首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intracellular pH control in Dictyostelium discoideum: a 31P-NMR analysis   总被引:2,自引:0,他引:2  
M Satre  G Klein  J B Martin 《Biochimie》1986,68(12):1253-1261
Phosphorus metabolites and intracellular pH have been examined in the slime mold Dictyostelium discoideum by non-destructive 31P-NMR measurements. In a spectrum from a suspension of aerobic amoebae, the major peaks are inorganic phosphate, nucleotide di- and triphosphates. In the corresponding perchloric acid extract, resonances originating from purine and pyrimidine nucleotides are resolved. Adenine nucleotides are the most abundant components, but the other nucleotides are present in significant amounts. In a spectrum from intact spores in a dormant state, only inorganic phosphate and polyphosphates are detected and nucleotides are no longer present in large amounts. Of particular importance is the ability to observe separately in aerobic amoebae the resonance of inorganic phosphate localized in two different cell compartments: the cytosol and the mitochondria. The cytosolic pH and mitochondrial pH have been measured as 6.7 and 7.7, respectively, on the basis of intracellular inorganic phosphate chemical shifts. They are essentially unaffected over a large range of external pH and they are not modified transiently or permanently during the initiation of the developmental program of the organism. A weak acid, such as propionate, which modifies the progression of differentiation by favoring prestalk cells, perturbs intracellular pH gradients by selectively decreasing mitochondrial pH without any effect on cytosolic pH.  相似文献   

2.
Phosphorus metabolites and intracellular pH have been examined in the slime mold Dictyostelium discoideum by non-destructive 31P-NMR measurements. In a spectrum from a suspension of aerobic amoebae, the major peaks are inorganic phosphate, nucleotide di- and triphosphates. In the corresponding perchloric acid extract, resonances originating from purine and pyrimidine nucleotides are resolved. Adenine nucleotides are the most abundant components, but the other nucleotides are present in significant amounts. In a spectrum from intact spores in a dormant state, only inorganic phosphate and polyphosphates are detected and nucleotides are no longer present in large amounts.Of particular importance is the ability to observe separately in aerobic amoebae the resonance of inorganic phosphate localized in two different cell compartments: the cytosol and the mitochondria. The cytosolic pH and mitochondrial pH have been measured as 6.7 and 7.7, respectively, on the basis of intracellular inorganic phosphate chemical shifts. They are essentially unaffected over a large range of external pH and they are not modified transiently or permanently during the initiation of the developmental program of the organism. A weak acid, such as propionate, which modifies the progression of differentiation by favoring prestalk cells, perturbs intracellular pH gradients by selectively decreasing mitochondrial pH without any effect on cytosolic pH.  相似文献   

3.
The pH gradient, delta pH, present across the inner mitochondrial membrane in isolated rat hepatocytes was continuously monitored with a novel spectroscopic technique that utilizes the weak acid fluorescein. Unlike most cytosolic pH indicators, such as 2',7'-bis(carboxyethyl)-5,(6)-carboxyfluorescein (BCECF), fluorescein freely distributes between the cytosolic and mitochondrial compartments. As is typical for weak acids, the distribution between these two compartments is governed by the magnitude of the pH gradient. Since fluorescein has two ionizable groups, the fluorescein dianion is concentrated in the mitochondrial compartment 100-fold per delta pH unit. In this compartment, fluorescein absorbance (or excitation) spectra are red-shifted about 6-8 nm in the matrix environment, as compared to the cytosolic dye at equivalent pH values. The combination of favorable mitochondrial accumulation and red-shifted spectra enables mitochondrial pH to be continuously monitored qualitatively in whole cells by dual wavelength spectroscopy (510 minus 540 nm). When the cytosolic pH is determined by independent means, the mitochondrial pH can be quantitated, based on the theoretical dependence of the fluorescein distribution ratio on delta pH, the ratio of cytosolic to mitochondrial volumes, and the known extinction coefficients for the dye in the cytosolic and mitochondrial compartments. The sensitivity of the method for following kinetic responses in mitochondrial pH is especially noteworthy; a 0.1-unit change in delta pH is easily distinguished, with a time resolution of less than a second.  相似文献   

