首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Drosophila receptors (AlstR/DAR-1 and DAR-2) with sequence similarity to mammalian galanin receptors have been previously identified. These receptors have been shown to form specific interactions with neuropeptides that resemble cockroach allatostatins (ASTs), which have a characteristic Tyr/Phe-Xaa-Phe-Gly-Leu-NH2 carboxyl-terminus. We hypothesized that similar allatostatin receptors exist in the cockroach Diploptera punctata that may regulate the numerous effects that this family of peptides exerts on a range of target tissues. The polymerase chain reaction (PCR) was used, with primer design based on the Drosophila allatostatin receptor (AlstR). Using these primers, a putative allatostatin-like receptor cDNA was isolated from a lambda ZAP-cDNA library prepared from the corpora allata of the D. punctata. As an approach to testing the function of this receptor in vivo, the technique of double-stranded RNA (dsRNA) gene interference was tested. Initial experiments suggest that the putative inhibition of receptor RNA expression may increase juvenile hormone (JH) production.  相似文献   

2.
3.
By using degenerate oligonucleotide primers deduced from the conserved regions of the mammalian somatostatin receptors, a novel G-protein-coupled receptor from Drosophila melanogaster has been isolated exhibiting structural similarities to mammalian somatostatin/galanin/opioid receptors. To identify the bioactive ligand, a 'reverse physiology' strategy was used whereby orphan Drosophila receptor-expressing frog oocytes were screened against potential ligands. Agonistic activity was electrophysiologically recorded as inward potassium currents mediated through co-expressed G-protein-gated inwardly rectifying potassium channels (GIRK). Using this approach a novel peptide was purified from Drosophila head extracts. Mass spectrometry revealed an octapeptide of 925 Da with a sequence Ser-Arg-Pro-Tyr-Ser-Phe-Gly-Leu-NH(2) reminiscent of insect allatostatin peptides known to control diverse functions such as juvenile hormone synthesis during metamorphosis or visceral muscle contractions. Picomolar concentrations of the synthesized octapeptide activated the cognate receptor response mediated through GIRK1, indicating that we have isolated the 394-amino-acid Drosophila allatostatin receptor which is coupled to the Gi/Go class of G proteins.  相似文献   

4.
Genetic strategies for perturbing activity of selected neurons hold great promise for understanding circuitry and behavior. Several such strategies exist, but there has been no direct demonstration of reversible inactivation of mammalian neurons in vivo. We previously reported quickly reversible inactivation of neurons in vitro using expression of the Drosophila allatostatin receptor (AlstR). Here, adeno-associated viral vectors are used to express AlstR in vivo in cortical and thalamic neurons of rats, ferrets, and monkeys. Application of the receptor's ligand, allatostatin (AL), leads to a dramatic reduction in neural activity, including responses of visual neurons to optimized visual stimuli. Additionally, AL eliminates activity in spinal cords of transgenic mice conditionally expressing AlstR. This reduction occurs selectively in AlstR-expressing neurons. Inactivation can be reversed within minutes upon washout of the ligand and is repeatable, demonstrating that the AlstR/AL system is effective for selective, quick, and reversible silencing of mammalian neurons in vivo.  相似文献   

5.
We screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to conserved amino acid sequences from the five known rat somatostatin receptors. This yielded alignment with a Drosophila genomic clone that contained a DNA sequence coding for a protein, having amino acid sequence identities with the rat galanin receptors. Using PCR with Drosophila cDNA as a template, and oligonucleotide probes coding for the exons of the presumed Drosophila gene, we were able to clone the cDNA for this receptor. The Drosophila receptor has most amino acid sequence identity with the three mammalian galanin receptors (37% identity with the rat galanin receptor type-1, 32% identity with type-2, and 29% identity with type-3). Less sequence identity exists with the mammalian opioid/nociceptin-orphanin FQ receptors (26% identity with the rat micro opioid receptor), and mammalian somatostatin receptors (25% identity with the rat somatostatin receptor type-2). The novel Drosophila receptor gene contains ten introns and eleven exons and is located at the distal end of the X chromosome.  相似文献   

