na+ withn-methyl-glucamine in Cl-free Ringer's on the stromal side hyperpolarized theV sc by 6 mV whereas 10–4 m ouabain depolarized theV sc by 7 mV. Thus the basolateral membrane contains K+, Na+ and perhaps Cl pathways in parallel with the Na/K pump component.  相似文献   

6.
The mechanisms of the hyperpolarizing and depolarizing actions of cesium were studied in cardiac Purkinje fibers perfused in vitro by means of a microelectrode technique under conditions that modify either the Na+-K+ pump activity or If. Cs+ (2 mM) inconsistently increased and then decreased the maximum diastolic potential (MDP); and markedly decreased diastolic depolarization (DD). Increase and decrease in MDP persisted in fibers driven at fast rate (no diastolic interval and no activation of If). In quiescent fibers, Cs+ caused a transient hyperpolarization during which elicited action potentials were followed by a markedly decreased undershoot and a much reduced DD. In fibers depolarized at the plateau in zero [K+]o (no If), Cs+ induced a persistent hyperpolarization. In 2 mM [K+]o, Cs+ reduced the undershoot and suppressed spontaneous activity by hyperpolarizing and thus preventing the attainment of the threshold. In 7 mM [K+]o, DD and undershoot were smaller and Cs+ reduced them. In 7 and 10 mM [K+]o, Cs+ caused a small inconsistent hyperpolarization and a net depolarization in quiescent fibers; and decreased MDP in driven fibers. In the presence of strophanthidin, Cs+ hyperpolarized less. Increasing [Cs+]o to 4, 8 and 16 mM gradually hyperpolarized less, depolarized more and abolished the undershoot. We conclude that in Purkinje fibers Cs+ hyperpolarizes the membrane by stimulating the activity of the electrogenic Na+-K+ pump (and not by suppressing If); and blocks the pacemaker potential by blocking the undershoot, consistent with a Cs+ block of a potassium pacemaker current.  相似文献   

7.
Summary Previous current/voltage (I/V) investigations of theChara K+ state have been extended by increasing the voltage range (up to +200 mV) through blocking the action potential with La3+. A region of negative slope was found in theI/V characteristics at positive PD's, similar to that already observed at PD's more negative than the resting level. These decreases in membrane currents at PD's more negative than –150 mV and at PD's close to 0 or positive are thought to arise from the K+ channel closure. Both the negative slope regions could be reversibly abolished by 0.1mm K+, 20mm Na+, more than 10mm Ca2+ or 5mm tetraethylammonium (TEA). The K+ channels are therefore blocked by TEA, closed by low [K+] o or high [Ca2+] o and are highly selective to K+ over Na+. With the K+ channels closed, the remainingI/V profile was approximately linear over the interval of 400 mV (suggesting a leakage current), but large rectifying currents were observed at PD's more positive than +50 mV. These currents showed a substantial decrease in high [Ca2+] o , sometimes displayed a slight shift to more positive PD's with increasing [K+] o and were unaffected by TEA or changes in [Na+] o . The slope of the linear part of theI/V profile was steeper in low [K+] o than in TEA or high [Na+] o (indicating participation of K+, but not Na+, in the leak current). Diethylstilbestrol (DES) was employed to inhibit the proton pump, but it was found that the leakage current and later the K+ channels were also strongly affected.  相似文献   

8.
Summary The relationship between the rate of Cl transport and the electrical properties ofHalicystis parvula was investigated. Three metabolic inhibitors-darkness, cyanide (2mm), and low temperature (4°C)-all rapidly and reversibly reduce both the short circuit current (SCC), which is a measure of net Cl transport, and the vacuole electrical potential (PD). Plotting thePD vs. SCC for inhibited cells yields a linear regression with ay-intercept of zero. ThePD is also greatly reduced when the [Cl] of the external medium is lowered. Raising the external [K+] produces an appreciable, but less than Nernstian, depolarization, while increasing the external [H+] tenfold has no net effect on thePD. Decreasing the external [Na+] by tenfold produces only a slight depolarization. Thus, the outer plasma membrane appears to be moderately selective for K+ over Na+ or H+. The effects of ion substitutions in the vacuolar perfusing solutions on thePD reveal that the vacuolar membrane does not discriminate electrically between Cl and the much larger anions, isethionate and benzenesulfonate, or between Na+ and K+. The data suggest that in internally perfused cells ofH. parvula generation of thePD of –50 to –60 mV by a transport system involving only electroneutral pumps is unlikely and that most of thisPD is generated by an electrogenic Cl pump.  相似文献   

