首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Calliphora erythrocephala has cross-striated cardiac muscle cells with A, I and Z-bands. The diameters of the myosin and actin filaments are 200–250 Å and 85 Å respectively and the length of the myosin filaments (A-band) is approximately 1.5 . Usually 8–10 actin filaments surround each myosin filament.The myocardial cells show a well-developed membrane system and interior couplings. A perforated sheet of SR envelopes the myofibrils at the A-band, dilates into flattened cisternae at both A-I band levels before it merges into a three-dimensional net-work between the actin filaments of the I-bands and between the dense bodies of the discontinuous Z-discs. The T-system consists of broad flattened tubules running between the myofibrils at the A-I band levels forming dyads with the SR-cisternae. Longitudinal connections between the transverse (T-) tubules often occur.It is suggested that this well-developed SR may be an adaptation to facilitate a rapid contraction/relaxation frequency by an effective Ca2+ uptake.  相似文献   

2.
Examinations of stages of fibril development in muscle fibers of seven Rhesus monkey and six human fetuses reveal SR tubules encircling the Z lines at all stages of fibril development. The encircling SR tubules are continuous with the SR network of tubules which is found surrounding fibrils at all stages of development observed. The SR tubules encircling the Z lines show connections (electron-opaque strands) with the Z lines. The developing triadic junction shows a progressive increase in complexity of structures within the junction. First, membranes of T and SR become apposed with no visible structure between them- Second, tenuous connections are found traversing the space between apposed membranes. Third, well developed bridges are seen traversing the space. And finally, an intermediate density midway between the apposed membranes and parallel to them is found in favorable sections. Junctions between T tubule membranes were also observed and the structures in these junctions are somewhat similar to those found in junctions between T and SR membranes. The change in orientation of triads from predominantly longitudinal to predominantly transverse is complete in the 18-week monkey fetus and incomplete in the latest stage (28-week) of fetal development observed in humans.  相似文献   

3.
The structure of the caudal muscle in the tadpole larva of the compound ascidian Distaplia occidentalis has been investigated with light and electron microscopy. The two muscle bands are composed of about 1500 flattened cells arranged in longitudinal rows between the epidermis and the notochord. The muscle cells are mononucleate and contain numerous mitochondria, a small Golgi apparatus, lysosomes, proteid-yolk inclusions, and large amounts of glycogen. The myofibrils and sarcoplasmic reticulum are confined to the peripheral sarcoplasm. Myofibrils are discrete along most of their length but branch near the tapered ends of the muscle cell, producing a Felderstruktur. The myofibrils originate and terminate at specialized intercellular junctional complexes. These myomuscular junctions are normal to the primary axes of the myofibrils and resemble the intercalated disks of vertebrate cardiac muscle. The myofibrils insert at the myomuscular junction near the level of a Z-line. Thin filaments (presumably actin) extend from the terminal Z-line and make contact with the sarcolemma. These thin filaments frequently appear to be continuous with filaments in the extracellular junctional space, but other evidence suggests that the extracellular filaments are not myofilaments. A T-system is absent, but numerous peripheral couplings between the sarcolemma and cisternae of the sarcoplasmic reticulum (SR) are present on all cell surfaces. Cisternae coupled to the sarcolemma are continuous with transverse components of SR which encircle the myofibrils at each I-band and H-band. The transverse component over the I-band consists of anastomosing tubules applied as a single layer to the surface of the myofibril. The transverse component over the H-band is also composed of anastomosing tubules, but the myofibrils are invested by a double or triple layer. Two or three tubules of sarcoplasmic reticulum interconnect consecutive transverse components. Each muscle band is surrounded by a thin external lamina. The external lamina does not parallel the irregular cell contours nor does it penetrate the extracellular space between cells. In contracted muscle, the sarcolemmata at the epidermal and notochordal boundaries indent to the level of each Z-line, and peripheral couplings are located at the base of the indentations. The external lamina and basal lamina of the epidermis are displaced toward the indentations. The location, function, and neuromuscular junctions of larval ascidian caudal muscle are similar to vertebrate somatic striated muscle. Other attributes, including the mononucleate condition, transverse myomuscular junctions, prolific gap junctions, active Golgi apparatus, and incomplete nervous innervation are characteristic of vertebrate cardiac muscle cells.  相似文献   