6.
We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide belonging to the insect allatostatin neuropeptide family. In the present paper, we screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to the conserved regions of the four rat (delta, kappa, mu, nociceptin/orphanin FQ) opioid receptors. This yielded alignment with a Drosophila genomic database clone that contained a DNA sequence coding for a protein having, again, structural similarities with the rat galanin receptors. Using PCR with primers coding for the presumed exons of this second Drosophila receptor gene, 5'- and 3'-RACE, and Drosophila cDNA as template, we subsequently cloned the cDNA of this receptor. The receptor cDNA codes for a protein that is strongly related to the first Drosophila receptor (60% amino acid sequence identity in the transmembrane region; 47% identity in the overall sequence) and that is, therefore, most likely to be a second Drosophila allatostatin receptor (named DAR-2). The DAR-2 gene has three introns and four exons. Two of these introns coincide with two introns in the first Drosophila receptor (DAR-1) gene, and have the same intron phasing, showing that the two receptor genes are clearly evolutionarily related. The DAR-2 gene is located at the right arm of the third chromosome, position 98 D-E. This is the first report on the existence of two different allatostatin receptors in an animal.  相似文献   

7.
Arthropods do not have one, but two genes encoding an allatostatin C-like peptide. The newly discovered paralog gene was called Ast-CC, and the peptide which it is predicted to make was called allatostatin double C (ASTCC). Genes for both allatostatin C (ASTC) and its paralog were found in the tick Ixodes scapularis as well as dipteran, lepidopteran, coleopteran, aphidoidean and phthirapteran insect species. In addition partial or complete cDNAs derived from Ast-CCs were found in a number of species, including Drosophila melanogaster, Bombyx mori and Rhodnius prolixus. The ASTCC precursors have a second conserved peptide sequence suggesting that they may produce two biologically active peptides. The predicted precursors encoded by the Ast-CCs have some unusual features, particularly in Drosophila, where they lack a signal peptide, and have instead a peptide anchor. These unusual structural features suggest that they are perhaps expressed by cells that are not specialized in neuropeptide synthesis and that in Drosophila ASTCC may be a juxtacrine. Data from the Fly Atlas project show that in Drosophila Ast-CC is little expressed. Nevertheless a P-element insertion in this gene is embryonic lethal, suggesting that it is an essential gene. Similarity between the precursors and receptors of ASTC/ASTCC and somatostatin suggests that ASTC/ASTCC and somatostatin have a common ancestor.  相似文献   

8.
A cDNA for a member of the G protein-coupled receptor family was isolated from Drosophila using a probe derived from a human beta 2-adrenergic receptor cDNA. This Drosophila receptor gene is localized at 99A10-B1 on the right arm of chromosome 3 and is preferentially expressed in Drosophila heads. The insect octopamine receptor has been permanently expressed in mammalian cells, where it mediates the attenuation of adenylate cyclase activity and exhibits a pharmacological profile consistent with an octopamine type 1 receptor. Sequence and pharmacological comparisons indicate that the octopamine receptor is unique but closely related to mammalian adrenergic receptors, perhaps as an evolutionary precursor.  相似文献   

9.
Cloning and characterization of a Drosophila tyramine receptor.   总被引:7,自引:3,他引:4       下载免费PDF全文
Receptors for biogenic amines such as dopamine, serotonin and epinephrine belong to the family of receptors that interact with G proteins and share a putative seven transmembrane domain structure. Using a strategy based on nucleotide sequence homology between the corresponding genes, we have isolated Drosophila cDNA clones encoding a new member of the G protein-coupled receptor family. This protein exhibits highest homology to the human alpha 2 adrenergic receptors, the human 5HT1A receptor and a recently cloned Drosophila serotonin receptor. The corresponding mRNA is found predominantly in adult Drosophila heads. Membranes from mammalian cells expressing this receptor displayed high affinity binding sites for [3H]yohimbine, an alpha 2 adrenergic receptor antagonist (Kd = 4.45 x 10(-9) M). Tyramine was the most efficient of the putative Drosophila neurotransmitters at displacing [3H]yohimbine binding (EC50 = 1.25 x 10(-6) M). Furthermore tyramine induced an inhibition of adenylate cyclase activity in NIH 3T3 cells expressing this receptor. The Drosophila tyramine receptor that we have isolated might therefore be an invertebrate equivalent of the mammalian alpha 2 adrenergic receptors.  相似文献   