9.
Summary The effects of external Rb+ on the efflux of42K+ from whole frog sartorius muscles loaded with 305mm K+ and 120mm Cl were studied. K+ efflux is activated by [Rb+] o less than about 40mm according to a sigmoid relation similar to that for activation by [K+] o . At [Rb+]o greater than 40mm, K+ efflux declines, although at [Rb+] o =300mm it is still greater than at [Rb+] o =0mm. For low concentrations, the increment in K+ efflux over that in K+- and Rb+-free solution, k, is described by the relation k=a[X+] o n , for both K+ and Rb+. The value ofa is larger for Rb+ than for K+, while the values ofn are similar; the activation produced by a given [Rb+] o is larger than that by an equal [K+] o for concentrations less than about 40mm. Adding a small amount of Rb+ to a K+-containing solution has effects on K+ efflux which depend on [K+] o . At low [K+] o , adding Rb+ increases K+ efflux, the effect being greatest near [K+] o =30mm and declining at higher [K+] o ; at [K+] o above 40mm, addition of Rb+ decreases K+ efflux. At [K+] o above 75mm, where K+ efflux is largely activated, Rb+ reduces K+ efflux by a factorb, described by the relationb=1/(1+c[Rb+] o ). Activation is discussed in terms of binding to at least two sites in the membrane, and the reduction in K+ efflux by Rb+ at high [K+] o in terms of association with an additional inhibitory site.  相似文献   

10.
Summary We have measured the intracellular potassium activity, [K+]i and the mechanisms of transcellular K+ transport in reabsorptive sweat duct (RSD) using intracellular ion-sensitive microelectrodes (ISMEs). The mean value of [K+]i in RSD is 79.8±4.1mm (n=39). Under conditions of microperfusion, the [K+]i is above equilibrium across both the basolateral membrane, BLM (5.5 times) and the apical membrane, APM (7.8 times). The Na+/K+ pump inhibitor ouabain reduced [K+]i towards passive distribution across the BLM. However, the [K+]i is insensitive to the Na+/K+/2 Cl cotransport inhibitor bumetanide in the bath. Cl substitution in the lumen had no effect on [K+]i. In contrast, Cl substitution in the bath (basolateral side) depolarized BLM from –26.0±2.6 mV to –4.7*±2.4 mV (n=3;* indicates significant difference) and decreased [K+]i from 76.0±15.2mm to 57.7* ±12.7mm (n=3). Removal of K+ in the bath decreased [K+]i from 76.3±15.0mm to 32.3*±7.6mm (n=4) while depolarizing the BLM from –32.5±4.1 mV to –28.3*±3.0 mV (n=4). Raising the [K+] in the bath by 10-fold increased [K+]i from 81.7±9.0mm to 95.0*±13.5mm and depolarized the BLM from –25.7±2.4 mV to –21.3*±2.9 mV (n=4). The K+ conductance inhibitor, Ba2+, in the bath also increased [K+]i from 85.8±6.7mm to 107.0*±11.5mm (n=4) and depolarized BLM from –25.8±2.2 mV to –17.0*±3.1 mV (n=4). Amiloride at 10–6 m increased [K+]i from 77.5±18.8mm to 98.8*±21.6mm (n=4) and hyperpolarized both the BLM (from –35.5±2.6 mV to –47.8*±4.3 mV) and the APM (from –27.5±1.4 mV to –46.0* ±3.5 mV,n=4). However, amiloride at 10–4 m decreased [K+]i from 64.5±0.9mm to 36.0*±9.9mm and hyperpolarized both the BLM (from –24.7±1.4 mV to –43.5*±4.2 mV) and APM (from –18.3±0.9 mV to –43.5*±4.2 mV,n=6). In contrast to the observations at the BLM, substitution of K+ or application of Ba2+ in the lumen had no effect on the [K+]i or the electrical properties of RSD, indicating the absence of a K+ conductance in the APM. Our results indicate that (i) [K+]i is above equilibrium due to the Na+/K+ pump; (ii) only the BLM has a K+ conductance; (iii) [K+]i is subject to modulation by transport status; (iv) K+ is probably not involved in carrier-mediated ion transport across the cell membranes; and (v) the RSD does not secrete K+ into the lumen.  相似文献   