4.
The sarcoplasmic reticulum (SR) is a prominent, highly ramified component of mouse myocardial cells. The use of ferrocyanide-reduced osmium tetroxide (OsFeCN) as a postfixative solution facilitates appreciation of both its extent and three-dimensional architecture. We have found that the individual volume fractions (Vv) of myofibrils, mitochondria, and SR are similar in cells of the right and left ventricular walls. Vv(total SR) is approximately 7%, a value considerably larger than previously reported. We attribute this disparity in large part to the recognition factor which comes into play with OsFeCN-treated tissue. Previous observations pertaining to the stereology of myocardial SR have likely substantially underestimated both volume fraction and surface density of this membrane system, since none to this point has utilized specific staining such as that conferred by the OsFeCN regimen. Our stereological measurements of different depths of the ventricular cell indicate that although considerable differences are found between SR configuration at peripheral and deep cell levels, no significant difference exists between the volume fractions of either the total SR or its individual constituents. Two different stereologic regimens gave close agreement on volume fractions of the various SR segments; the majority (approximately 92%) of the total SR is network SR, whereas the remainder is composed of the various categories of junctional SR (peripheral, apposed to the surface sarcolemma; interior, complexed with the transverse-axial tubular system; corbular, existing free of sarcolemmal contact). In the adult mouse, interior junctional SR greatly preponderates the other types of junctional SR; corbular SR is qualitively assessed to be a far more common component of atrial cells than of ventricular cardiomyocytes.  相似文献   

5.
The volume fractions and surface per unit cell volume of some subcellular components of the left ventricles of the finch and mouse were quantitated by stereologic techniques. These species were chosen for study because they have similar heart rates but differ morphologically in some respects: fiber diameter is larger in the mouse; the mouse has transverse tubules while the finch does not; and the finch has a form of junctional sarcoplasmic reticulum (JSR), extended JSR (EJSR), located in the cell interior with no direct plasmalemmal contact, while the mouse interior JSR (IJSR) abuts on transverse tubules. Our data show that the volume fraction (Vv) and surface area per unit cell volume (Sv) of total SR, and free SR (FSR) are similar. The volume fractions of mitochondria, myofibrils, and total junctional SR were also similar. The Sv of the cell surface of the finch was similar to the Sv of the cell surface of the mouse (Sv-plasmalemma plus Sv of the transverse tubules). The principal difference was in the distribution of JSR; the mouse peripheral JSR (PJSR) represents only 9% of the total JSR, while the finch PJSR accounts for 24% of the bird's JSR. The similar volume fractions of total junctional SR (PJSR + EJSR in the finch; PJSR + IJSR in the mouse) suggest that the EJSR is not an embryologic remnant, and raises the possibility that some function of JSR is independent of plasmalemmal contact.  相似文献   

6.
The ultrastructural differentiation of several different muscles was investigated in human fetuses ranging in age from 13 weeks to neonatal. At approximately 16 weeks of gestation cell cluster containing both myotubes and satellite cells lie enclosed by a newly formed basal lamina and show evidence of fusion. The development of organelles is evident in myoblasts, proceeds as the cells transform into myofibers, and continues in the neonate. Filament synthesis occurs primarily in the cell periphery where thin filaments appear to align themselves in relations to parallel arrays of ribosome-studded thick filaments: Z line formation follows the appearance of thin filaments. Intermediate filaments, approximately 10-12 nm thick, were also consistently observed in perinuclear regions and distal to filament assembly. Although sarcoplasmic reticulum (SR) development is closely related to fibril formation, connections between Z lines and SR are not consistent, thus supporting the conclusion that SR does not evoke the formation of the Z line. Bristlecoated vesicles appear to be the precursors of elements of the SR, possibly the lateral sacs. Development of the transverse tubules, as invaginations of the sarcolemma, is closely associated with the formation of lateral sacs since the latter occur along the sarcolemma as soon as transverse tubules appear. Cytological differentiation is similar, though not identical, in several different muscles. During the last trimester muscle fibers show some evidence of diversity mainly of variation in Z line width. In gerneral the results suggest that the sequence and stages of human myogenesis are similar to those of other species.  相似文献   