4.
Four isoforms of the Na+/H+ exchanger (NHE6-NHE9) are distributed to intracellular compartments in human cells. They are localized to Golgi and post-Golgi endocytic compartments as follows: mid- to trans-Golgi, NHE8; trans-Golgi network, NHE7; early recycling endosomes, NHE6; and late recycling endosomes, NHE9. No significant localization of these NHEs was observed in lysosomes. The distribution of these NHEs is not discrete in the cells, and there is partial overlap with other isoforms, suggesting that the intracellular localization of the NHEs is established by the balance of transport in and out of the post-Golgi compartments as the dynamic membrane trafficking. The overexpression of NHE isoforms increased the luminal pH of the compartments in which the protein resided from the mildly acidic pH to the cytosolic pH, suggesting that their in vivo function is to regulate the pH and monovalent cation concentration in these organelles. We propose that the specific NHE isoforms contribute to the maintenance of the unique acidic pH values of the Golgi and post-Golgi compartments in the cell.  相似文献   

5.
A variety of studies have shown that differentiation of Dictyostelium discoideum amoebae in the presence of cAMP is strongly influenced by extracellular pH and various other treatments thought to act by modifying intracellular pH. Thus conditions expected to lower intracellular pH markedly enhance stalk cell formation, while treatments with the opposite effect favor spores. To directly test the idea that intracellular pH is a cell-type-specific messenger in Dictyostelium, we have measured intracellular pH in cells exposed to either low extracellular pH plus weak acid or high extracellular pH plus weak base using 31P nuclear magnetic resonance (NMR). Our results show that there is no significant difference in intracellular pH (cytosolic or mitochondrial) between pH conditions which strongly promote either stalk cell or spore formation, respectively. We have also examined the effects of external pH on the expression of various cell-type-specific markers, particularly mRNAs. Some mRNAs, such as those of the prestalk II (PL1 and 2H6) and prespore II (D19, 2H3) categories, are strongly regulated by external pH in a manner consistent with their cell-type specificity during normal development. Other markers such as mRNAs D14 (prestalk I), D18 (prespore I), 10C3 (common), or the enzyme UDP-galactose polysaccharide transferase are regulated only weakly or not at all by external pH. In sum, our results show that modulation of phenotype by extracellular pH in cell monolayers incubated with cAMP does not precisely mimic the regulation of stalk and spore pathways during normal development and that this phenotypic regulation by extracellular pH does not involve changes in intracellular pH.  相似文献   

6.
The choice of the stalk cell differentiation pathway in Dictyostelium is promoted by an endogenous substance, DIF-1, which is 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone. It is also favoured by weak acids and two inhibitors of the plasma membrane proton pumps of fungi and plants, diethylstilbestrol (DES) and zearalenone, and antagonised by ammonia and other weak bases, which promote spore differentiation. These observations led to the proposal that the choice of differentiation pathway is regulated by intracellular pH. They also prompted the conjecture that DIF-1 itself is a plasma membrane proton pump inhibitor. We report here experiments showing that DIF-1 is not a plasma membrane proton pump inhibitor. We demonstrate that diethylstilbestrol and zearalenone do inhibit the plasma membrane proton pump of Dictyostelium and we show that there is an excellent qualitative and quantitative correlation between the inhibitory activity of these agents, and of a number of other substances, and their ability to divert differentiation from the spore to the stalk pathway. We conclude that inhibition of the plasma membrane proton pump does shift the choice of differentiation pathway in Dictyostelium towards the stalk pathway, but that DIF does not act by this route, and we propose a model for the actions of DIF and plasma membrane proton pump inhibitors in which the differentiation pathway is controlled by the pH of intracellular vesicles rather than by intracellular pH itself. The model invokes a DIF- and proton-activated vesicular chloride channel whose opening permits acidification of the vesicles and lowers cytosolic Ca++ concentration.  相似文献   

