首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces.  相似文献   

2.
Secretory vesicles are neutrophil intracellular storage granules formed by endocytosis. Understanding the functional consequences of secretory vesicle exocytosis requires knowledge of their membrane proteins. The current study was designed to use proteomic technologies to develop a more complete catalog of secretory vesicle membrane proteins and to compare the proteomes of secretory vesicle and plasma membranes. A total of 1118 proteins were identified, 573 (51%) were present only in plasma membrane-enriched fractions, 418 (37%) only in secretory vesicle-enriched membrane fractions, and 127 (11%) in both fractions. Gene Ontology categorized 373 of these proteins as integral membrane proteins. Proteins typically associated with other intracellular organelles, including nuclei, mitochondria, and ribosomes, were identified in both membrane fractions. Ingenuity Pathway Knowledge Base analysis determined that the majority of canonical and functional pathways were significantly associated with proteins from both plasma membrane-enriched and secretory vesicle-enriched fractions. There were, however, some canonical signaling pathways that involved proteins only from plasma membranes or secretory vesicles. In conclusion, a number of proteins were identified that may elucidate mechanisms and functional consequences of secretory vesicle exocytosis. The small number of common proteins suggests that the hypothesis that secretory vesicles are formed from plasma membranes by endocytosis requires more critical evaluation.  相似文献   

3.
The freeze-substitution method was applied toVicia hirsuta root hairs to test its effectiveness in improving preservation of the cell ultrastruture. Freeze-substitution almost certainly represents more faithfully the structure of the hair cell. A previously unreported ‘pyriformis’ vesicle is described. Also unique to freeze-substituted material are coated secretory vesicles; a smooth plasma membrane profile; mitochondrial ribosomes; long microfilament bundles which are associated with vesicles, mitochondria, coated pits and coated vesicles; microtubule-associated filaments; well-preserved coated vesicles and coated pits with enclosing rings; a pliciform nucleus. The results are discussed in context of previous reports using conventional fixation techniques.  相似文献   

4.
Outer rootcap cells of maize produce large numbers of secretory vesicles that ultimately fuse with the plasma membrane to discharge their product from the cell. As a result of the fusion, these vesicles contribute large quantities of membrane to the cell surface. In the present study, this phenomenon has been investigated using sections stained with phosphotungstic acid at low pH (PACP), a procedure in plant cells that specifically stains the plasma membrane. In the maize root tip, the PACP also stains the membranes of the secretory vesicles derived from Golgi apparatus to about the same density that it stains the plasma membrane. Additionally, the membranes of the secretory vesicles acquire the staining characteristic while still attached to the Golgi apparatus. The staining progresses across the dictyosome from the forming to the maturing pole, thus confirming the marked polarity of these dictyosomes. Interestingly, the PACP staining of Golgi apparatus is confined to the membranes of the secretory vesicles. It is largely absent from the central plates or peripheral tubules and provides an unambiguous example of lateral differentiation of membranes orthogonal to the major polarity axis. In the cytoplasm we could find no vesicles other than secretory vesicles bearing polysaccharide that were PACP positive. Even the occasional coated vesicle seen in the vicinity of the Golgi apparatus did not stain. Thus, if exocytotic vesicles are present in the maize root cap cell, they are formed in a manner where the PACP-staining constituent is not retained by the internalized membrane. The findings confirm dictyosome polarity in the maize root cap, provide evidence for membrane differentiation both across and at right angles to the major polarity axis, and suggest that endocytotic vesicles, if present, exclude the PACP-staining component.  相似文献   

5.
Ultrastructure of lactating bovine and rat mammary epithelial cells was studied with emphasis on secretory vesicle interactions. In the apical zone of the cell, adjacent secretory vesicles formed ball and socket configurations at their points of apposition. Similar configurations were formed between plasma membrane and secretory vesicle membrane. These structures may be formed by the diffusion of water between vesicles with different osmotic potentials. Frequently, vesicular chains consisting of 10 or more linked secretory vesicles were observed. Prior to the exocytotic release of casein micelles, adjacent vesicles fused through fragmentation of the ball and socket membrane. These membrane fragments and the casein micelles appeared to be secreted into the alveolar lumen after passing from one vesicle into another and finally through a pore in the apical plasma membrane. Emptied vesicular chains appeared to collapse and fragmentation of their membrane was observed. Based on these observations, we suggest that most vesicular membrane does not directly contact or become incorporated into the plasma membrane during secretion of the nonfat phase of milk.  相似文献   

