首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LA-N-1 neuroblastoma cell cultures contain Ca2+-independent phospholipases A2 hydrolyzing phosphatidylethanolamine and ethanolamine plasmalogens. These enzymes differ from each other in their molecular mass, substrate specificity, and kinetic properties. Subcellular distribution studies have indicated that the activity of these phospholipases is not only localized in the cytosol but also in non-nuclear membranes and in nuclei. The treatment of LA-N-1 neuroblastoma cell cultures with retinoic acid results in a marked stimulation of Ca2+-independent phospholipases A2 hydrolyzing phosphatidylethanolamine and plasmenylethanolamine. The increase of the activities of both enzymes was first observed in nuclei followed by those present in the cytosol. No effect of retinoic acid on either phospholipase activity could be observed in non-nuclear membranes. The stimulation of these enzymes may be involved in the generation and regulation of arachidonic acid and its metabolites during differentiation.  相似文献   

2.
A parallel is shown between the distribution of neutral sphingomyelinase and plasma membrane enzymes (5′-nucleotidase and (Na+ + K+)-activated ATPase) in cultured neuroblastoma cells. In contrast there is no evidence of localization in lysosomes (β-hexosaminidase and acid sphingomyelinase), mitochondria (carnitine palmitoyltransferase), or cytosol. Activity in the microsomal fraction is attributed primarily to plasma membrane contamination.  相似文献   

3.
Exposure of rabbit pulmonary arterial smooth muscle cells to 10 M of the calcium ionophore A23187 dramatically stimulates cell membrane-associated phospholipase A2 activity and arachidonic acid release. In addition, A23187 also enhances cell membrane-associated serine esterase activity. Serine esterase inhibitors phenylmethylsulfonylfuoride and diisopropyl fluorophosphate prevent the increase in serine esterase and phospholipase A2 activities and arachidonic acid release caused by A23187. A23187 still stimulated serine esterase and phospholipase A2 activities and arachidonic acid release in cells pretreated with nominal Ca2+ free buffer. Treatment of the cell membrane with A23187 does not cause any appreciable change in serine esterase and phospholipase A2 activities. Pretreatment of the cells with actinomycin D or cycloheximide did not prevent the increase in the cell membrane associated serine esterase and phospholipase A2 activities, and arachidonic acid release caused by A23187. These results suggest that (i) a membrane-associated serine esterase plays an important role in stimulating the smooth muscle cell membrane associated phospholipase A2 activity (ii) in addition to the presence of extracellular Ca2+, release of Ca2+ from intracellular storage site(s) by A23187 also appears to play a role in stimulating the cell membrane-associated serine esterase and phospholipase A2 activities, and (iii) the increase in the cell membrane-associated serine esterase and phospholipase A2 activities does not appear to require new RNA or protein synthesis.Abbreviations A23187 calcium ionophore - AA arachidonic acid - PMSF phenylmethyl sulfonylfuoride - DFP diisopropyl-fluorophosphate - DMEM Dulbecco's modified Eagles medium - FCS fetal calf serum - PBS phosphate buffered saline - HBPS Hank's buffered physiological saline - PLA2 phospholipase A2  相似文献   

4.
We present the first direct evidence for a highly active, Ca++-dependent phospholipase A2 in the microsomal fraction of rat lung homogenate. Several previously reported studies from other laboratories strongly implicate this enzyme as a key metabolic step in the biosynthesis of dipalmitoyl lecithin, the primary component of pulmonary surfactant. In the present study, stoichiometric amounts of [3H]lysophosphatidylethanolamine and [14C]fatty acid were released during incubation of 1-[9, 10-3H]palmitoyl-2-sn-[1′-14C]linoleoyl phosphatidylethanolamine with the lung microsomal fraction. Marker enzyme measurements showed that the microsomal activity cannot be due to contamination with mitochondria, which also show phospholipase A2 in both lung and liver. In contrast, liver microsomes show predominantly a phospholipase A1 activity.  相似文献   

5.
Phospholipase A2s are enzymes that hydrolyze the fatty acid at the sn-2 position of the glycerol backbone of membrane glycerophospholipids. Given the asymmetric distribution of fatty acids within phospholipids, where saturated fatty acids tend to be present at the sn-1 position, and polyunsaturated fatty acids such as those of the omega-3 and omega-6 series overwhelmingly localize in the sn-2 position, the phospholipase A2 reaction is of utmost importance as a regulatory checkpoint for the mobilization of these fatty acids and the subsequent synthesis of proinflammatory omega-6-derived eicosanoids on one hand, and omega-3-derived specialized pro-resolving mediators on the other. The great variety of phospholipase A2s, their differential substrate selectivity under a variety of pathophysiological conditions, as well as the different compartmentalization of each enzyme and accessibility to substrate, render this class of enzymes also key to membrane phospholipid remodeling reactions, and the generation of specific lipid mediators not related with canonical metabolites of omega-6 or omega-3 fatty acids. This review highlights novel findings regarding the selective hydrolysis of phospholipids by phospholipase A2s and the influence this may have on the ability of these enzymes to generate distinct lipid mediators with essential functions in biological processes. This brings a new understanding of the cellular roles of these enzymes depending upon activation conditions.  相似文献   