11.
Inastrocytes, as [K+]o was increased from 1.2 to 10 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. As [K+]o was increased from 10 to 60 mM, intracellular concentration of these three ions showed no significant change. When [K+]o was increased from 60 to 122 mM, an increase in [K+]i and [Cl]i and a decrease in [Na+]i were observed.Inneurons, as [K+]o was increased from 1.2 to 2.8 mM, [Na+]i and [Cl]i were decreased, whereas [K+]i was increased. As [K+]o was increased from 2.8 to 30 mM, [K+]i, [Na+]i and [Cl]i showed no significant change. When [K+]o was increased from 30 to 122 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. Inastrocytes, pHi increased when [K+]o was increased. Inneurons, there was a biphasic change in pHi. In lower [K+]o (1.2–2.8 mM) pHi decreased as [K+]o increased, whereas in higher [K+]o (2.8–122 mM) pHi was directly related to [K+]o. In bothastrocytes andneurons, changes in [K+]o did not affect the extracellular water content, whereas the intracellular water content increased as the [K+]o increased. Transmembrane potential (Em) as measured with Tl-204 was inversely related to [K+]o between 1.2 and 90 mM, a ten-fold increase in [K+]o depolarized the astrocytes by about 56 mV and the neurons about 52 mV. The Em values measured with Tl-204 were close to the potassium equilibrium potential (Ek) except those in neurons at lower [K+]o. However, they were not equal to the chloride equilibrium potential (ECl) at [K+]o lower than 30 mM in both astrocytes and neurons. Results of this study demonstrate that alteration of [K+]o produced different changes in [K+]i, [Na+]i, [Cl]i, and pHi in astrocytes and neurons. The data show that astrocytes can adapt to alterations in [K+]o, in such a way to maintain a more suitable environment for neurons.  相似文献   

12.
The effect of high K concentration, insulin and the L-type Ca2– channel blocker PN 200-110 on cytosolic intracellular free calcium ([Ca2+]i) was studied in single ventricular myocytes of 10-day-old embryonic chick heart, 20-week-old human fetus and rabbit aorta (VSM) single cells using the Ca2+-sensitive fluorescent dye, Fura-2 microfluorometry and digital imaging technique. Depolarization of the cell membrane of both heart and VSM cells with continuous superfusion of 30 mM [K+]o induced a rapid transient increase of [Ca2+]i that was followed by a sustained component. The early transient increase of [Ca2+]i by high [+]o was blocked by the L-type calcium channel antagonist nifedipine. However, the sustained component was found to be insensitive to this drug. PN 200-110 another L-type Ca2+ blocker was found to decrease both the early transient and the sustained increase of [Ca2+]i induced by depolarization of the cell membrane with high [K+]o. Insulin at a concentration of 40 to 80 U/ml only produced a sustained increase of [Ca2+]i that was blocked by PN 200-110 or by lowering the extracellular Ca2+ concentration with EGTA. The sustained increase of [Ca2+], induced by high [K+]o or insulin was insensitive to metabolic inhibitors such as KCN and ouabain as well to the fast Na+ channel blocker, tetrodotoxin and to the increase of intracellular concentrations of cyclic nucleotides. Using the patch clamp technique, insulin did not affect the L-type Ca2+ current and the delayed outward K+ current. These results suggest that the early increase of (Ca2+]i during depolarization of the cell membrane of heart and VSM cells with high [K+]o is due to the opening and decay of an L-type Ca 2+ channel. However, the sustained increase of [Ca2+]i during a sustained depolarization is due to the activation of a resting (R) Ca 2+ channel that is insensitive to lowering [ATP]i and sensitive to insulin.  相似文献   

13.
Extracellular potassium concentration, [K+]o, and intracellular calcium, [Ca2+]i, rise during neuron excitation, seizures and spreading depression. Astrocytes probably restrain the rise of K+ in a way that is only partly understood. To examine the effect of glial K+ uptake, we used a model neuron equipped with Na+, K+, Ca2+ and Cl conductances, ion pumps and ion exchangers, surrounded by interstitial space and glia. The glial membrane was either “passive”, incorporating only leak channels and an ion exchange pump, or it had rectifying K+ channels. We computed ion fluxes, concentration changes and osmotic volume changes. Increase of [K+]o stimulated the glial uptake by the glial 3Na/2K ion pump. The [K+]o flux through glial leak and rectifier channels was outward as long as the driving potential was outwardly directed, but it turned inward when rising [K+]o/[K+]i ratio reversed the driving potential. Adjustments of glial membrane parameters influenced the neuronal firing patterns, the length of paroxysmal afterdischarge and the ignition point of spreading depression. We conclude that voltage gated K+ currents can boost the effectiveness of the glial “potassium buffer” and that this buffer function is important even at moderate or low levels of excitation, but especially so in pathological states.  相似文献   

