首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural and biochemical studies of Cys(2)His(2) zinc finger proteins initially led several groups to propose a "recognition code" involving a simple set of rules relating key amino acid residues in the zinc finger protein to bases in its DNA site. One recent study from our group, involving geometric analysis of protein-DNA interactions, has discussed limitations of this idea and has shown how the spatial relationship between the polypeptide backbone and the DNA helps to determine what contacts are possible at any given position in a protein-DNA complex. Here we report a study of a zinc finger variant that highlights yet another source of complexity inherent in protein-DNA recognition. In particular, we find that mutations can cause key side-chains to rearrange at the protein-DNA interface without fundamental changes in the spatial relationship between the polypeptide backbone and the DNA. This is clear from a simple analysis of the binding site preferences and co-crystal structures for the Asp20-->Ala point mutant of Zif268. This point mutation in finger one changes the specificity of the protein from GCG TGG GCG to GCG TGG GC(G/T), and we have solved crystal structures of the D20A mutant bound to both types of sites. The structure of the D20A mutant bound to the GCG site reveals that contacts from key residues in the recognition helix are coupled in complex ways. The structure of the complex with the GCT site also shows an important new water molecule at the protein-DNA interface. These side-chain/side-chain interactions, and resultant changes in hydration at the interface, affect binding specificity in ways that cannot be predicted either from a simple recognition code or from analysis of spatial relationships at the protein-DNA interface. Accurate computer modeling of protein-DNA interfaces remains a challenging problem and will require systematic strategies for modeling side-chain rearrangements and change in hydration.  相似文献   

2.
锌指蛋白是最大的蛋白家族,是识别核酸最常见的、最有效的结构元件。通过选择合适的表达载体及诱导表达条件,实现了小鼠转录因子Zif268的锌指DNA结合区在大肠杆菌中的部分可溶性表达。凝胶迁移率移动试验证实纯化的可溶部分锌指DNA结合区可以特异性识别、结合其天然靶序列,提示锌指DNA结合区在大肠杆菌中得到了功能性表达。锌指DNA结合区在大肠杆菌中的功能性表达成功为锌指蛋白DNA相互作用的胞内遗传筛选模型的建立奠定了基础。  相似文献   

3.
The Cys(2)His(2)-type zinc finger is a common DNA binding motif that is widely used in the design of artificial zinc finger proteins. In almost all Cys(2)His(2)-type zinc fingers, position 4 of the α-helical DNA-recognition site is occupied by a Leu residue involved in formation of the minimal hydrophobic core. However, the third zinc finger domain of native Zif268 contains an Arg residue instead of the conserved Leu. Our aim in the present study was to clarify the role of this Arg in the formation of a stable domain structure and in DNA binding by substituting it with a Lys, Leu, or Hgn, which have different terminal side-chain structures. Assessed were the metal binding properties, peptide conformations, and DNA-binding abilities of the mutants. All three mutant finger 3 peptides exhibited conformations and thermal stabilities similar to the wild-type peptide. In DNA-binding assays, the Lys mutant bound to target DNA, though its affinity was lower than that of the wild-type peptide. On the other hand, the Leu and Hgn mutants had no ability to bind DNA, despite the similarity in their secondary structures to the wild-type. Our results demonstrate that, as with the Leu residue, the aliphatic carbon side chain of this Arg residue plays a key role in the formation of a stable zinc finger domain, and its terminal guanidinium group appears to be essential for DNA binding mediated through both electrostatic interaction and hydrogen bonding with DNA phosphate backbone.  相似文献   