7.
The adventitia of the crayfish heart is composed of cells that are separated from each other by an intercellular space about 280 Å wide. Desmosomes are present on apposing surfaces of adjacent cells. A basal lamina underlies the adventitia and consists of a dense, amorphous substance that contains numerous fine filaments. The myocardial cells are striated and an external lamina 0.1 μ thick is present on the surface of the plasma membrane. The nuclei and most of the cytoplasm, glycogen and mitochondria are located at the cell periphery. The myofibrils are composed of thick and thin filaments and confined to the core of the cell. A T system and a well-developed SR are present. Elements of these organelles form dyads at levels that correspond to the H bands, and triads at levels that correspond to the Z bands of the peripheral myofibrils. The relationship of the T tubules to the myofibrils is discussed. Locus cells exhibit a unique pattern of intracellular myofibrillar branching. They branch from a region which has a structure similar to the Z band material. The myofibrils radiate outwardly in various directions and form numerous cellular branches which form intercalated discs with adjacent myocardial cells. These discs are more complex than those observed in poikilothermic vertebrates but are simpler than those in mammals. An endocardium is lacking in the crayfish heart but interstitial cells are present in close association with the myocardial cells and neural elements. Terminal nerve processes deeply embedded in the myocardial cells are described.  相似文献   

8.
Ryanodine receptors (RyRs) are located primarily on the junctional sarcoplasmic reticulum (SR), adjacent to the transverse tubules and on the cell surface near the Z-lines, but some RyRs are on junctional SR adjacent to axial tubules. Neither the size of the axial junctions nor the numbers of RyRs that they contain have been determined. RyRs may also be located on the corbular SR and on the free or network SR. Because determining and quantifying the distribution of RyRs is critical for both understanding and modeling calcium dynamics, we investigated the distribution of RyRs in healthy adult rat ventricular myocytes, using electron microscopy, electron tomography, and immunofluorescence. We found RyRs in only three regions: in couplons on the surface and on transverse tubules, both of which are near the Z-line, and in junctions on most of the axial tubules—axial junctions. The axial junctions averaged 510 nm in length, but they occasionally spanned an entire sarcomere. Numerical analysis showed that they contain as much as 19% of a cell's RyRs. Tomographic analysis confirmed the axial junction's architecture, which is indistinguishable from junctions on transverse tubules or on the surface, and revealed a complexly structured tubule whose lumen was only 26 nm at its narrowest point. RyRs on axial junctions colocalize with Cav1.2, suggesting that they play a role in excitation-contraction coupling.  相似文献   

9.
Chicken skeletal muscle taken from embryos in ovo was examined by thin-section electron microscopy. Measurements of filament diameters reveal three nonoverlapping groups of filaments: thin (actin myofibrillar) filaments with mean diameters of 5.3 +/- 0.6 nm (S.D.), thick (myosin myofibrillar) filaments with mean diameters of 15 +/- 1.4 nm, and intermediate filaments with mean diameters of 9.3 +/- 0.9 nm. During muscle development these diameters do not change. By counting the number of filaments observed in the sarcoplasm at different stages, we find that the spatial density of intermediate filaments decreases during avian myogenesis in ovo, from 91 intermediate filaments/micron 2 at 6 days to 43 intermediate filaments/micron 2 at 17 days in ovo. Initially randomly arranged, some intermediate filaments become associated with Z discs, sarcoplasmic reticulum, nuclear membrane, and the sarcolemma between 6 and 10 days in ovo. These associated intermediate filaments course both parallel and transverse to myofibrils, forming lateral connections between myofibrillar Z discs and longitudinal connections from Z disc to Z disc within myofibrils. Intermediate filaments also appear to connect Z discs with the nuclear membrane. The intermediate filament associations persist through day 17 of development, after which the presence of cytoskeletal filaments is obscured by the densely packed myofibrils and membranes. Intermediate filament distribution becomes anisotropic during development. A greater proportion of intermediate filaments in the immediate perimyofibrillar area are oriented parallel to myofibrils than in other areas, so that the majority of the intermediate filaments nearest the myofibrils course parallel to them. The longitudinal intramyofibrillar intermediate filaments persist throughout development, as shown by their existence in KI-extracted adult myofibrils.  相似文献   