7.
F Brénot  L Aubry  J B Martin  M Satre  G Klein 《Biochimie》1992,74(9-10):883-895
We have examined the pH of the various endosomal compartments in the amoebae of the cellular slime mould Dictyostelium discoideum. This was accomplished both by fluorescence and by in vivo 31P-NMR methods. The fluid-phase marker, fluorescein-labeled dextran, was fed to the amoebae to report the average pH of their endocytic vesicles. During the progressive loading of successive endosomal compartments, we observed an early acidification down to a minimum value of pH < or = 5.3 after 30 min at 20 degrees C followed by an increase to an average pH of 5.8 when all the endosomal compartments were loaded by the fluid-phase marker. The weak fluorescence intensity of FITC-dextran at acidic pH precluded a more detailed investigation and we checked various phosphonate compounds as potential 31P-NMR pH probes for the endosomal compartments. Two molecules, aminomethylphosphonate and 2-aminoethylphosphonate, were selected for this study because of the large amplitudes of their chemical shift variation with pH (2 and 2.5 ppm, respectively) and their acidic pKs of 5.5 and 6.3, respectively. They were only moderately toxic (IC50% approximately 10 mM) towards both the axenic growth and the differentiation program of Dictyostelium amoebae. Internalization of the two aminophosphonates occurred only through the fluid-phase pinocytosis pathway as revealed by the full inhibition of their entry with 1 mM vanadate or 7.5 mM caffeine, two previously characterized inhibitors of endocytosis in Dictyostelium. We found that in vivo 31P-NMR of amoebae suspensions incubated with the aminophosphonates allowed the detection of three distinct intracellular compartments at pH 4.3, 5.8-6.0 and 7.3. Kinetics of aminophosphonate entry were analyzed and the results allowed us to reconstruct the time course for the acidification sequence during endocytosis. The data are consistent with the hypothesis that in Dictyostelium amoebae phosphonates occupy a highly acidic early endosomal compartment (t1/2 = 18 min; pH 4.3) before reaching a less acidic late endosomal/prelysosomal compartment (pH 5.8-6.0) from where they are immediately transported to, and trapped in, the cytoplasm (pH 7.3).  相似文献   

8.
Studies were performed to determine the pH relationships among the extracellular, intracellular, and arterial blood compartments in the brain in vivo. Resolution of the extracellular monophosphate resonance peak from the intracellular peak in 31P nuclear magnetic resonance (NMR) spectra of sheep brain with the calvarium intact enabled pH measurement in these respective compartments. Sheep were then subjected to both hyper- and hypoventilation, which resulted in a wide range of arterial PCO2 and pH values. Linear regression analysis of pH in these compartments yielded slopes of 0.56 +/- 0.05 for extracellular pH (pHe) vs. arterial pH, 0.43 +/- 0.078 for intracellular pH (pHi) vs. pHe, and 0.23 +/- 0.056 for pHi vs. arterial pH. These data indicate that CO2 buffering capacity is different and decreases from the intracellular to extracellular to arterial blood compartments. Separation of the extracellular space from the vascular space may be a function of the blood-brain barrier, which contributes to the buffering capability of the extracellular compartment. A marked decrease in the pH gradient between the extracellular and intracellular space occurs during hypercarbia and may influence mechanisms of central respiratory control.  相似文献   

9.
The factors regulating the amplitude and the pH gradient between cytosol and mitochondria (DeltapHmito-cyt) were investigated in the isolated rat liver perfused at 4 degrees C. Liver ATP content, pH, and buffering power of cytosolic and mitochondrial compartments were evaluated in situ using phosphorus-31 nuclear magnetic resonance spectroscopy. No DeltapHmito-cyt was detected in the liver perfused without bicarbonate. Permeant weak acid in the perfusate (H2CO3, 25 mM, or isobutyric acid, 25, 50, or 100 mM) acidified both cytosol and mitochondria and revealed a DeltapHmito-cyt from 0.06 to 0.31 pH unit. Nevertheless, the manipulations of the DeltapHmito-cyt were more effective under bicarbonate-free conditions, due to the absence of buffering by H2CO3/HCO-3. In the absence of bicarbonate, the intracellular buffering power was threefold higher in the mitochondria (110 mmol/pH unit at pHmito 7.16) than in the cytosol (44 mmol/pH unit at pHcyt 7.30) and dependent on the matrix and cytosol pH, respectively. These buffering powers were almost double in the presence of bicarbonate. In the bicarbonate-free perfused liver, the respiratory activity was 0.08 +/- 0.02 micromol O2/min. g liver wet weight and the ATP turnover was only 40 +/- 7 nmol/min. g liver wet weight, indicating the weak activity of liver mitochondria when DeltapHmito-cyt was <0.05 pH unit. The ATP turnover during a 50 mM isobutyric acid load was 35 +/- 4 nmol/min. g liver wet weight whereas DeltapHmito-cyt rose to 0.26 +/- 0.02 pH unit and pHmito remained alkaline. Hence, although DeltapHmito-cyt was increased the ATP turnover remained unchanged. This work is the first evaluation of the mitochondrial buffering power in the isolated liver. The DeltapHmito-cyt observed within various acid loads reflected the differential titration of cytosol and mitochondria containing proteins and H2CO3/HCO-3 buffering systems. Moreover, no direct relationship between DeltapHmito-cyt and ATP turnover could be shown.  相似文献   

