首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Releasable electrophore mass tags (electrophore tags) are compounds for use as labels in ligand assays such as hybridization assays and immunoassays. In such assays, the electrophore-tagged reagent (e.g., DNA probe or antibody) is quantified at the conclusion of the assay by cleaving a bond in the attached tag so that the electrophore part can be brought into the gas phase (usually thermally) for detection by electron capture mass spectrometry (EC-MS) or a related technique. Interest in these tags is promoted mainly by their potential to provide highly sensitive and multiplexed assays. The high multiplexing arises from the opportunity to measure many such tags simultaneously in the mass spectrometer, where each tag has an electrophore part with a unique mass. In this study five precursors of electrophore mass tags are presented. Each precursor can lead to a large library of electrophore tags in a practical way, since each precursor can be converted to many different electrophore tags by reaction with commonly available phenols that provide a variation in mass. The phenol-reactive part of the tag is either a polyfluorobiphenyl or a benzyl chloride moiety. Representative library compounds are prepared and detected in an inert ester form by gas chromatography electron capture mass spectrometry (GC-EC-MS). Further, one tag is conjugated to DNA, and the resulting product is detected by laser-induced electron capture time-of-flight mass spectrometry on a silver surface. A calculation by the semiempirical method AM1 for an ion formed by one of the electrophores suggests that ring rotation promotes dissociative electron capture. The features of practical synthesis, simple composition, physicochemical stability, high multiplicity, high sensitivity, and potential for high throughput detection make releasable electrophore mass tags attractive for highly multiplexed assays. This includes their use in SNP assays or dideoxy DNA sequencing for detection of mutations in individuals, where the combination of high accuracy and speed is essential.  相似文献   

2.
Recent studies suggested that 8,5'-cyclo-2'-deoxyadenosine may play a role in diseases with defective nucleotide-excision repair. This compound is one of the major lesions, which is formed in DNA by hydroxyl radical attack on the sugar moiety of 2'-deoxyadenosine. It is likely to be repaired by nucleotide-excision repair rather than by base-excision repair because of a covalent bond between the sugar and base moieties. We studied the measurement of 8,5'-cyclo-2'-deoxyadenosine in DNA by liquid chromatography/isotope-dilution mass spectrometry. A methodology was developed for the analysis of 8,5'-cyclo-2'-deoxyadenosine by liquid chromatography in DNA hydrolyzed to nucleosides by a combination of four enzymes, i.e., DNase I, phosphodiesterases I and II, and alkaline phosphatase. Detection by mass spectrometry was performed using atmospheric pressure ionization-electrospray process in the positive ionization mode. Results showed that liquid chromatography/isotope-dilution mass spectrometry is well suited for identification and quantification of 8,5'-cyclo-2'-deoxyadenosine in DNA. Both (5'R)- and (5'S)-diastereomers of 8,5'-cyclo-2'-deoxyadenosine were detected. The level of sensitivity of liquid chromatography/mass spectrometry with selected-ion monitoring amounted to 2 fmol of this compound on the column. The yield of 8,5'-cyclo-2'-deoxyadenosine was measured in DNA in aqueous solution exposed to ionizing radiation at doses from 2.5 to 80 Gray. Gas chromatography/mass spectrometry was also used to measure this compound in DNA. Both techniques yielded similar results. The yield of 8,5'-cyclo-2'-deoxyadenosine was comparable to the yields of some of the other major modified bases in DNA, which were measured using gas chromatography/mass spectrometry. The measurement of 8,5'-cyclo-2'-deoxyadenosine by liquid chromatography/mass spectrometry may contribute to the understanding of its biological properties and its role in diseases with defective nucleotide-excision repair.  相似文献   

3.
DNA adducts are formed when electrophilic molecules or free radicals attack DNA. 32P-postlabeling has been the most commonly used assay for quantitation of DNA adducts due mainly to its excellent sensitivity that allows quantitation at concentrations as low as approximately 1 adduct per 10(9) normal bases. Such methods, however, do not have the specificity desired for accurate and reliable quantitation, and are prone to produce false positives and artifacts. In the last decade, mass spectrometry in combination with liquid and gas chromatography has presented itself as a good alternative to these techniques since it can satisfy the need for specificity and reliability through the use of stable isotope-labeled internal standards and highly specific detection modes such as selected reaction monitoring and high-resolution mass spectrometry. In this article, the contribution of mass spectrometry to the quantitation of DNA adducts is reviewed with special emphasis on unique applications of mass spectrometry in the area of DNA adduct quantitation and recent applications with improvements in sensitivity.  相似文献   

4.
Sequencing DNA using mass spectrometry for ladder detection.   总被引:2,自引:1,他引:1       下载免费PDF全文
Sequencing of DNA fragments of 130 and 200 bp using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for DNA ladder detection was demonstrated. With further improvement in mass resolution and detection sensitivity, mass spectrometry shows great promise for routine DNA sequencing in the future.  相似文献   