6.
The total mitochondrial fraction of bovine corpus luteum specifically bound [3H]prostaglandin (PG) E1, [3H] PGF, and 125I-labeled human lutropin (hLH) despite very little 5′-nucleotidase activity, a marker for plasma membranes. Since the total mitochondrial fraction isolated by conventional centrifugation techniques contains both mitochondria and lysosomes, it was subfractionated into mitochondria and lysosomes to ascertain the relative contribution of these fractions to the binding. Subfractionation resulted in an enrichment of cytochrome c oxidase (a marker for mitochondria) in mitochondria and of acid phosphatase (a marker for lysosomes) in lysosomes. The lysosomes exhibited little or no contamination with Golgi vesicles, rough endoplasmic reticulum, or peroxisomes as assessed by their appropriate marker enzymes. Subfractionation also re ulted in [3H] PGE1, [3H] PGF, and 125I-labeled hLH binding enrichment with respect to homogenate in lysosomes but not in mitochondria. The lysosomal binding enrichment and recovery were, however, lower than in plasma membranes. The ratios of marker enzyme to binding, an index of organelle contamination, revealed that plasma membrane and lysosomal receptors were intrinsic to these organelles. Freezing and thawing had markedly increased lysosomal binding but had no effect on plasma membrane binding. Exposure to 0.05% Triton X-100 resulted in a greater loss of plasma membrane compared to lysosomal binding. In summary, the above results suggest that lysosomes, but not mitochondria, in addition to plasma membranes, intrinsically contain receptors for PGs and gonadotropins. Furthermore, lysosomes overall contain a greater number of PGs and gonadotropin receptors compared to plasma membranes and these receptors are associated with the membrane but not the contents of lysosomes.  相似文献   

7.
Abstract: Nerve growth cones isolated from fetal rat brain exhibit in their cytosol a robust level of phospholipase A2 activity hydrolyzing phosphatidylinositol (PI) and phosphatidylethanolamine (PE) but not phosphatidylcholine (PC). Western blot analysis with an antibody to the well-characterized cytosolic phospholipase A2 (mol wt 85,000) reveals only trace amounts of this PC- and PE-selective enzyme in growth cones. By gel filtration on Superose 12, growth cone phospholipase A2 activity elutes essentially as two peaks of high molecular mass, at ~65 kDa and at well over 100 kDa. Anion exchange chromatography completely separates a PI-selective from a PE-selective activity, indicating the presence of two different, apparently monoselective phospholipase A2 species. The PI-selective enzyme, the predominant phospholipase A2 activity in whole growth cones, is enriched greatly in these structures relative to their parent fractions from fetal brain. This phospholipase A2 is resistant to reducing agents and is found in the cytosol as well as membrane-associated in the presence of Ca2+. However, its catalytic activity is Ca2+-independent regardless of whether the enzyme is associated with pure substrate or mixed-lipid growth cone vesicles. The PE-selective phospholipase A2 in growth cones was studied in less detail but shares with the PI-selective enzyme several properties, including intracellular localization, the existence of cytosolic and membrane-associated forms, and Ca2+ independence. Our data indicate growth cones contain two high-molecular-weight forms of phospholipase A2 that share many properties with known, Ca2+-independent cytosolic phospholipase A2 species but that appear to be monoselective for PI and PE, respectively. In particular, the PI-selective enzyme may represent a new member of the growing family of cytoplasmic phospholipase A2. The enrichment of the PI-selective phospholipase A2 in growth cones suggests it plays a major role in the regulation of growth cone function.  相似文献   

8.
Phospholipase A2, an enzyme which may regulate the formation of polyunsaturated fatty acids utilized for prostaglandin synthesis, was found to have significant higher activity in decidual than in myometrial tissue. The major part of phospholipase A2 in the decidua had an acid pH optimum, which indicates that most of the enzyme is stored in the lysosomes of this tissue. These findings, together with previous observations, lend further support to the view that lysosomal phospholipase A2 released within decidual cells might be a trigger of abortion and parturition.  相似文献   