10.
The lipophilic cation tetraphenylphosphonium (TPP+) has been extensively utilized as the probe for the membrane potential (Vm) in various cells. For application to mammalian cells, however, two serious problems require resolution: (1), correction of TPP+ binding to intracellular constituents and (2), estimation of the considerable TPP+ accumulation in mitochondria. We propose here a simple corrective method for the TPP+ binding and its accumulation. TPP+ distribution is assumed as: (1), two compartments (a cytosolic and a mitochondrial space); (2), a proportional relationship between TPP+ bound amount and its unbound concentration in each compartment. We theoretically derived the simple equation: Vm = - RT/F ln(C/Mphys ratio/C/Mabol ratio) where R, T and F have their usual thermodynamic significance. Here, the C/M ratio is defined as the ratio of TPP+ concentration of apparent intracellular to extracellular space. The suffixes phys and abol, respectively, mean the physiological and solely Vm-abolished conditions. This equation was checked with hepatocytes, because estimating hepatocytes Vm with TPP+ distribution is not considered possible because of the relatively high mitochondrial content. The selective Vm abolition was achieved by permeabilization with 20 microM of amphotericin B. The Vm value was, thus, estimated to be -38.6 +/- 0.3 mV, compatible with those obtained with microelectrodes in other laboratories. Vm in hepatocytes is composed of transmembrane K+ diffusion potential (-20.6 +/- 0.3 mV) and electrogenic Na+/K(+)-ATPase (-19.6 +/- 0.4 mV). Addition of rheogenic L-alanine caused a transient but significant depolarization (from control to -34 +/- 0.3 mV). These results taken together indicate that hepatocyte Vm can be accurately determined with the present simple method, so that it may possibly be applicable to the evaluation of Vm in other mammalian cells.  相似文献   

11.
Assessment of free cytosolic [Ca2+] ([Ca2+]c) using the acetoxymethyl ester (AM) form of indo-1 may be compromised by loading of indo-1 into noncytosolic compartments, primarily mitochondria. To determine the fraction of noncytosolic fluorescence in whole hearts loaded with indo-1 AM, Mn2+ was used to quench cytosolic fluorescence. Residual (i.e., noncytosolic) fluorescence was subtracted from the total fluorescence before calculating [Ca2+]c. Noncytosolic fluorescence was used to estimate mitochondrial [Ca2+]. In hearts paced at 5 Hz (N = 17), noncytosolic fluorescence was 0.61 +/- 0.06 and 0.56 +/- 0.07 of total fluorescence at lambda 385 and lambda 456, respectively. After taking into account noncytosolic fluorescence, systolic and diastolic [Ca2+]c was 673 +/- 72 and 132 +/- 9 nM, respectively, noncytosolic [Ca2+] was 183 +/- 36 nM and increased to 272 +/- 12 when extracellular Ca2+ was increased from 2 to 6 mM. This increase in noncytosolic [Ca2+] was inhibited by ruthenium red, a blocker of Ca2+ uptake by mitochondria. We conclude that cytosolic and mitochondrial [Ca2+] can be determined in whole hearts loaded with indo-1 AM by using Mn2+ to quench cytosolic fluorescence.  相似文献   