10.
An electron microscopic study of internal and surface-connectedmembrane systems of leg muscle of the crab shows that thereare three kinds of surface-connected membrane systems in additionto an intracellular sarcoplasmic reticulum (SR). One is a systemof large infoldings of the sarcolemma referred to as clefts.These are longitudinally-oriented, flattened infoldings of boththe plasma membrane and the fibrous sheath of the fiber, andwere probably seen earlier with the light microscope. Extendinginto the fiber both from these clefts and from the free fibersurface are two systems of tubules of much smaller caliber,the Z tubules and the A tubules. The Z tubules are located,as their name indicates, near the Z lines of the myofibrils,and are thought to be attached to them mechanically. The A tubulesare found in pairs, near the ends of each A band, and are closelybound to the SR in two-part structures called dyads. Local-activationexperiments, like those done earlier by Huxley and Taylor, suggestthat the A tubules are involved in excitation-contraction coupling;no such experimental suggestion of function exists for the Ztubules.  相似文献   

11.
粘虫蛾飞行肌超微结构的研究   总被引:6,自引:4,他引:2  
罗礼智  李光博 《昆虫学报》1996,39(2):141-148
应用电子显微镜对粘虫雌蛾Mythimna separata(Walker)飞行(背纵)肌的研究结果表明,其肌原纤维由500-700根肌球蛋白丝(粗丝)组成,每根粗丝由6根肌动蛋白丝(细丝)环绕排列成六角形,每根细丝精确地位于两根粗丝间1/2处,从而使粗丝和细丝的比为1:3。肌节较短,长度约2.2-2.6μm。肌原纤维之间充满着线粒体和横管。每个肌节约有线粒体三个,横管二根。线粒体约占肌纤维体积的40%,而横管为7%。每根横管准确地位于肌节的1/4、3/4处,或Z线和中膈的中央,并与肌质网交接形成二位体(dyads)或三位体(triads)。肌质网相当不发达,约占肌纤维体积的2.5%。但其分布很有特色,即除了紧贴于肌原纤维周围的由单层液泡组成的肌质网以外,在中膈处还有一层横穿于肌原纤维的肌质网。和其它同步飞行肌的结构和功能分析比较的结果还表明,粘虫蛾飞行肌具有较善于飞行的结构。  相似文献   

12.
The left and right atria of the mouse were compared to each other and to the mouse left ventricle using stereologic techniques. The volume fraction (Vv) and surface area per unit cell volume (Sv) of the interior junctional sarcoplasmic reticulum (IJSR), total JSR and extended JSR were greater in the left atrium than in right. The Vv and Sv of the free SR, transverse tubules, and mitochondria were similar in the two atria. It is suggested that the differences in junctional sarcoplasmic reticulum between the atria can be accounted for by a difference in distribution of two types of cells whose anatomy is analogous to working and conducting fibers in the ventricle. The Sv and Vv of the transverse tubules, mitochondria, and all the components of the sarcoplasmic reticulum except for the free SR were greater in the left ventricle than in either atrium. The greater calcium content and sensitivity to extracellular calcium of the atria may explain the greater volume of free SR in the atria as compared to the left ventricle. The Sv of the plasmalemma of the atria and of the Sv of the plasmalemma of the transverse tubules of the left ventricles supports the suggestion of others that there is a constant ratio of surface area to cell volume in cardiac cells.  相似文献   