5.
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) mass spectrometry was employed to analyze DNA methylation carried out by the Escherichia coli dam DNA methyltransferase using oligonucleotide substrates with molecular masses of 5000-10,000 Da per strand. The mass spectrometry assay offers several advantages: (i) it directly shows the methylation as the increase in the mass of the substrate DNA, (ii) it is nonradioactive, (iii) it is quantitative, and (iv) it can be automated for high-throughput applications. Since unmethylated and methylated DNA are detected, the ratio of methylation can be determined directly and accurately. Furthermore, the assay allows detection individually of the methylation of several substrates in competition, offering an ideal setup to analyze the specificity of DNA interacting with enzymes. We could not identify methylation at any noncanonical site, indicating that the dam MTase is a very specific enzyme. Finally, MALDI-TOF mass spectrometry permitted assessment of the number of methyl groups incorporated into each DNA strand, thereby, allowing study of mechanistic details such as the processivity of the methylation reaction. We provide evidence that the dam MTase modifies DNA in a processive reaction, confirming earlier findings.  相似文献   

6.
对蛋白质质谱数据进行数据库比对和鉴定是蛋白质组学研究技术中的一个重要步骤。由于公共数据库蛋白质数据信息不全,有些蛋白质质谱数据无法得到有效的鉴定。而利用相关物种的EST序列构建专门的质谱数据库则可以增加鉴定未知蛋白的几率。本文介绍了利用EST序列构建Mascot本地数据库的具体方法和步骤,扩展了Mascot检索引擎对蛋白质质谱数据的鉴定范围,从数据库层面提高了对未知蛋白的鉴别几率,为蛋白质组学研究提供了一种较为实用的生物信息学分析技术。  相似文献   

7.
Mass spectrometry provides an extremely sensitive method for the identification and quantification of modified nucleosides and hence for determining chemical modifications of nucleic acids. When mass spectrometry is used in conjunction with a new high-performance liquid chromatographic system capable of separating 15 methylated and naturally occurring nucleosides, this allows the quantification of products of in vitro DNA methylation. With synthetic (2H3)methyl-labeled methylnucleosides as internal references, the distribution of methylated products formed when calf thymus DNA was reacted with N-methyl-N-nitrosourea(MeNU) was determined. Five modified products, 1-methyldeoxyadenosine(m1dA), 3-methyldeoxycytidine(m3dC), 7-methyldeoxyguanosine(m7dG), 3-methylthymidine(m3T) and O4-methylthymidine(m4T) were detected and the relative distributions were measured. The ability of mass spectrometry/mass spectrometry (tandem mass spectrometry) to increase specificity and sensitivity in this determination is demonstrated and its application to in vivo studies is suggested.  相似文献   

8.
A novel hemoglobin variant was detected by electrospray ionization mass spectrometry. Hb Zurich-Hottingen is characterized by an Asn --> Ser replacement in the alpha-chain at position 9 as confirmed by DNA analysis. This hemoglobin variant is silent in isoelectric focusing, reversed-phase chromatography, and cation-exchange chromatography. The mutant alpha-chain was detectable only with electrospray mass spectrometry by its mass shift of -27 Da. The carrier was found to be heterozygous for the new hemoglobin variant. These results illustrate the power of ESI mass spectrometry for hemoglobin analysis.  相似文献   

9.
One of the main endeavors in today's life science remains the efficient sequencing of long DNA molecules. Today, most de novo sequencing of DNA is still performed using the electrophoresis-based Sanger concept of 1977, in spite of certain restrictions of this method. Methods using mass spectrometry to acquire the Sanger sequencing data are limited by short sequencing lengths of 15-25 nt. We propose a new method for DNA sequencing using base-specific cleavage and mass spectrometry that appears to be a promising alternative to classical DNA sequencing approaches. A single stranded DNA or RNA molecule is cleaved by a base-specific (bio-)chemical reaction using, for example, RNAses. The cleavage reaction is modified such that not all, but only a certain percentage of bases are cleaved. The resulting mixture of fragments is then analyzed using MALDI-TOF mass spectrometry, whereby we acquire the molecular masses of fragments. For every peak in the mass spectrum, we calculate those base compositions that will potentially create a peak of the observed mass and, repeating the cleavage reaction for all four bases, finally try to uniquely reconstruct the underlying sequence from these observed spectra. This leads us to the combinatorial problem of sequencing from compomers and, finally, to the graph-theoretical problem of finding a walk in a subgraph of the de Bruijn graph. Application of this method to simulated data indicates that it might be capable of sequencing DNA molecules with 200+ nt.  相似文献   