4.
5.
6.
The aim of the work was to elucidate the presence of different hydrogen bond (H-bond) in five Zif268 proteins (1A1F, 1A1G, 1A1H, 1A1I and 1A1K). For this purpose, we have performed the QM/MM and molecular dynamics (MD) studies, the results of which reveal that H-bonds depend on the amino acid sequence and orientation of the H-bond donor atoms. Further, high specificity of Arg and Asn is observed for guanine and adenine, respectively. Furthermore, both conventional and non-conventional hydrogen bond also exists in the proteins, among them N–H?O H-bonds are the strongest. Besides, the non-conventional bonds play a role in the protein folding and DNA stacking. From the QSAR properties, amino acids such as asparagine and aspartic acids are the major reactive sites in the Zif268 protein. The electron affinities of Zif268 proteins are high, so the charge transfer occurs from the DNA to the protein molecules. NBO analysis indicates the majority of charge transfer occurs from DNA to the corresponding anti-bonding orbital of the peptides. Root mean square deviation and Rg (radius of gyration) show that 1A1F is more compact and in native state during MD simulation. The minimum Rg leads to the large number of hydrogen bonds formation in 1A1F. Higher solvent accessible surface area in 1A1I indicates that the cavity inside the protein is large.  相似文献   

7.
BACKGROUND: Several methods have been developed for creating Cys2His2 zinc finger proteins that recognize novel DNA sequences, and these proteins may have important applications in biological research and gene therapy. In spite of this progress with design/selection methodology, fundamental questions remain about the principles that govern DNA recognition. One hypothesis suggests that recognition can be described by a simple set of rules--essentially a "recognition code"--but careful assessment of this proposal has been difficult because there have been few structural studies of selected zinc finger proteins. RESULTS: We report the high-resolution cocrystal structures of two zinc finger proteins that had been selected (as variants of Zif268) to recognize a eukaryotic TATA box sequence. The overall docking arrangement of the fingers within the major groove of the DNA is similar to that observed in the Zif268 complex. Nevertheless, comparison of Zif268 and the selected variants reveal significant differences in the pattern of side chain-base interactions. The new structures also reveal side chain-side chain interactions (both within and between fingers) that are important in stabilizing the protein-DNA interface and appear to play substantial roles in recognition. CONCLUSIONS: These new structures highlight the surprising complexity of zinc finger-DNA interactions. The diversity of interactions observed at the protein-DNA interface, which is especially striking for proteins that were all derived from Zif268, challenges fundamental concepts about zinc finger-DNA recognition and underscores the difficulty in developing any meaningful recognition code.  相似文献   

8.
We have recently described an engineered zinc finger protein (Gq1) that binds with high specificity to the intramolecular G-quadruplex formed by the human telomeric sequence 5'-(GGTTAG)(5)-3', and that inhibits the activity of the enzyme telomerase in vitro. Here we report site-directed mutagenesis, biophysical, and molecular modeling studies that provide new insights into quadruplex recognition by the zinc finger scaffold. We show that any one finger of Gq1 can be replaced with the corresponding finger of Zif268, without significant loss of quadruplex affinity or quadruplex versus duplex discrimination. Replacement of two fingers, with one being finger 2, of Gq1 by Zif268 results in significant impairment of quadruplex recognition and loss of discrimination. Molecular modeling suggests that the zinc fingers of Gq1 can bind to the human parallel-stranded quadruplex structure in a stable arrangement, whereas Zif268-quadruplex models show significantly weaker binding energy. Modeling also suggests that an important role of the key protein finger residues in the Gq1-quadruplex complex is to maintain Gq1 in an optimum conformation for quadruplex recognition.  相似文献   