12.
Abstract: The Pi peak in a 31P NMR spectrum of the brain can be deconvoluted into six separate Lorentzian peaks with the same linewidth as that of the phosphocreatine peak in the spectrum. In an earlier communication we showed that the six Pi peaks in normal brain represent two extracellular and four intracellular compartments. In that report we have identified the first of the extracellular peaks by marking plasma with infused Pi, thereby substantially increasing the amplitude of the single peak at pH 7.35. 2-Deoxyglucose-6-phosphate (2-DG-6-P) was placed in the brain interstitial space by microdialysis. The resulting 2-DG-6-P peak was deconvoluted into three separate peaks. The chemical shift of the principle 2-DG-6-P peak gave a calculated pH of 7.24 ± 0.02 for interstitial fluid pH, a value that agreed well with the pH of the second extracellular Pi peak at pH 7.25 ± 0.01. We identified the intracellular compartments by selectively stressing cellular energy metabolism in three of the four intracellular spaces. A seizure-producing chemical, flurothyl, was used to activate the neuron, thereby causing a demand for energy that could not be completely met by oxidative phosphorylation alone. The resulting loss of high-energy phosphate reserves caused a significant increase in intracellular Pi only in those cells associated with the Pi peak at pH 6.95 ± 0.01. This suggests that this compartment represents the neuron. Ammonia is detoxified in the astrocyte (glutamine synthetase) by incorporating it into glutamine, a process that requires large amounts of glucose and ATP. The intraarterial infusion of ammonium acetate into the brain stressed astrocyte energy metabolism resulting in an increase in the Pi of the cells at pH of 7.05 ± 0.01 and 7.15 ± 0.02. This finding, coupled with our observation that these same cells take up infused Pi probably via the astrocyte end-foot processes, lead us to conclude that these two compartments represent two different types of astrocytes, probably protoplasmic and fibrous, respectively. As a result of this study, we now believe the brain contains four extracellular and four intracellular compartments.  相似文献   

13.
It was found that a collapse of the mitochondrial calcium buffering caused by the protonophoric uncoupler CCCP, antimycin A plus oligomycin, or the inhibitor of the mitochondrial Ca2+/Na+ exchanger led to a strong inhibition of thapsigargin-induced capacitative Ca2+ entry (CCE) into Jurkat cells suspended in a medium at pH 7.2. The effect of these inhibitors was markedly less significant at higher extracellular pH. Moreover, dysfunction of the mitochondrial calcium handling greatly decreased CCE sensitivity to extracellular Ca2+ when the pH of extracellular solution was 7.2 (apparent Kd toward extracellular Ca2+ rose from 2.3 +/- 0.6 mm in control cells to 11.0 +/- 1.7 mM in CCCP-treated cells) as compared with pH 7.8 (apparent Kd toward extracellular Ca2+ increased from 1.3 +/- 0.4 mM in control cells to 2.4 +/- 0.4 mM in uncoupler-treated cells). Changes in intracellular pH triggered by methylamine did not influence Ca2+ influx. This suggests that, in Jurkat cells, store-operated calcium channels sense extracellular pH change as a parameter that modifies their sensitivity to intracellular Ca2+. In contrast, in human osteosarcoma cells, changes in extracellular pH as well as mitochondrial uncoupling did not exert any inhibitory effects on CCE.  相似文献   

14.
Development of the cellular slime mold Dictyostelium discoideum is initiated by the removal of nutrients, and results in formation of a mature fruiting body composed of two cell types, the stalk and spore cells. A considerable body of evidence supports the hypothesis that cytoplasmic pH may be an essential regulator of the choice to differentiate in either the prestalk or prespore pathway. We have devised methods for measurement and analysis of intracellular pH in developing Dictyostelium amebae in order to assess directly the potential role of cytoplasmic pH in regulating the pathway of differentiation. The intracellular pH of single D. discoideum amebae during development and in intact slugs has been measured using the pH-sensitive indicator pyranine in a low light level microspectrofluorometer. We have used the ATP-mediated loading method to introduce pyranine into these cells. Cells loaded by the ATP method appear healthy, have no detectable defects in development, and exhibit a similar population distribution of intracellular pH to those loaded by sonication. The intracellular pH of populations comprised of single amebae was found to undergo a transient acidification during development resulting in a bimodal distribution of intracellular pH. The subpopulations were characterized by fitting two gaussian distributions to the data. The number of cells in the acidic intracellular pH subpopulation reached a maximum 4 h after initiation of development, and had returned to a low level by 7 h of development. In addition, a random sample of single amebae within a slug had a median intracellular pH of 7.2, nearly identical to the median pH (7.19) of similarly treated vegetative cells. No gradient of intracellular pH along the anterior to posterior axis of the slug was detected. Our data demonstrate the existence of two distinct subpopulations of cells before the aggregation stage of development in Dictyostelium, and offers support for the hypothesis that changes in intracellular pH contribute to development in D. discoideum.  相似文献   