13.
The association of desmin, a 55,000-dalton intermediate-filament protein, with the developing cardiac myofibril was studied by immunocytochemical methods in primary cultured myocytes isolated from embyronic rat hearts at different ages. In the earliest contractile myocytes obtained from 10-day-old embryonic hearts, desmin exists as an extensive cytoskeletal network with little or no association with the myofibrils. As the heart develops the cytoskeletal desmin undergoes the myofibrils. Initially, the cytoskeletal desmin appears to outline the developing myofibril as short, discontinuous filaments. At intermediate stages of heart development, desmin filaments in 12- to 16-day-old embryonic myocytes continue to outline the forming myofibrils. Associated with these filaments are crossbridges and foci of desmin spaced at a frequency equal to that of the Z-line spacing. Desmin becomes progressively associated with the myofibril from the central region of the cell toward the cell margin. Desmin filaments at this stage begin to coalesce in the region of the intercalated disk. In the early neonatal heart, desmin of the Z lines becomes continuous across the sarcomere and appears to integrate the myofibrils into a unit. These observations suggest that desmin is not required in the early stages of mammalian heart development for the initial assembly of cardiac sarcomeres or the initiation of cardiac myofibrillar contractions. In later stages of mammalian heart development, desmin is found associated with the cardiac myofibrils in such a manner as to stably integrate these elements into the cytoplasm. Additionally, desmin, in the Z lines of the more mature myocytes appears to maintain the myofibrils in close registry to each other and to the intercalated disk.  相似文献   

14.
The striations and the intervening filaments observed in the present study have been variously designated in the literature as: prodomal pattern, leptomeric myofibril, microladder, leptomeric organelle, leptofibril and zebra body. Electron microscope examinations of Purkinje fibers from the septa, papillaries, trabeculae carneae and small endocardial strands from chicken, sheep, dog and monkey hearts have revealed a close association between densely stained striations of supernumerary Z line material and successive parallel tubules in the network formed by the sarcoplasmic reticulum (SR). The striations appear to be linked together by filaments that somewhat resemble the part of thin filaments attached to Z lines in normal fibrils. The evidence for a close association of striations and SR tubules is derived from a similarity of spacing between striations and successive parallel tubules in the SR network and from a resemblance of striation and SR network patterns. The evidence for a structural relationship between striations and SR tubules is derived from the observation of electron-opaque strands traversing the space between striations and SR tubules.  相似文献   

15.
An extensive network of transverse and longitudinal filamentous bridges was revealed when small myofibril bundles, prepared from Triton-EGTA- treated rabbit skeletal muscles, were extracted with Kl to remove the majority of thin and thick filaments. Transmission and scanning electron microscopic studies of these salt-resistant cytoskeletal residues indicated (a) small bundles of short transverse filaments connect adjacent myofibrils by forming Z to Z and M to M bridges; (b) parallel, continuous longitudinal filaments connect the peripheries of successive Z-disks and ensheath the sarcomere. These transverse and longitudinal filaments have the characteristic morphology of intermediate filaments; (c) two rings of tightly interwoven and tangled filaments, connected laterally by short filaments, encircle each Z disk. This double-ring also encircles a weblike meshwork which penetrates the sarcomeric space. From the peripheries of these rings, transverse and longitudinal intermediate filaments emerge; and (d) a massive amount of material translocated and accumulated near Z disks during Kl extraction. The residues were fairly resistant to solubilization by urea and SDS, and complete dissolution was achieved only with guanidinium chloride. SDS PAGE indicated that the residues consisted mainly of titin, nebulin, and variable amounts of residual myosin and actin. Desmin represented only a few percent of total residual proteins; however, it may be a major component of the intermediate filament network. We suggest that the intermediate filament should be considered an integral sarcomeric component that may play important cytoskeletal roles in muscle structure and mechanics.  相似文献   

16.
Summary The endocardium of Oniscus asellus L. and Asellus aquaticus L. consists of lipid cells. The epicardium consists of a layer of cells with a vesiculated cytoplasm covered by a thick extracellular fibrous sheet. The myocardium is a single layer of cells, the sarcolemma invaginates at Z disc level forming transverse tubules, and longitudinal tubules branch off from these. At the A-I level' longitudinal tubules form transverse systems, which form couplings with the sarcoplasmic reticulum. The sarcoplasmic reticulum appears as perforated sheets enveloping the myofibrils. Two types of nerve terminal are found: one is embedded in a myocardial cell process, the other lies in a myocardial cell depression. They contain clear and dense-cored synaptic vesicles.This work was supported by grants from the Norwegian Research Council for Science and the Humanities  相似文献   