10.
Muscarinic receptors in brain membranes from honey bees, houseflies, and the American cockroach were identified by their specific binding of the non-selective muscarinic receptor antagonist [3H]quinuclidinyl benzilate ([3H]QNB) and the displacement of this binding by agonists as well as subtype-selective antagonists, using filtration assays. The binding parameters, obtained from Scatchard analysis, indicated that insect muscarinic receptors, like those of mammalian brains, had high affinities for [3H]QNB (KD = 0.47 nM in honey bees, 0.17 nM in houseflies and 0.13 nM in the cockroach). However, the receptor concentration was low (108, 64.7, and 108 fmol/mg protein for the three species, respectively). The association and dissociation rates of [3H]QNB binding to honey bee brain membranes, sensitivity of [3H]QNB binding to muscarinic agonists, and high affinity for atropine were also features generally similar to muscarinic receptors of mammalian brains. In order to further characterize the three insect brain muscarinic receptors, the displacement of [3H]QNB binding by subtype-selective antagonists was studied. The rank order of potency of pirenzepine (PZ), the M1 selective antagonist, 11-[2-[dimethylamino)-methyl)1-piperidinyl)acetyl)-5,11- dihydro-6H-pyrido(2,3-b)-(1,4)-benzodiazepin-6 one (AF-DX 116), the M2-selective antagonist, and 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) the M3-selective antagonist, was also the same as that of mammalian brains, i.e., 4-DAMP greater than PZ greater than AF-DX 116. The three insect brain receptors had 27-50-fold lower affinity for PZ (Ki 484-900 nM) than did the mammalian brain receptor (Ki 16 nM), but similar to that reported for the muscarinic receptor subtype cloned from Drosophila. Also, the affinity of insect receptors for 4-DAMP (Ki 18.9-56.6 nM) was much lower than that of the M3 receptor, which predominates in rat submaxillary gland (Ki of 0.37 nM on [3H]QNB binding). These drug specificities of muscarinic receptors of brains from three insect species suggest that insect brains may be predominantly of a unique subtype that is close to, though significantly different from, the mammalian M3 subtype.  相似文献   

11.
12.
This work describes the isolation and pharmacological characterization of a neuropeptide Y (NPY) receptor from rainbow trout (Oncorhynchus mykiss). The receptor exhibits approximately 45% amino acid sequence identity to mammalian Y1-subfamily receptors, Y1, Y4 and y6, a similar degree of identity as these subtypes display to one another. Because it displays highest sequence identity to zebrafish Yb (75%), we named it the trout Yb receptor. The receptor exhibits high binding affinity for zebrafish and human NPY and peptide YY (PYY) but not truncated forms of the peptides. Human pancreatic polypeptide (PP) also binds with high affinity. Y1 selective antagonists exhibit poor binding as is the case for Y2 and Y5 selective ligands. This binding profile supports membership in the Y1 subfamily. Sequence data also support this relationship suggesting that Yb is a fourth and separate member of the Y1 subfamily. NPY has a number of important physiological functions such as regulating food intake and reproduction. The expression of the receptor in the hypothalamus and telencephalon suggests a possible role in these processes. This and other receptors from this species have potential for improving aquaculture.  相似文献   