9.
Lactose/H(+) symport by lactose permease of Escherichia coli involves interactions between four irreplaceable charged residues in transmembrane helices that play essential roles in H(+) translocation and coupling [Glu269 (helix VIII) with His322 (helix X) and Arg302 (helix IX) with Glu325 (helix X)], as well as Glu126 (helix IV) and Arg144 (helix V) which are obligatory for substrate binding. The conservative mutation Glu325-->Asp causes a 10-fold reduction in the V(max) for active lactose transport and markedly decreased lactose-induced H(+) influx with no effect on exchange or counterflow, neither of which involves H(+) symport. Thus, shortening the side chain may weaken the interaction of the carboxyl group at position 325 with the guanidino group of Arg302. Therefore, Gly-scanning mutagenesis of helices IX and X and the intervening loop was employed systematically with mutant Glu325-->Asp in an effort to rescue function by introducing conformational flexibility between the two helices. Five Gly replacement mutants in the Glu325-->Asp background are identified that exhibit significantly higher transport activity. Furthermore, mutant Val316-->Gly/Glu325-->Asp catalyzes active transport, efflux, and lactose-induced H(+) influx with kinetic properties approaching those of wild-type permease. It is proposed that introduction of conformational flexibility at the interface between helices IX and X improves juxtapositioning between Arg302 and Asp325 during turnover, thereby allowing more effective deprotonation of the permease on the inner surface of the membrane [Sahin-Tóth, M., Karlin, A., and Kaback, H. R. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 10729-10732.  相似文献   

10.
11.
Looking into DNA recognition: zinc finger binding specificity   总被引:5,自引:2,他引:3       下载免费PDF全文
We present a quantitative, theoretical analysis of the recognition mechanisms used by two zinc finger proteins: Zif268, which selectively binds to GC-rich sequences, and a Zif268 mutant, which binds to a TATA box site. This analysis is based on a recently developed method (ADAPT), which allows binding specificity to be analyzed via the calculation of complexation energies for all possible DNA target sequences. The results obtained with the zinc finger proteins show that, although both mainly select their targets using direct, pairwise protein–DNA interactions, they also use sequence-dependent DNA deformation to enhance their selectivity. A new extension of our methodology enables us to determine the quantitative contribution of these two components and also to measure the contributions of individual residues to overall specificity. The results show that indirect recognition is particularly important in the case of the TATA box binding mutant, accounting for 30% of the total selectivity. The residue-by-residue analysis of the protein–DNA interaction energy indicates that the existence of amino acid–base contacts does not necessarily imply sequence selectivity, and that side chains without contacts can nevertheless contribute to defining the protein's target sequence.  相似文献   

12.
13.
14.
15.
16.
At sites of vascular injury, von Willebrand factor (VWF) mediates platelet adhesion through binding to platelet glycoprotein Ib (GPIb). Previous studies identified clusters of charged residues within VWF domain A1 that were involved in binding GPIb or botrocetin. The contribution of 28 specific residues within these clusters was analyzed by mutating single amino acids to alanine. Binding to a panel of six conformation-dependent monoclonal antibodies was decreased by mutations at Asp(514), Asp(520), Arg(552), and Arg(611) (numbered from the N-terminal Ser of the mature processed VWF), suggesting that these residues are necessary for domain A1 folding. Binding of (125)I-botrocetin was decreased by mutations at Arg(629), Arg(632), Arg(636), and Lys(667). Ristocetin-induced and botrocetin-induced binding to GPIb both were decreased by mutations at Lys(599), Arg(629), and Arg(632); among this group the K599A mutant was unique because (125)I-botrocetin binding was normal, suggesting that Lys(599) interacts directly with GPIb. Ristocetin and botrocetin actions on VWF were dissociated readily by mutagenesis. Ristocetin-induced binding to GPIb was reduced selectively by substitutions at positions Lys(534), Arg(571), Lys(572), Glu(596), Glu(613), Arg(616), Glu(626), and Lys(642), whereas botrocetin-induced binding to GPIb was decreased selectively by mutations at Arg(636) and Lys(667). The binding of monoclonal antibody B724 involved Lys(660) and Arg(663), and this antibody inhibits (125)I-botrocetin binding to VWF. The crystal structure of the A1 domain suggests that the botrocetin-binding site overlaps the monoclonal antibody B724 epitope on helix 5 and spans helices 4 and 5. The binding of botrocetin also activates the nearby VWF-binding site for GPIb that involves Lys(599) on helix 3.  相似文献   