9.
Treatment of cultured bovine carotid artery endothelial cells with 0.1 µM human plasmin has been reported to induce a receptor-mediated short burst of arachidonate release, which is a pertussis toxin-sensitive and extracellular calcium-dependent reaction. Plasmin-induced calcium influx in cells was significantly inhibited by pretreatment with pertussis toxin, indicating that the former was coupled with a pertussis toxin-sensitive guanosine 5-triphosphate (GTP)-binding protein. Plasmin significantly induced the formation of lysophosphatidylcholine but not lysophosphatidylethanolamine. A cellular phospholipase A2 with an arachidonyl specificity at the sn-2 position of phosphatidylcholine, which required submicromolar calcium, was identified as a cytosolic phospholipase A2 by immunoblot analysis. By a cell-free enzyme activity assay and immunoblot analysis, plasmin was found to induce a translocation of the cytosolic phospholipase A2 from the cytosol to the membrane. Taken together, the results suggest that plasmin bound to its putative receptor and activated a GTP-binding protein coupled to calcium influx channel, followed by translocation and activation of cytosolic phospholipase A2 in endothelial cells.  相似文献   

10.
Lipids and lipolytic enzyme activities of rat heart mitochondria   总被引:1,自引:0,他引:1  
The lipid composition and lipolytic enzyme activities in rat cardiac mitochondria were examined. Subsarcolemmal mitochondria were prepared by treatment of heart muscle with a Polytron tissue processor, while interfibrillar mitochondria were released by exposure of the remaining low-speed pellet to the protease, nagarse. These procedures are known to yield two functionally different populations of mitochondria. However, their phospholipid contents and compositions were identical, as were the positional distributions of the constituent fatty acids. Of the ethanolamine phospholipids, 20% were plasmalogens, and about 2% of the choline phospholipids consisted of this alkenylacyl species. Both subsarcolemmal and interfibrillar mitochondria contained a Ca2+-activated phospholipase A2, as evidenced by the Ca2+-dependent release of unsaturated fatty acids and lysophosphatidylethanolamine from endogenous lipids. Ruthenium red prevented the activation of this enzyme by Ca2+, indicating that the activity is located in the matrix space or associated with the inner surface of the inner membrane. Both mitochondrial fractions produced free fatty acids and lysophosphatidylethanolamine in the absence of free Ca2+ apparently due to an outer membrane phospholipase A1. The activity of this enzyme decreased with time, particularly in interfibrillar mitochondria, providing that Ca2+ was absent. Nagarse treatment of subsarcolemmal mitochondria resulted in a preparation with the same phospholipase A1 properties as interfibrillar mitochondria. The possibility that differences in phospholipase A1 properties account for some of the functional variations between the two mitochondrial types is discussed.  相似文献   

11.
The distribution of phospholipids across the membrane bilayer of Semliki Forest virus grown in BHK cells has been examined by treating the virus with bee venom phospholipase A2 and sphingomyelinase C from Staphylococcus aureus. From the amounts of different phospholipids which are degraded rapidly (half-time about 1 min for phospholipase A2) we calculate that in virus isolated 16 h after infection about 95% of sphingomyelin, 55% of phosphatidylcholine, 20% of phosphatidylethanolamine and less then 5% of phosphatidylserine is present on the outer leaflet of the virus envelope. Less than 5% of the virus was permeable to macromolecules before or after treatment with phospholipases as judged by accessibility of the genome to external ribonuclease. A much slower (half-time about 1 h) breakdown by phospholipase A2 of originally inaccessible phosphatidylcholine and phosphatidylethanolamine appeared to be due to an enzyme-induced loss of lipid asymmetry since the original asymmetric distribution of phospholipids was maintained for several hours when the virus alone was incubated at 37°C. However, virus incubated for 20 h at 37°C showed a marked loss of phosphatidylethanolamine and phosphatidylserine asymmetry and a greater susceptibility to lysis by longer treatment with phospholipase A2.  相似文献   

12.
The relationship between the increase of intracellular Ca2+ and the release of arachidonic acid by bradykinin and pyrophosphonucleotides was studied in cultured mammary tumour cells, MMT060562. Bradykinin, ATP, UTP and UDP induced an increase of intracellular Ca2+ and the release of arachidonic acid from phospholipids into the extracellular fluid. Release of arachidonic acid was also induced by the application of the Ca2+ ionophore, A23187. Liberation of arachidonic acid by bradykinin and ATP was reduced by mepacrine, a blocker of phospholipase A2 and W-7, a calmodulin antagonist. It is suggested that the increase in cytosolic Ca2+-induced release of arachidonic acid occurs through activation of calmodulin-dependent phospholipase A2.  相似文献   