13.
Activation of G protein-coupled receptors (GPCR) leads to the recruitment of beta-arrestins. By tagging the beta-arrestin molecule with a green fluorescent protein, we can visualize the activation of GPCRs in living cells. We have used this approach to de-orphan and study 11 GPCRs for neuropeptide receptors in Drosophila melanogaster. Here we verify the identities of ligands for several recently de-orphaned receptors, including the receptors for the Drosophila neuropeptides proctolin (CG6986), neuropeptide F (CG1147), corazonin (CG10698), dFMRF-amide (CG2114), and allatostatin C (CG7285 and CG13702). We also de-orphan CG6515 and CG7887 by showing these two suspected tachykinin receptor family members respond specifically to a Drosophila tachykinin neuropeptide. Additionally, the translocation assay was used to de-orphan three Drosophila receptors. We show that CG14484, encoding a receptor related to vertebrate bombesin receptors, responds specifically to allatostatin B. Furthermore, the pair of paralogous receptors CG8985 and CG13803 responds specifically to the FMRF-amide-related peptide dromyosuppressin. To corroborate the findings on orphan receptors obtained by the translocation assay, we show that dromyosuppressin also stimulated GTPgammaS binding and inhibited cAMP by CG8985 and CG13803. Together these observations demonstrate the beta-arrestin-green fluorescent protein translocation assay is an important tool in the repertoire of strategies for ligand identification of novel G protein-coupled receptors.  相似文献   

14.
The cockroach allatostatin receptor (Dippu-AstR) is a 425 amino acid G-protein coupled receptor that is related to the mammalian galanin receptor. Using relative standard curve real-time PCR analysis, changes in Dippu-AstR mRNA expression levels were examined in tissues of adult mated and virgin female Diploptera punctata. Tissues were chosen that were either known targets of allatostatin (Dippu-AST) action or sites of Dippu-AST localization. Tissues examined included brain, corpora allata (CA), gut, ovaries, testes and abdominal ganglia. Dippu-AstR was expressed in all tissues examined for 7 days after adult emergence. Juvenile hormone (JH) biosynthesis is known to peak on day 5 post-emergence in mated females. In mated females, Dippu-AstR mRNA was at the highest levels on day 6 post-emergence in brain and CA and day 2 post-emergence in midgut. Dippu-AstR expression was found to correlate with the decline in JH biosynthesis noted on day 5 post-emergence and early inhibition of feeding. Dippu-AstR mRNA expression in virgin female midgut and CA was dramatically elevated on days 6 and 7, respectively. Expression of Dippu-AstR mRNA was found to be similar in the abdominal ganglia of mated or virgin females. Ovarian Dippu-AstR expression declined to low levels by day 4. Testes exhibited maximal Dippu-AstR mRNA expression on days 4 and 7 of adult life. A role for Dippu-AST in testes of Diploptera is unknown.  相似文献   

15.
16.
Allatostatins are a family of peptides that inhibit the production of juvenile hormone in the cockroach, Diploptera punctata. It is likely that the allatostatin prohormone precursor is processed to give rise to all 13 members of the family simultaneously. All members of the family show potency and efficacy, in terms of their ability to inhibit juvenile hormone production, albeit with dramatically different IC(50) and ED(50) values, ranging from a maximum of 0.014 nM for Dippu-AST 2 to 107 nM for Dippu-AST 1 (ED(50)). The likely occurrence of all 13 peptides in tissues and in haemolymph suggests that they may act in concert to produce physiological effects. We have employed combinations of the allatostatins, including a cocktail of all 13, 12 (minus Dippu-AST 2) and 11 (minus Dippu-AST 2 and 5) as well as mixtures of high and low activity allatostatins (Dippu-AST 5 plus either Dippu-AST 1 or 13) in dose-response studies to examine the possibility of synergistic or additive effects of the peptides on biological activity. None of the peptide combinations yielded evidence of synergistic interactions between allatostatins. However, the data do provide insight into receptor-ligand interactions in cockroaches and suggest the allatostatins regulate JH biosynthesis through a complex mix of differing affinity interactions with receptors in the corpora allata.  相似文献   