15.
We studied acute changes of secretory vesicle pH in pancreatic beta-cells with a fluorescent pH indicator, lysosensor green DND-189. Fluorescence was decreased by 0.66 +/- 0.10% at 149 +/- 16 s with 22.2 mM glucose stimulation, indicating that vesicular pH was alkalinized by approximately 0.016 unit. Glucose-responsive pH increase was observed when cytosolic Ca2+ influx was blocked but disappeared when an inhibitor of glycolysis or mitochondrial ATP synthase was present. Glutamate dimethyl ester (GME), a plasma membrane-permeable analog of glutamate, potentiated glucose-stimulated insulin secretion at 5 mM without changing cellular ATP content or cytosolic Ca2+ concentration ([Ca2+]). Application of GME at basal glucose concentration decreased DND-189 fluorescence by 0.83 +/- 0.19% at 38 +/- 2 s. These results indicated that the acutely alkalinizing effect of glucose on beta-cell secretory vesicle pH was dependent on glucose metabolism but independent of modulations of cytosolic [Ca2+]. Moreover, glutamate derived from glucose may be one of the mediators of this alkalinizing effect of glucose, which may have potential relevance to the alteration of secretory function by glutamate.  相似文献   

16.
Dictyostelium discoideum is a good model of autophagy. However, the lack of autophagic flux techniques hinders the assessment of new mutants or drugs. One of these techniques, which has been used successfully in yeast and mammalian cells, but has not yet been described in Dictyostelium, is based on the presence of proteolytic fragments derived from autophagic degradation of expressed fusion proteins. Lysosomotropic agents such as NH 4Cl penetrate acidic compartments and raise their pH, thus allowing the accumulation and measurement of these cleaved fragments, which otherwise would be rapidly degraded. We have used this property to detect the presence of free GFP fragments derived from the fusion protein GFP-Tkt-1, a cytosolic marker. We demonstrate that this proteolytic event is dependent on autophagy and can be used to detect differences in the level of autophagic flux among different mutant strains. Moreover, treatment with NH4Cl also facilitates the assessment of autophagic flux by confocal microscopy using the marker RFP-GFP-Atg8.  相似文献   

17.
Null point titration techniques have been developed for measurements of cytosolic free Mg2+ in isolated cells and matrix free Mg2+ in isolated mitochondria using antipyrylazo III as a spectrophotometric Mg2+ indicator. A cytosolic free Mg2+ of 0.37 +/- 0.02 mM was obtained with hepatocytes. This represented about 6% of the total cytosolic magnesium content (activity coefficient of 5.8 X 10(-2). Nondiffusable Mg2+-binding sites in the cytosol were equal to 11.1 nmol/mg cell dry weight with an apparent dissociation constant of 0.71 mM and accounted for binding of 32% of the cytosolic magnesium. The null point method gave a value of 0.35 +/- 0.01 mM for the mitochondrial matrix free Mg2+ concentration (activity coefficient of 8.8 X 10(-3). Nondiffusable Mg2+ binding sites in the mitochondria were estimated at 25.7 nmol/mg mitochondrial protein with an apparent dissociation constant of 0.22 mM, compared with an apparent dissociation constant of 1.66 microM for bound calcium. These data demonstrate the absence of a significant gradient of free Mg2+ between the cytosolic and mitochondrial compartments. They also demonstrate a high ligand binding capacity for magnesium in both compartments with relatively low affinity resulting in a constant value for free Mg2+ when total cell magnesium is constant. This maintains a ratio between free Mg2+ and free Ca2+ of about 2000 in the cytosol and 100 in the mitochondria. The high concentration and low affinity of Mg2+ binding sites results in rather large changes of free Mg2+ with small variations in total cell magnesium. This is apparent in hepatocytes isolated from streptozotocin diabetic rats which had a decreased total magnesium content and a cytosolic free Mg2+ of 0.16 +/- 0.02 mM.  相似文献   