13.
Activities toward arachidonyl-labelled phospholipase A2 substrates were assayed in fractions of white matter and cerebral cortex from control subjects and in fractions of demyelinated plaque, normal-appearing white matter and cerebral cortex from subjects who died with multiple sclerosis. Membranous activity at pH 8.6 in the presence of Ca2+, characteristic of 14 kDa secretory phospholipase A2, in either multiple sclerosis white matter or cortex did not differ from controls, whereas membranous activity at pH 4.5 in the absence of added Ca2+, characteristic of lysosomal enzymes was increased over controls in both plaque and normal-appearing white matter but not cerebral cortex. Activity in the cytosol fraction, at pH 8.6 in the presence of Ca2+ and glycerol characteristic of the cytosolic 85 kDa enzyme was decreased by greater than 50% in both white matter and cortex samples from multiple sclerosis subjects. Immuno-precipitation and-blotting confirmed that the deficient activity was largely attributable to the 85 kDa enzyme although the enzyme protein was not similarly reduced.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

14.
Summary Pinocytosis induced by Na+ was assayed by phase contrast microscopy in 8–12 days starvedAmoeba proteus. These cultures were inactive with respect to calcium-dependent Na+-induced pinocytosis, but treatment with amino acid methyl and ethyl esters increased their capacity for pinocytosis. Besides promoting pinocytosis these compounds also stimulated calcium-sensitive secretion of lysosomal enzymes from normal, 2–3 days starved, cells. Only uncharged 1-forms of the amino acid esters were effective. Also other lysosomotropic compounds including monodansylcadaverine, glycine-phenylalanine-2-naphthylamide, NH4Cl, and the ionophores monensin and A23187 activated starved cells. The effect of these agents (except A23187) was inhibited by the drug dantrolene suggesting that activation is a consequence of release of Ca2+ from intracellular stores. Several of the lysosomotropic agents also lost their activating effect in the presence of phospholipase A2 (PLA2) inhibitors. To investigate whether or not PLA2 activity in the cell culture could imitate the effect of the lysosomotropic agents, we incubated starved cells with snake venom PLA2s. These enzymes caused rapid, dantrolene-sensitive activation of the cells. Measurement of endogenous PLA2in normal cells revealed significant cellular activity but no significant secretion of the enzyme into the culture medium was observed. Together the studies with enzyme inhibitors and dantrolene suggest that the process by which lysosomotropic agents affect pinocytosis involves activation of PLA2 and release of Ca2+ from intracellular stores.Abbreviations AnBOMe amino-n-butyric acid methylester - Et ethylester - GPN glycine-1-phenylalanine-2-naphthylamide - MDC monodansylcadaverine - MDTC monodansylthiacadaverine - Me methylester - pBPB p-bromo phenacylbromide - PLA2 phospholipase A2  相似文献   

15.
The role of phospholipases from inflammatory macrophages in demyelination   总被引:3,自引:0,他引:3  
Activated macrophages harvested from rat peritoneum were shown to contain phospholipase A1, A2 and lysophospholipase activities which were defined on a series of radiolabelled phospholipid substrates. During in vitro culture of these elicited macrophage populations, phospholipase enzymes were secreted into the culture medium. Radiolabelled myelin, prepared from young rats after intracerebral injection of14C acetate, was used as a substrate to analyze the susceptibility of central nervous system (CNS) myelin to attack by cell-associated and secreted macrophage enzymes. Homogenates of peritoneal macrophages degraded the myelin lipids at acid pH; phosphatidyl choline (PC) and ethanolamine phosphatide (EP) were both degraded with liberation of free fatty acid and small amounts of lysolipids. The ethanolamine lipids were most vulnerable; up to 20% of this fraction was degraded in six hours. Selected batches of macrophage culture supernatant similarly degraded the myelin EP at acid pH. These results suggest that phospholipase enzymes, released from activated macrophages in close proximity to the myelin sheath, may participate in primary demyelination in inflammatory CNS lesions.  相似文献   