14.
The involvement of Ca2+-activated K+ channels in the regulation of the plasma membrane potential and electrogenic uptake of glycine in SP 2/0-AG14 lymphocytes was investigated using the potentiometric indicator 3,3′-diethylthiodicarbocyanine iodide. The resting membrane potential was estimated to be −57 ± 6 mV (n = 4), a value similar to that of normal lymphocytes. The magnitude of the membrane potential and the electrogenic uptake of glycine were dependent on the extracellular K+ concentration, [K+]o, and were significantly enhanced by exogenous calcium. The apparent Vmax of Na+-dependent glycine uptake was doubled in the presence of calcium, whereas the K0.5 was not affected. Ouabain had no influence on the membrane potential under the conditions employed. Additional criteria used to demonstrate the presence of Ca2+-activated K+ channels included the following: (1) addition of EGTA to calcium supplemented cells elicited a rapid depolarization of the membrane potential that was dependent on [K+]o; (2) the calmodulin antagonist, trifluoperazine, depolarized the membrane potential in a dose-dependent and saturable manner with an IC50 of 9.4 μM; and (3) cells treated with the Ca2+-activated K+ channel antagonist, quinine, demonstrated an elevated membrane potential and depressed electrogenic glycine uptake. Results from the present study provide evidence for Ca2+-activated K+ channels in SP 2/0-AG14 lymphocytes, and that their involvement regulates the plasma membrane potential and thereby the electrogenic uptake of Na+-dependent amino acids.  相似文献   

15.
Summary A membrane preparation enriched in the basolateral segment of the plasma membrane was isolated from the rat renal cortex by a procedure that included separation of particulates on a self-generating Percoll gradient. The uptake ofl-glutamate by the basolateral membrane vesicles was studied. A Na+ gradient ([Na+] o >[Na+] i ) stimulated the uptake ofl-glutamate and provided the driving force for the uphill transport of the acidic amino acid, suggesting a Na+-l-glutamate cotransport system in the basolateral membrane. A K+ gradient ([K+] i >[K+] o ) increased the uptake additionally. This effect was specific for K+ (Rb+). The action of the K+ gradient in enhancing the uptake ofl-glutamate had an absolute requirement for Na+. In the presence of Na+, but in the absence of a Na+ gradient. i.e., [Na+] o =[Na+] i , the K+ gradient also energized the concentrative uptake ofl-glutamate. This effect of the K+ gradient was not attributable to an alteration in membrane potential. The finding of a concentrative uptake system forl-glutamate energized by both Na+ ([Na+] o >[Na+] i and K+ ([K+] i >[K+] o ) gradients in the basolateral membrane, combined with previous reports of an ion gradient-dependent uphill transport system for this amino acid in the brush border membrane, suggests a mechanism by whichl-glutamate is accumulated intracellularly in the renal proximal tubule to extraordinarily high concentrations.  相似文献   

16.
Summary Efflux of42K+ was measured in frog sartorius muscles equilibrated in depolarizing solutions with external K+ concentrations ([K+] o ) between 75 and 300mm and NaCl concentrations of 60, 120, or 240mm. For several combinations of KCl and NaCl, steady-state internal potentials (V i) were the same for different [K+] o . For the range ofV i examined, K+ efflux occurs principally through the K+ inward rectifier channels. When external K+ is removedV i remains constant for 2 to 3 hr because of the high membrane conductance to Cl, but K+ efflux drops by about one order of magnitude.External Ba2+ in the presence or absence of external K+ produces an inhibition of K+ efflux described by a relation of the formu=(u1/(1+C)[Ba2+] o ))+u 2, whereu is the uninhibited fraction of K+ efflux;u 1, u2 andC are constants; andu 1+u2=1.C depends both on [K+] o andV i. When [K+] o 75mm, increasing [K+] o at constantV i reduces Ba2+ sensitivity. For constantV i–30 mV, Ba2+ sensitivity is less when [K+] o =0 than when [K+] o 75mm. When [K+] o =0, Ba2+ sensitivity decreases asV i is made more positive. The dependence of the Ba2+ sensitivity onV i at constant [K+] o is greater when [K+] o =0 than when [K+] o 75mm.Both the activation of K+ efflux by external K+ and the Ba2+ inhibition of K+ efflux can be explained on the basis of two membrane control sites associated with each channel. When both sites are occupied by K+, the channels are in a high flux state. When one or both sites are empty, the channels are in a low, nonzero flux state. When Ba2+ occupies either site, K+ efflux is further reduced. The reduction of Ba2+-sensitivity by increasing [K+] o at high [K+] o is attributable to the displacement of Ba2+ from the control sites by K+. The increased Ba2+ sensitivity produced by going from [K+] o =0 to [K+] o >-75mm whenV i–30 mV is attributable to states in which Ba2+ occupies one site and K+ the other when [K+] o 0. The smallerV i dependence of the Ba2+ sensitivity when [K+] o 75mm compared to [K+] o =0 is attributable to the necessity that Ba2+ displace K+ at the control sites when [K+] o is high but not when [K+] o =0.  相似文献   