18.
Caspases: their intracellular localization and translocation during apoptosis.   总被引:15,自引:0,他引:15  
The activation of the caspase family of proteases has been detected in numerous cell systems and appears to function as a common pathway through which apoptotic mechanisms may operate. Caspases are synthesized as precursors (pro-caspases) and are converted into mature enzymes by apoptotic signals. The effects of caspases in apoptosis are accomplished by the cleavage of numerous proteins located in different intracellular compartments. In the present study we have addressed the question of the subcellular localization of different pro- and active caspases as well as several other proteins, such as Apaf-1, calpain and DFF, which also play important roles in the apoptotic process. We found that at least three pro-caspases (pro-caspases-2, -3 and -9) were present in both the mitochondrial and cytosolic fractions of untreated Jurkat T lymphocytes. Only pro-caspase-2 was found in the nuclear fraction. Pro-caspases-7 and -8 were found only in the cytosolic fraction. In apoptotic cells, caspases-3, -8 and -9 were present in the cytosolic fraction, whereas caspases-3 and -9 were also found in the mitochondrial fraction and caspase-7 in the microsomal fraction. Caspases-2 and -3 were present in the nuclear fraction. The selective localization of pro-caspases in different subcellular compartments may play an important, but yet unknown, role in their activation. The translocation of active caspases to other subcellular compartments appears to be critical for the development of the apoptotic process.  相似文献   

19.
Cardiac ischemia-reperfusion (I/R) injury is accompanied by intracellular acidification that can lead to cytosolic and mitochondrial calcium overload. However, the effect of cytosolic acidification on mitochondrial pH (pHm) and mitochondrial Ca2+ (Cam2+) handling is not well understood. In the present study, we tested the hypothesis that changes in pHm during cytosolic acidification can modulate Cam2+ handling in cardiac mitochondria. pHm was measured in permeabilized rat ventricular myocytes with the use of confocal microscopy and the pH-sensitive fluorescent probe carboxyseminaphthorhodafluor-1. The contributions of the mitochondrial Na+/H+ exchanger (NHEm) and the K+/H+ exchanger (KHEm) to pHm regulation were evaluated using acidification and recovery protocols to mimic the changes in pH observed during I/R. Cam2+ transport in isolated mitochondria was measured using spectrophotometry and fluorimetry, and the mitochondrial membrane potential was measured using a tetraphenylphosphonium electrode. Cytosolic acidification (pH 6.8) resulted in acidification of mitochondria. The degree of mitochondrial acidification and recovery was found to be largely dependent on the activity of the KHEm. However, the NHEm was observed to contribute to the recovery of pHm following acidification in K+-free solutions as well as the maintenance of pHm during respiratory inhibition. Acidification resulted in mitochondrial depolarization and a decrease in the rate of net Cam2+ uptake, whereas restoration of pH following acidification increased Cam2+ uptake. These findings are consistent with an important role for cytosolic acidification in determining pHm and Cam2+ handling in cardiac mitochondria under conditions of Ca2+ overload. Consequently, interventions that alter pHm can limit Cam2+ overload and injury during I/R.  相似文献   

20.
Calpains are considered to be cytoplasmic enzymes, although several studies have shown that calpain-like protease activities also exist in mitochondria. We partially purified mitochondrial calpain from swine liver mitochondria and characterized. Only one type of mitochondrial calpain was detected by the column chromatographies. The mitochondrial calpain was stained with anti-mu-calpain and calpain small subunit antibodies. The susceptibility of mitochondrial calpain to calpain inhibitors and the optimum pH differ from those of cytosolic mu- and m-calpains. The Ca(2+)-dependency of mitochondrial calpain was similar to that of cytosolic mu-calpain. Therefore, we named the protease mitochondrial mu-like calpain. In zymogram analysis, two types of caseinolytic enzymes existed in mitochondria and showed different mobilities from cytosolic mu- and m-calpains. The upper major band was stained with anti-mu-calpain and calpain small subunit antibodies (mitochondrial calpain I, mitochondrial mu-like calpain). The lower band was stained only with anti-calpain small subunit antibody (mitochondrial calpain II, unknown mitochondrial calpain). Calpastatin was not detected in mitochondrial compartments. The mitochondrial calpain processed apoptosis-inducing factor (AIF) to truncated AIF (tAIF), releasing tAIF into the intermembrane space. These results indicate that mitochondrial calpain, which differs from mu- and m-calpains, seems to be a ubiquitous calpain and may play a role in mitochondrial apoptotic signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号