6.
Aquaporins (AQPs) are a family of small, hydrophobic, integral membrane proteins. In mammals, they are expressed in many epithelia and endothelia and function as channels that permit water or small solutes to pass. Although the AQPs reside constitutively at the plasma membrane in most cell types, the presence of AQPs in intracellular organelles such as secretory granules and vesicles has currently been demonstrated. The secretory granules and vesicles contain secretory proteins, migrate to particular locations within the cell close to the plasma membrane and release their contents to the outside. During the process, including exocytosis, regulation of secretory granule or vesicle volume is important. This paper reviews the possible role of AQPs in secretory granules and vesicles.  相似文献   

7.
The events in the biogenesis of secretory granules after the budding of a dense-cored vesicle from the trans-Golgi network (TGN) were investigated in the neuroendocrine cell line PC12, using sulfate-labeled secretogranin II as a marker. The TGN-derived dense-cored vesicles, which we refer to as immature secretory granules, were found to be obligatory organellar intermediates in the biogenesis of the mature secretory granules which accumulate in the cell. Immature secretory granules were converted to mature secretory granules with a half-time of approximately 45 min. This conversion entailed an increase in their size, implying that the maturation of secretory granules includes a fusion event involving immature secretory granules. Pulse-chase labelling of PC12 cells followed by stimulation with high K+, which causes the release of secretogranin II, showed that not only mature, but also immature secretory granules were capable of undergoing regulated exocytosis. The kinetics of secretion of secretogranin II, as well as those of a constitutively secreted heparan sulfate proteoglycan, were reduced by treatment of PC12 cells with nocodazole, suggesting that both secretory granules and constitutive secretory vesicles are transported to the plasma membrane along microtubules. Our results imply that certain membrane proteins, e.g., those involved in the fusion of post-TGN vesicles with the plasma membrane, are sorted upon exit from the TGN, whereas other membrane proteins, e.g., those involved in the interaction of post-TGN vesicles with the cytoskeleton, may not be sorted.  相似文献   

8.
Secretory proteins and extracellular glycans are transported to the extracellular space during cell growth. These materials are carried in secretory vesicles generated at the trans-Golgi network (TGN). Analysis of the mammalian post-Golgi secretory pathway demonstrated the movement of separated secretory vesicles in the cell. Using secretory carrier membrane protein 2 (SCAMP2) as a marker for secretory vesicles and tobacco (Nicotiana tabacum) BY-2 cell as a model cell, we characterized the transport machinery in plant cells. A combination of analyses, including electron microscopy of quick-frozen cells and four-dimensional analysis of cells expressing fluorescent-tagged SCAMP2, enabled the identification of a clustered structure of secretory vesicles generated from TGN that moves in the cell and eventually fuses with plasma membrane. This structure was termed the secretory vesicle cluster (SVC). The SVC was also found in Arabidopsis thaliana and rice (Oryza sativa) cells and moved to the cell plate in dividing tobacco cells. Thus, the SVC is a motile structure involved in mass transport from the Golgi to the plasma membrane and cell plate in plant cells.  相似文献   

9.
B Goud  A Salminen  N C Walworth  P J Novick 《Cell》1988,53(5):753-768
SEC4, one of the 10 genes involved in the final stage of the yeast secretory pathway, encodes a ras-like, GTP-binding protein. In wild-type cells, Sec4 protein is located on the cytoplasmic face of both the plasma membrane and the secretory vesicles in transit to the cell surface. In all post-Golgi blocked sec mutants, Sec4p is predominantly associated with the secretory vesicles that accumulate as a result of the secretory block. Sec4p is synthesized as a soluble protein that rapidly (t1/2 less than or equal to 1 min) and tightly associates with secretory vesicles and the plasma membrane by virtue of a conformational change of a covalent modification. These data suggest that Sec4p may function as a "G" protein on the vesicle surface to transduce an intracellular signal needed to regulate transport between the Golgi apparatus and the plasma membrane.  相似文献   