17.
Summary The three-dimensional organization of cytoskeletal filaments associated with the myofibrils and sarcolemma of the myocardial cells of early chick embryos was studied by the rapid-freeze deep-etch method combined with immunocytochemistry. In the endoplasmic region of saponin-treated myocardial cells, 12–14 nm filaments formed a loose network surrounding nascent myofibrils. These 12–14 nm filaments attached to the myofibrils and some of them converged into Z disc regions. In the non-junctional cytocortical region thinner 8–11 nm filaments composed a dense network just beneath the sarcolemma. In myofibril terminating regions at the sarcolemma, i.e., the fascia adherens, 3–5 nm cross-bridges were observed among the thin filaments. In Triton-permeabilized and myosin subfragment 1 (S1)-treated samples, subsarcolemmal 8–11 nm filaments proved to be S1-decorated actin filaments under which there was a loose network of S1-undecorated filaments. Subsarcolemmal S1-decorated actin filaments had mixed polarity and attached to the sarcolemma at one end. A loose network of S1-undecorated filaments among myofibrils in the endoplasmic region was revealed to consist of desmin-containing intermediate filaments after immuno-gold staining for desmin. These networks connecting myofibrils with sarcolemma were assumed to play an important role in integrating and transmitting the contractile force of individual myofibrils within early embryonic myocardial cells.  相似文献   

18.
The organisation of the myofibrils and the sarcoplasmic reticulum in frog slow muscle fibres has been compared with that in twitch fibres. It has been found that the filaments have the same length in the two types of fibre, but that there are differences in their packing: (a) in contrast to the regular arrangement of the I filaments near the Z line in twitch fibres, those in slow fibres are irregularly packed right up to their insertion into the Z line; (b) the Z line itself shows no ordered structure in slow fibres; (c) the fine cross-links seen between the A filaments at the M line level in twitch fibres are not present in slow fibres. The sarcoplasmic reticulum in slow fibres consists of two separate networks of tubules. One set of tubules (diameter about 500 to 800 A) is oriented mainly in a longitudinal direction. The tubules of the other network (diameter about 300 A) are oriented either transversely at approximately Z line level or longitudinally, connecting the transverse tubules. Triads are very rarely found, occurring at only every 5th or 6th Z line of each fibril. The central element of these triads is continuous with the thin tubules. Slow fibres from muscles soaked in ferritin-containing solutions contain ferritin particles in the network of thin tubules, the rest of the sarcoplasm remaining free of ferritin.  相似文献   

19.
An electron microscope study has been carried out on rat psoas muscle, during the early postnatal stages of development. Among the several subcellular components, the sarcotubular system undergoes the most striking modifications during this period. In muscle fibers of the newborn rat, junctional contacts between the T system and the SR are sparse and are, mostly, longitudinally or obliquely oriented. The T tubules do not penetrate deeply into the muscle cell, as indicated by the predominantly peripheral location of the triads and the persistence, at these stages of development, of a highly branched subsarcolemmal system of tubules. Diadic associations of junctional SR elements with the plasma membrane are also occasionally observed. The early SR elaborations incompletely delineate the myofibrils, at both the A- and I-band level. Longitudinal sections show irregularly oriented SR tubules, running continuously over successive sarcomeres. Flattened junctional cisterns filled with granular material are sparse and laterally interconnected, at circumscribed sites, with the SR tubules. Between 1 and 2 wk postpartum, transversal triadic contacts are extensively established, at the A-I band level, and the SR network differentiates into two portions in register with the A and I band, respectively. At 10–15 days after birth, the SR provides a transversely continuous double sheet around the myofibrils at the I-band level, whereas it forms a single discontinuous layer at the A-band level. The relationship that these morphological modifications of the sarcotubular system may bear to previously described biochemical and physiological changes of rat muscle fibers after birth is discussed.  相似文献   

20.
Summary The membrane systems of the cardiac muscle cell of the amphipod Tmetonyx cicada (O. Fabricius) are described. The sarcolemma invaginates and forms a transverse network of tubules at the level of the Z band. Narrow longitudinal tubules branch from the network and connect to another transverse network of tubules at the H band level, where dyadic and triadic junctions are formed with the sarcoplasmic reticulum. Adjacent myofibrils are normally separated by a well developed double layer of the sarcoplasmic reticulum. In areas where the myofibrils closely approach the outer sarcolemma, peripheral couplings have been found at the level of the H band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号