17.
The A-allatostatins (F/YXFGLamides) are insect neuropeptides with inhibitory actions on juvenile hormone (JH) synthesis, muscular contraction and vitellogenesis. They exist in multiple forms within each species. In the cockroach, Periplaneta americana, only one receptor for A-allatostatin has been identified thus far. Here, we have characterised the receptor response to all 15 of the endogenous A-allatostatins encoded by the P. americana allatostatin prohormone gene, together with some analogues, using an indirect heterologous system involving co-expression of the receptor and a potassium channel subunit in Xenopus laevis oocytes and electrophysiological measurements. We have also determined the relative potency of the same peptides to inhibit JH synthesis in corpora allata. Our data reveal that the heterologously expressed receptor responds to all of the endogenous allatostatins and, although differences in potency are recorded, this cannot readily be related to particular differences in the primary structure of the peptides. Similarly, all allatostatins act on the corpora allata to inhibit the synthesis of JH, again with varying potency not readily related to peptide structure. Interestingly, some of the peptides did not perform consistently across the two assays. We show that the receptor is widely expressed in adult P. americana tissues (head, retrocerebral glands, fat body, ovary, male accessory gland, gut, leg muscle, Malpighian tubule and nerve cord) as well as in early larval instars. The spatial expression supports the known pleiotropic activity of allatostatins and role as a paracrine effector. This is the first report of such a detailed characterisation of an invertebrate receptor for allatostatin.  相似文献   

18.
19.
Mammalian D1 and D2 dopamine receptors were stably expressed in Drosophila Schneider-2 (S2) cells and screened for their pharmacological properties. Saturable, dose-dependent, high affinity binding of the D1-selective antagonist [3H]SCH-23390 was detected only in membranes from S2 cells induced to express rat dopamine D1 receptors, while saturable, dose-dependent, high affinity binding of the D2-selective antagonist [3H]methylspiperone was detected only in membranes from S2 cells induced to express rat dopamine D2 receptors. No specific binding of either radioligand could be detected in membranes isolated from uninduced or untransfected S2 cells. Both dopamine D1 and D2 receptor subtypes displayed the appropriate stereoselective binding of enantiomers of the nonselective antagonist butaclamol. Each receptor subtype also displayed the appropriate agonist stereoselectivities. The dopamine D1 receptor bound the (+)-enantiomer of the D1-selective agonist SKF38393 with higher affinity than the (-)-enantiomer, while the dopamine D2 receptor bound the (-)-enantiomer of the D2-selective agonist norpropylapomorphine with higher affinity than the (+)-enantiomer. At both receptor subtypes, dopamine binding was best characterized as occurring to a single low affinity site. In addition, the low affinity dopamine binding was also found to be insensitive to GTPgammaS and magnesium ions. Overall, the pharmacological profiles of mammalian dopamine D1 and D2 receptors expressed in Drosophila S2 cells is comparable to those observed for these same receptors when they are expressed in mammalian cell lines. A notable distinction is that there is no evidence for the coupling of insect G proteins to mammalian dopamine receptors. These results suggest that the S2 cell insect G system may provide a convenient source of pharmacologically active mammalian D1 and D2 dopamine receptors free of promiscuous G protein contaminants.  相似文献   

20.
An examination of the binding characteristics of a large number of somatostatin analogues with respect to the five known somatostatin receptor subtypes has recently resulted in the discovery of several peptides with some selectivity for types 2, 3, and 4 and little affinity for type 1 or 5 receptor. A panel of these peptides has thus far implicated type 2 receptors in the inhibition of release of pituitary growth hormone and type 4 receptors in inhibiting pancreatic insulin release. In the present article, we have examined the inhibitory effects of the same group of peptides on in vivo rat gastric acid and pancreatic amylase release and binding to rat pancreatic acinar cells. The type 2-selective ligand NC-8–12 was a potent inhibitor of gastric acid release (EC50s in the 1.5 nM region) whereas the type 4-selective ligand, DC-23–99, elicited little response. However, some involvement of type 3 receptors could not be ruled out because the type 3-selective analoueg, DC-25–20, exhibited inhibitory effects at higher dose levels (EC50 > 10 nM). Conversely, the type 4 analogue was a potent inhibitor of amylase release (EC50 1.1 nM) whereas the type 3 analogue had no significant effects at doses tested. DC-23–99 also bound with high affinity to rat acinar cells (EC50 3.8 nM), whereas DC-25-20 exhibited more than 10-fold less affinity. Thus, these two major biological functions of somatostatin appear to be controlled by different receptors and, furthermore, effects on both endocrine and exocrine pancreas appear to be type 4 receptor mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号