17.
Wolfe SA  Grant RA  Pabo CO 《Biochemistry》2003,42(46):13401-13409
Proteins that employ dimerization domains to bind cooperatively to DNA have a number of potential advantages over monomers with regards to gene regulation. Using a combination of structure-based design and phage display, a dimeric Cys(2)His(2) zinc finger protein has been created that binds cooperatively to DNA via an attached leucine zipper dimerization domain. This chimera, derived from components of Zif268 and GCN4, displayed excellent DNA-binding specificity, and we now report the 1.5 A resolution cocrystal structure of the Zif268-GCN4 homodimer bound to DNA. This structure shows how phage display has annealed the DNA binding and dimerization domains into a single functional unit. Moreover, this chimera provides a potential platform for the creation heterodimeric zinc finger proteins that can regulate a desired target gene through cooperative DNA recognition.  相似文献   

18.
Brosius JL  Colman RF 《Biochemistry》2002,41(7):2217-2226
Tetrameric adenylosuccinate lyase (ASL) of Bacillus subtilis catalyzes the cleavage of adenylosuccinate to form AMP and fumarate. We previously reported that two distinct subunits contribute residues to each active site, including the His68 and His89 from one and His141 from a second subunit [Brosius, J. L., and Colman, R. F. (2000) Biochemistry 39, 13336-13343]. Glu(275) is 2.8 A from His141 in the ASL crystal structure, and Lys268 is also in the active site region; Glu275 and Lys268 come from a third, distinct subunit. Using site-directed mutagenesis, we have replaced Lys268 by Arg, Gln, Glu, and Ala, with specific activities of the purified mutant enzymes being 0.055, 0.00069, 0.00028, and 0.0, respectively, compared to 1.56 units/mg for wild-type (WT) enzyme. Glu275 was substituted by Gln, Asp, Ala, and Arg; none of these homogeneous mutant enzymes has detectable activity. Circular dichroism and light scattering reveal that neither the secondary structure nor the oligomeric state of the Lys268 mutant enzymes has been perturbed. Native gel electrophoresis and circular dichroism indicate that the Glu275 mutant enzymes are tetramers, but their conformation is altered slightly. For K268R, the K(m)s for all substrates are similar to WT enzyme. Binding studies using [2-3H]-adenylosuccinate reveal that none of the Glu275 mutant enzymes, nor inactive K268A, can bind substrate. We propose that Lys268 participates in binding substrate and that Glu275 is essential for catalysis because of its interaction with His141. Incubation of H89Q with K268Q or E275Q leads to restoration of up to 16% WT activity, while incubation of H141Q with K268Q or E275Q results in 6% WT activity. These complementation studies provide the first functional evidence that a third subunit contributes residues to each intersubunit active site of ASL. Thus, adenylosuccinate lyase has four active sites per enzyme tetramer, each of which is formed from regions of three subunits.  相似文献   

19.
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein–protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.  相似文献   

20.
The anticoagulant human plasma serine protease, activated protein C (APC), inhibits blood coagulation by specific inactivation of the coagulation cofactors factor Va (FVa) and factor VIIIa. Site-directed mutagenesis of residues in three surface loops of a positive exosite located on APC was used to identify residues that play a significant role in binding to FVa. Eighteen different residues were mutated to alanine singly, in pairs, or in triple mutation combinations. Mutant APC proteins were purified and characterized for their inactivation of FVa. Three APC residues were identified that provide major contributions to FVa interactions: Lys(193), Arg(229), and Arg(230). In addition, four residues made significant minor contributions to FVa interactions: Lys(191), Lys(192), Asp(214), and Glu(215). All of these residues primarily contribute to APC cleavage at Arg(506) in FVa and play a small role in the interaction of APC with the Arg(306) cleavage site. In conjunction with previously published work, these results define an extensive FVa binding site in the positive exosite of APC that is primarily involved in binding and cleaving at Arg(506) on FVa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号