10.
Secretion and membrane fusion are fundamental cellular processes involved in the physiology of health and disease. Studies within the past decade reveal the molecular mechanism of secretion and membrane fusion in cells. Studies reveal that membrane-bound secretory vesicles dock and fuse at porosomes, which are specialized plasma membrane structures. Swelling of secretory vesicles result in a build-up of intravesicular pressure, which allows expulsion of vesicular contents. The discovery of the porosome, its isolation, its structure and dynamics at nm resolution and in real time, its biochemical composition and functional reconstitution, are discussed. The molecular mechanism of secretory vesicle fusion at the base of porosomes, and vesicle swelling, have been resolved. With these findings a new understanding of cell secretion has emerged and confirmed by a number of laboratories.  相似文献   

11.
Limbach C  Staehelin LA  Sievers A  Braun M 《Planta》2008,227(5):1101-1114
We provide a 3D ultrastructural analysis of the membrane systems involved in tip growth of rhizoids of the green alga Chara. Electron tomography of cells preserved by high-pressure freeze fixation has enabled us to distinguish six different types of vesicles in the apical cytoplasm where the tip growth machinery is accommodated. The vesicle types are: dark and light secretory vesicles, plasma membrane-associated clathrin-coated vesicles (PM-CCVs), Spitzenkoerper-associated clathrin-coated vesicles (Sp-CCVs) and coated vesicles (Sp-CVs), and microvesicles. Each of these vesicle types exhibits a distinct distribution pattern, which provides insights into their possible function for tip growth. The PM-CCVs are confined to the cytoplasm adjacent to the apical plasma membrane. Within this space they are arranged in clusters often surrounding tubular plasma membrane invaginations from which CCVs bud. This suggests that endocytosis and membrane recycling are locally confined to specialized apical endocytosis sites. In contrast, exocytosis of secretory vesicles occurs over the entire membrane area of the apical dome. The Sp-CCVs and the Sp-CVs are associated with the aggregate of endoplasmic reticulum membranes in the center of the growth-organizing Spitzenkoerper complex. Here, Sp-CCVs are seen to bud from undefined tubular membranes. The subapical region of rhizoids contains a vacuolar reticulum that extends along the longitudinal cell axis and consists of large, vesicle-like segments interconnected by thin tubular domains. The tubular domains are encompassed by thin filamentous structures resembling dynamin spirals which could drive peristaltic movements of the vacuolar reticulum similar to those observed in fungal hyphae. The vacuolar reticulum appears to serve as a lytic compartment into which multivesicular bodies deliver their internal vesicles for molecular recycling and degradation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The classical model of secretory vesicle recycling after exocytosis involves the retrieval of membrane (the omega figure) at a different site. An alternative model involves secretory vesicles transiently fusing with the plasma membrane (the 'kiss and run' mechanism) [1,2]. No continuous observation of the fate of a single secretory vesicle after exocytosis has been made to date. To study the dynamics of fusion immediately following exocytosis of insulin-containing vesicles, enhanced green fluorescent protein (EGFP) fused to the vesicle membrane protein phogrin [3] was delivered to the secretory vesicle membrane of INS-1 beta-cells using an adenoviral vector. The behaviour of the vesicle membrane during single exocytotic events was then examined using evanescent wave microscopy [4-6]. In unstimulated cells, secretory vesicles showed only slow Brownian movement. After a depolarizing pulse, most vesicles showed a small decrease in phogrin-EGFP fluorescence, and some moved laterally over the plasma membrane for approximately 1 microm. In contrast, secretory vesicles loaded with acridine orange all showed a transient (33-100 ms) increase in fluorescence intensity followed by rapid disappearance. Simultaneous observations of phogrin-EGFP and acridine orange indicated that the decrease in EGFP fluorescence occurred at the time of the acridine orange release, and that the lateral movement of EGFP-expressing vesicles occurred after this. Post-exocytotic retrieval of the vesicle membrane in INS-1 cells is thus slow, and can involve the movement of empty vesicles under the plasma membrane ('kiss and glide').  相似文献   

13.
Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae, the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P(2) production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.  相似文献   