10.
Mass-spectrometry DNA sequencing   总被引:1,自引:0,他引:1  
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been explored widely for DNA sequencing. Compared to gel electrophoresis based sequencing systems, mass spectrometry produces very high resolution of sequencing fragments, rapid separation on microsecond time scales, and completely eliminates compressions associated with gel-based systems. While most of the research efforts have focused on using mass spectrometers to analyze the DNA products from Sanger sequencing or enzymatic digestion reactions, the read lengths attainable are currently insufficient for large-scale de novo sequencing. The advantage of mass-spectrometry sequencing is that one can unambiguously identify frameshift mutations and heterozygous mutations making it an ideal choice for resequencing projects. In these applications, DNA sequencing fragments that are the same length but with different base compositions are generated, which are challenging to consistently distinguish in gel-based sequencing systems. In contrast, MALDI-TOF MS produces mass spectra of these DNA sequencing fragments with nearly digital resolution, allowing accurate determination of the mixed bases. For these reasons mass spectrometry based sequencing has mainly been focused on the detection of frameshift mutations and single nucleotide polymorphisms (SNPs). More recently, assays have been developed to indirectly sequence DNA by first converting it into RNA. These assays take advantage of the increased resolution and detection ability of MALDI-TOF MS for RNA.  相似文献   

11.
DNA sequence analysis by MALDI mass spectrometry.   总被引:6,自引:4,他引:2       下载免费PDF全文
Conventional DNA sequencing is based on gel electrophoretic separation of the sequencing products. Gel casting and electrophoresis are the time limiting steps, and the gel separation is occasionally imperfect due to aberrant mobility of certain fragments, leading to erroneous sequence determination. Furthermore, illegitimately terminated products frequently cannot be distinguished from correctly terminated ones, a phenomenon that also obscures data interpretation. In the present work the use of MALDI mass spectrometry for sequencing of DNA amplified from clinical samples is implemented. The unambiguous and fast identification of deletions and substitutions in DNA amplified from heterozygous carriers realistically suggest MALDI mass spectrometry as a future alternative to conventional sequencing procedures for high throughput screening for mutations. Unique features of the method are demonstrated by sequencing a DNA fragment that could not be sequenced conventionally because of gel electrophoretic band compression and the presence of multiple non-specific termination products. Taking advantage of the accurate mass information provided by MALDI mass spectrometry, the sequence was deduced, and the nature of the non-specific termination could be determined. The method described here increases the fidelity in DNA sequencing, is fast, compatible with standard DNA sequencing procedures, and amenable to automation.  相似文献   

12.
Reduced DNA repair capacity is associated with increased risk for a variety of disease processes including carcinogenesis. Thus, DNA repair proteins have the potential to be used as important predictive, prognostic and therapeutic biomarkers in cancer and other diseases. The measurement of the expression level of these enzymes may be an excellent tool for this purpose. Mass spectrometry is becoming the technique of choice for the identification and quantification of proteins. However, suitable internal standards must be used to ensure the precision and accuracy of measurements. An ideal internal standard in this case would be a stable isotope-labeled analog of the analyte protein. In the present work, we over-expressed, purified and characterized two stable isotope-labeled DNA glycosylases, i.e., (15)N-labeled Escherichia coli formamidopyrimidine DNA glycosylase (Fpg) and (15)N-labeled human 8-oxoguanine-DNA glycosylase (hOGG1). DNA glycosylases are involved in the first step of the base excision repair of oxidatively induced DNA damage by removing modified DNA bases. The measurement by MALDI-ToF mass spectrometry of the molecular mass and isotopic purity proved the identity of the (15)N-labeled proteins and showed that the (15)N-labeling of both proteins was more than 99.7%. We also measured the DNA glycosylase activities using gas chromatography/mass spectrometry with isotope-dilution. The enzymic activities of both (15)N-labeled Fpg and (15)N-labeled hOGG1 were essentially identical to those of their respective unlabeled counterparts, ascertaining that the labeling did not perturb their catalytic sites. The procedures described in this work may be used for obtaining stable isotope-labeled analogs of other DNA repair proteins for mass spectrometric measurements of these proteins as disease biomarkers.  相似文献   

13.
By the methods of fast atom bombardment (FAB) mass spectrometry, thin-layer chromatography and ultraviolet absorption spectroscopy adducts have been studied which are formed by an antitumour alkylating drug thiotepa both in a model system, containing only deoxyguanosine (dGuo), and in DNA. Analysis of the model reaction mixture (dGuo + thiotepa) by FAB mass spectrometry permitted observation of adducts dGuo thiotepa, 2dGuo thiotepa, and also the products of their further modification in solution, which occurs by hydrolysis of the glycosidic bond and also by opening of the imidazole ring. In the case of DNA FAB mass spectrometry made it possible to characterize adducts of thiotepa with guanosine (Gua) and adenosine (Ade) without their preliminary purification. The site of alkylation of Gua in both dGuo and DNA is N7, and that of Ade in DNA is N3. The application of the results to the study of the molecular mechanism of the antitumour action of thiotepa is discussed.  相似文献   