17.
Summary Using intracellular microelectrode technique, we investigated the changes in membrane voltage (V) of cultured bovine pigmented ciliary epithelial cells induced by different extracellular solutions. (1)V in 213 cells under steady-state conditions averaged –46.1±0.6 mV (sem). (2) Increasing extracellular K+ concentration ([K+] o ) depolarizedV. Addition of Ba2+ could diminish this response. (3) Depolarization on doubling [K+] o was increased at higher [K+] o (or low voltage). (4) Removing extracellular Ca2+ decreasedV and reduced theV amplitude on increasing [K+] o . (5)V was pH sensitive. Extra-and intracellular acidification depolarizedV; alkalinization induced a hyperpolarization.V responses to high [K+] o were reduced at acidic extracellular pH. (6) Removing K o + depolarized, K o + readdition after K+ depletion transiently hyperpolarizedV. These responses were insensitive to Ba2+ but were abolished in the presence of ouabain or in Na+-free medium. (7) Na+ readdition after Na+ depletion transiently hyperpolarizedV. This reaction was markedly reduced in the presence of ouabain or in K+-free solution but unchanged by Ba2+. It is concluded that in cultured bovine pigmented ciliary epithelial cells K+ conductance depends on Ca2+, pH and [K+] o (or voltage). An electrogenic Na+/K+-transport is present, which is stimulated during recovery from K+ or Na+ depletion. This transport is inhibited by ouabain and in K+-or Na+-free medium.  相似文献   

18.
Summary The outward rectification of the K+ current in mesophyll cell protoplasts from trap-lobes ofDionaea muscipula was studied with the patch-clamp technique. The rectification had instantaneous and time-dependent components. Changes in [K+] i strongly affected the conductance voltage relation of the plasma membrane while changes in [K+] o had little effect on the relation. Thus, the outward rectification depends on the membrane voltage and the concentration of intracellular K+. Corresponding single-channel activities were observed both in the intact membrane (cell-attached recording) and in excised patches. The single-channel conductance was about 3.3 pS with symmetrical solutions containing 30mm K+.  相似文献   

19.
The Membrane Potential of Acetabularia mediterranea   总被引:8,自引:1,他引:7  
The cytoplasm of an Acetabularia cell is normally at a potential of about -170 mv relative to the external solution; the vacuole is also at this potential. Although there is strict flux equilibrium for all ions, the potential is more negative than the Nernst potentials of any of the permeating ions. Darkness, CCCP, low temperature, and reducing [Cl-]o by a factor of 25 all rapidly depolarize the membrane and inhibit Cl- influx. Some of these treatments do not inhibit the effluxes of K+ and Na+. Increasing [K+]o also depolarizes the membrane both under normal conditions and at low temperature; in the latter case the membrane is partially depolarized in normal seawater (low [K+]o) and in high [K+]o positive potentials of up to +15 mv are attained. It is concluded that the membrane potential is controlled by the electrogenic influx of Cl-, and also, at least in some circumstances, by the diffusion of K+. In addition, it is suggested that electrogenic efflux of H+ may be important in transient nonequilibrium situations. An Appendix deals with the interpretation of simple nonsteady-state tracer kinetic data.  相似文献   

20.
Summary Patch-clamp and single cell [Ca2+] i measurements have been used to investigate the effects of the potassium channel modulators cromakalim, diazoxide and tolbutamide on the insulin-secreting cell line RINm5F. In intact cells, with an average cellular transmembrane potential of –62±2 mV (n=42) and an average basal [Ca2+] i of 102±6nm (n=37), glucose (2.5–10mm): (i) depolarized the membrane, through a decrease in the outward KATP current, (ii) evoked Ca2+ spike potentials, and (iii) caused a sharp rise in [Ca2+] i . In the continued presence of glucose both cromakalim (100–200 m) and diazoxide (100 m) repolarized the membrane, terminated Ca2+ spike potentials and attenuated the secretagogue-induced rise in [Ca2+] i . In whole cells (voltage-clamp records) and excised outside-out membrane patches, both cromakalim and diazoxide enhanced the current by opening ATP-sensitive K+ channels. Diazoxide was consistently found to be more potent than cromakalim. Tolbutamide, a specific inhibitor of ATP-sensitive K+ channels, reversed the effects of cromakalim on membrane potential and KATP currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号