16.
Arachidonoyl-hydrolyzing phospholipase A2 plays a central role in providing substrate for the synthesis of the potent lipid mediators of inflammation, the eicosanoids, and platelet-activating factor. Although Ca2+ is required for arachidonic acid release in vivo and most phospholipase A2 enzymes require Ca2+ for activity in vitro, the role of Ca2+ in phospholipase A2 activation is not understood. We have found that an arachidonoyl-hydrolyzing phospholipase A2 from the macrophage-like cell line, RAW 264.7, exhibits Ca2(+)-dependent association with membrane. The intracellular distribution of the enzyme was studied as a function of the Ca2+ concentration present in homogenization buffer. The enzyme was found almost completely in the 100,000 x g soluble fraction when cells were homogenized in the presence of Ca2+ chelators and there was a slight decrease in soluble fraction activity when cells were homogenized at the level of Ca2+ in an unstimulated cell (80 nM). When cells were homogenized at Ca2+ concentrations expected in stimulated cells (230-450 nM), 60-70% of the phospholipase A2 activity was lost from the soluble fraction and became associated with the particulate fraction in a manner that was partly reversible with EGTA. Membrane-associated phospholipase A2 activity was demonstrated by [3H]arachidonic acid release both from exogenous liposomes and from radiolabeled membranes. With radiolabeled particulate fraction as substrate, this enzyme hydrolyzed arachidonic acid but not oleic acid from membrane phospholipid, and [3H]arachidonic acid was derived from phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol/phosphatidylserine. We suggest a mechanism in which the activity of phospholipase A2 is regulated by Ca2+: in an unstimulated cell phospholipase A2 is found in the cytosol; upon receptor ligation the cytosolic Ca2+ concentration increases, and the enzyme becomes membrane-associated which facilitates arachidonic acid hydrolysis.  相似文献   

17.
18.
Cardiac sarcolemmal preparations isolated from dog were tested for membrane-associated phospholipase A and lipoprotein lipase activities. The sarcolemma hydrolyzed 1-acyl 214C-linoleoyl 3-glycero-phosphorylethanolamine at pH 7.0 to form predominantly 14C-lyso PE with 5 mM EDTA and 14C-free fatty acid with 5 mM Ca2+ suggesting the presence of both phospholipases A1 and A2 and/or lysophospholipase activities in these preparations. Sarcolemmal PLA activity was stimulated 300% by 10?5 to 10?6 M d1-isoproterenol; this stimulation was blocked by 10?4 M d1-propranolol. Lipoprotein lipase activity associated with the sarcolemmal fraction was enhanced 10-fold by 10?5 M d1-isoproterenol; stimulation was blocked by d1-propranolol. Thus, the activities of membrane-bound lipolytic enzymes appear to be modulated by β-adrenergic agents in canine cardiac sarcolemma and could affect lipid dependent enzymes and/or membrane permeability.  相似文献   

19.
The CPAE bovine endothelial cell line may be stimulated to produce eicosanoids. Leukotriene D4 increased the release of arachidonic acid primarily by activating phospholipase A2 while bradykinin activated the phospholipase C pathway. Cells pretreated with dexamethasone, a phospholipase A2 inhibitor, no longer responded to stimulation by LTD4 but did release arachidonic acid when treated with bradykinin. Aspirin blocked bradykinin-stimulated production of arachidonic acid but left the response to LTD4 unaffected. We conclude that these cells produce eicosanoids by activation of both PLA2 and PLC, and that the two different methods of arachidonic acid release can be distinguished by using the common anti-inflammatory drugs aspirin and dexamethasone.  相似文献   

20.
A series of inhibitors of glucosylceramide synthesis, the PDMP based family of compounds, has been developed as a tool for the study of sphingolipid biochemistry and biology. During the course of developing more active glucosylceramide synthase inhibitors, we identified a second site of inhibitory activity for PDMP and its structural homologues that accounted for the ability of the inhibitors to raise cell and tissue ceramide levels. This inhibitory activity was directed against a previously unknown pathway for ceramide metabolism, viz. the formation of 1-O-acylceramide. In this pathway the addition of a fatty acyl group to the primary hydroxyl of ceramide occurs through a transacylation with either phosphatidylethanolamine or phosphatidylcholine as a substrate. However, both in the absence and presence of ceramide, water serves as an acceptor for the fatty acid. Thus the enzyme may be considered to be a phospholipase A2. The enzyme is unique in that it has an acidic pH optimum and is localized to lysosomes by cell fractionation. More recently, the 1-O-acylceramide synthase has been purified, sequenced, and cloned. This phospholipase A2 was discovered to be structurally homologous to lecithin cholesterol acyltransferase (LCAT). However, this phospholipase A2 does not recognize cholesterol and lacks the defined lipoprotein-binding domain present in LCAT. We now refer to this enzyme as lysosomal phospholipase A2 (LPLA2). Although acidic phospholipase A2 activities have been previously identified, LPLA2 appears to be the first lysosomal PLA2 to have been sequenced. This new phospholipase A2 lacks an obvious and proven biological function. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号