14.
15.
Applications of mass spectrometry to DNA sequencing.   总被引:2,自引:0,他引:2  
The ability of the mass spectrometer to analyze collectively the masses of DNA fragments that are produced in the Sanger procedure for sequencing may allow the gel electrophoresis step to be eliminated. On the other hand, if gel electrophoresis is required, the use of resonance ionization spectroscopy coupled to a mass spectrometer may enable much faster analysis of DNA bands labeled with stable isotopes. Other combinations of labeling of the DNA and its mass spectrometric analysis with or without gel electrophoresis are also considered. Recent advances in these areas of mass spectrometry are reviewed.  相似文献   

16.
Protein-nucleic acid complexes are commonly studied by photochemical cross-linking. UV-induced cross-linking of protein to nucleic acid may be followed by structural analysis of the conjugated protein to localize the cross-linked amino acids and thereby identify the nucleic acid binding site. Mass spectrometry is becoming increasingly popular for characterization of purified peptide-nucleic acid heteroconjugates derived from UV cross-linked protein-nucleic acid complexes. The efficiency of mass spectrometry-based methods is, however, hampered by the contrasting physico-chemical properties of nucleic acid and peptide entities present in such heteroconjugates. Sample preparation of the peptide-nucleic acid heteroconjugates is, therefore, a crucial step in any mass spectrometry-based analytical procedure. This study demonstrates the performance of four different MS-based strategies to characterize E. coli single-stranded DNA binding protein (SSB) that was UV-cross-linked to a 5-iodouracil containing DNA oligomer. Two methods were optimized to circumvent the need for standard liquid chromatography and gel electrophoresis, thereby dramatically increasing the overall sensitivity of the analysis. Enzymatic degradation of protein and oligonucleotide was combined with miniaturized sample preparation methods for enrichment and desalting of cross-linked peptide-nucleic acid heteroconjugates from complex mixtures prior to mass spectrometric analysis. Detailed characterization of the peptidic component of two different peptide-DNA heteroconjugates was accomplished by matrix-assisted laser desorption/ionization mass spectrometry and allowed assignment of tryptophan-54 and tryptophan-88 as candidate cross-linked residues. Sequencing of those peptide-DNA heteroconjugates by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry identified tryptophan-54 and tryptophan-88 as the sites of cross-linking. Although the UV-cross-linking yield of the protein-DNA complex did not exceed 15%, less than 100 pmole of SSB protein was required for detailed structural analysis by mass spectrometry.  相似文献   

17.
Both DNA and chromatin need to be duplicated during each cell division cycle. Replication happens in the context of defects in the DNA template and other forms of replication stress that present challenges to both genetic and epigenetic inheritance. The replication machinery is highly regulated by replication stress responses to accomplish this goal. To identify important replication and stress response proteins, we combined isolation of proteins on nascent DNA (iPOND) with quantitative mass spectrometry. We identified 290 proteins enriched on newly replicated DNA at active, stalled, and collapsed replication forks. Approximately 16% of these proteins are known replication or DNA damage response proteins. Genetic analysis indicates that several of the newly identified proteins are needed to facilitate DNA replication, especially under stressed conditions. Our data provide a useful resource for investigators studying DNA replication and the replication stress response and validate the use of iPOND combined with mass spectrometry as a discovery tool.  相似文献   

18.
Recombinant and native forms of cyclohexanone monooxygenase (CMO) from Acinetobacter NCIB 9871 were analyzed by mass spectrometry to probe ambiguities arising from the presence of multiple DNA sequences for the enzyme in GenBank. A CMO gene corresponding exactly to the nucleotide sequence described by Iwaki et al. (10) was amplified from genomic DNA, cloned into pET15b, and the recombinant protein purified from a bacterial expression system. Electrospray mass spectrometry of both the recombinant material and the native form of CMO isolated from Acinetobacter yielded molecular weights within 0.01% of those predicted from the translated gene sequence of Iwaki et al. (10). Trypsin and chymotrypsin digests of native CMO, analyzed by electrospray and MALDI mass spectrometry, provided greater than 97% coverage of the protein and confirmed the presence of specific peptide sequences predicted by the Iwaki sequence alone. Therefore, the primary sequence of native Acinetobacter CMO is identical to the gene sequence for chnB deposited under accession number AB006902.  相似文献   

19.
A method has been developed to monitor the enzymatic incorporation of nucleotides in DNA by electrospray HPLC mass spectrometry. The main advantages of mass spectrometry over electrophoresis are the ability to directly characterize the reaction products and the shorter analysis time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号