14.
15.
Summary In nongrowing secretory cells of plants, large quantities of membrane are transferred from the Golgi apparatus to the plasma membrane without a corresponding increase in cell surface area or accumulation of internal membranes. Movement and/or redistribution of membrane occurs also in trans Golgi apparatus cisternae which disappear after being sloughed from the dictyosome, and in secretory vesicles which lose much of their membrane in transit to the cell surface. These processes have been visualized in freeze-substituted corn rootcap cells and a structural basis for membrane loss during trafficking is seen. It involves three forms of coated membranes associated with the trans parts of the Golgi apparatus, with cisternae and secretory vesicles, and with plasma membranes. The coated regions of the plasma membrane were predominantly located at sites of recent fusion of secretory vesicles suggesting a vesicular mechanism of membrane removal. The two other forms of coated vesicles were associated with the trans cisternae, with secretory vesicles, and with a post Golgi apparatus tubular/vesicular network not unlike the TGN of animal cells. However, the trans Golgi network in plants, unlike that in animals, appears to derive directly from the trans cisternae and then vesiculate. The magnitude of the coated membrane-mediated contribution of the endocytic pathway to the formation of the TGN in rootcap cells is unknown. Continued formation of new Golgi apparatus cisternae would be required to maintain the relatively constant form of the Golgi apparatus and TGN, as is observed during periods of active secretion.  相似文献   

16.
Parallel secretory pathways to the cell surface in yeast   总被引:21,自引:7,他引:14       下载免费PDF全文
Saccharomyces cerevisiae mutants that have a post-Golgi block in the exocytic pathway accumulate 100-nm vesicles carrying secretory enzymes as well as plasma membrane and cell-wall components. We have separated the vesicle markers into two groups by equilibrium isodensity centrifugation. The major population of vesicles contains Bg12p, an endoglucanase destined to be a cell-wall component, as well as Pma1p, the major plasma membrane ATPase. In addition, Snc1p, a synaptobrevin homologue, copurifies with these vesicles. Another vesicle population contains the periplasmic enzymes invertase and acid phosphatase. Both vesicle populations also contain exoglucanase activity; the major exoglucanase normally secreted from the cell, encoded by EXG1, is carried in the population containing periplasmic enzymes. Electron microscopy shows that both vesicle groups have an average diameter of 100 nm. The late secretory mutants sec1, sec4, and sec6 accumulate both vesicle populations, while neither is detected in wild-type cells, early sec mutants, or a sec13 sec6 double mutant. Moreover, a block in endocytosis does not prevent the accumulation of either vesicle species in an end4 sec6 double mutant, further indicating that both populations are of exocytic origin. The accumulation of two populations of late secretory vesicles indicates the existence of two parallel routes from the Golgi to the plasma membrane.  相似文献   

17.
The distribution of the glycoprotein, mucin 1 (MUC1), was determined in lactating guinea-pig mammary tissue at the resolution of the electron microscope. MUC1 was detected on the apical plasma membrane of secretory epithelial cells, the surface of secreted milk-fat globules, the limiting membranes of secretory vesicles containing casein micelles and in small vesicles and tubules in the apical cytoplasm. Some of the small MUC1-containing vesicles were associated with the surfaces of secretory vesicles and fat droplets in the cytoplasm. MUC1 was detected in much lower amounts on basal and lateral plasma membranes. By quantitative immunocytochemistry, the ratio of MUC1 on apical membranes and milk-fat globules to that on secretory vesicle membranes was estimated to be 9.2:1 (density of colloidal gold particles/microm membrane length). The ratio of MUC1 on apical membranes compared with basal/lateral membranes was approximately 99:1. The data are consistent with a mechanism for milk-fat secretion in which lipid globules acquire an envelope of membrane from the apical surface and possibly from small vesicles containing MUC1 in the cytoplasm. During established lactation, secretory vesicle membrane does not appear to contribute substantially to the milk-fat globule membrane, or to give rise in toto to the apical plasma membrane.  相似文献   

18.
During the development of the asexual stage of the malaria parasite, Plasmodium falciparum, the composition, structure and function of the host cell membrane is dramatically altered, including the ability to adhere to vascular endothelium. Crucial to these changes is the transport of parasite proteins, which become associated with or inserted into the erythrocyte membrane. Protein and membrane targeting beyond the parasite plasma membrane must require unique pathways, given the parasites intracellular location within a parasitophorous vacuolar membrane and the lack of organelles and biosynthetic machinery in the host cell necessary to support a secretory system. It is not clear how these proteins cross the parasitophorous vacuolar membrane or how they traverse the erythrocyte cytosol to reach their final destinations. The identification of: (1) a P. falciparum homologue of the protein Sar1p, which is an essential component of the COPII-based secretory system in mammalian cells and yeast and (2) electron-dense, possibly coated, secretory vesicles bearing P. falciparum erythrocyte membrane protein 1 and P. falciparum erythrocyte membrane protein 3 in the host cell cytosol of P. falciparum infected erythrocytes recently provided the first direct evidence of a vesicle-mediated pathway for the trafficking of some parasite proteins to the erythrocyte membrane. The major advance in uncovering the parasite-induced secretory pathway was made by incubating infected erythrocytes with aluminium tetrafluoride, an activator of guanidine triphosphate-binding proteins, which resulted in the accumulation of the vesicles into multiple vesicle strings. These vesicle complexes were often associated with and closely abutted the erythrocyte membrane, but were apparently prevented from fusing by the aluminium fluoride treatment, making their capture by electron microscopy possible. It appears that malaria parasites export proteins into the host cell cytosol to support a vesicle-mediated protein trafficking pathway.  相似文献   

19.
Secretion occurs in all living cells and involves the delivery of intracellular products to the cell exterior. Secretory products are packaged and stored in membranous sacs or vesicles within the cell. When the cell needs to secrete these products, the secretory vesicles containing them dock and fuse at plasma membrane-associated supramolecular structures, called porosomes, to release their contents. Specialized cells for neurotransmission, enzyme secretion, or hormone release use a highly regulated secretory process. Similar to other fundamental cellular processes, cell secretion is precisely regulated. During secretion, swelling of secretory vesicles results in a build-up of intravesicular pressure, allowing expulsion of vesicular contents. The extent of vesicle swelling dictates the amount of vesicular contents expelled. The discovery of the porosome as the universal secretory machinery, its isolation, its structure and dynamics at nanometer resolution and in real time, and its biochemical composition and functional reconstitution into artificial lipid membrane have been determined. The molecular mechanism of secretory vesicle swelling and the fusion of opposing bilayers, that is, the fusion of secretory vesicle membrane at the base of the porosome membrane, have also been resolved. These findings reveal, for the first time, the universal molecular machinery and mechanism of secretion in cells.  相似文献   

20.
Hyphae of the fungus Pythium ultimum extend by tip growth. The use of surface markers demonstrates that cell expansion is limited to the curved portion of the hyphal apex. Growing and non-growing regions are reflected in internal organization as detected by light and electron microscopy. The young hypha consists of three regions: an apical zone, a subapical zone and a zone of vacuolation. The apical zone is characterized by an accumulation of cytoplasmic vesicles, often to the exclusion of other organelles and ribosomes. Vesicle membranes are occasionally continuous with plasma membrane. The subapical zone is non-vacuolate and rich in a variety of protoplasmic components. Dictyosomes are positioned adjacent to endoplasmic reticulum or nuclear envelope, and vesicles occur at the peripheries of dictyosomes. A pattern of secretory vesicle formation by dictyosomes is described which accounts for the formation of hyphal tip vesicles. Farther from the hyphal apex the subapical zone merges into the zone of vacuolation. As hyphae age vacuolation increases, lipid accumulations appear, and the proportional volume of cytoplasm is reduced accordingly. The findings are integrated into a general hypothesis to explain the genesis and participation of cell components involved directly in hyphal tip growth: Membrane material from the endoplasmic reticulum is transferred to dictyosome cisternae by blebbing; cisternal membranes are transformed from ER-like to plasma membrane-like during cisternal maturation; secretory vesicles released from dictyosomes migrate to the hyphal apex, fuse with the plasma membrane, and liberate their contents into the wall region. This allows a plasma membrane increase at the hyphal apex equal to the membrane surface of the incorporated vesicles as well as a contribution of the vesicle contents to surface expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号