首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
White, blue, green, red, and deep red illumination were usedto shorten a dark period for plants of Bauhinia monandra under12 hour: 12 hour alternations of white light and darkness. Redalone imitated the effect of white light in advancing the cycleof leaf movement. Deep red did not counteract the effect ofprevious illumination with white light.  相似文献   

2.
DE ROPP  R. S. 《Annals of botany》1939,3(1):243-252
Rye grains were soaked for various periods and the effect onthe subsequent growth of the excised embryo (grown on sucroseagar) studied. Soaking the grain for as short a period as two hours producesincreased growth of both roots and shoots in the excised embryo.This increase takes place irrespective of whether the embryois grown in light or darkness and is still manifested twentydays after the excision of the embryo. Production of lateral roots, both in light and darkness, andof anthocyanins in etiolated embryos is also increased by preliminarysoaking. Preliminary soaking of the grain has a marked accelerating effecton the tropic responses of the excised embryo. Concentration of sugar and duration of prelutllnary soakingboth effect the growth of the excised embryo, but neither constitutesa simple controlling factor in this growth. It is concluded that during the preliminary soaking, both auxinand a ‘regulator’ controlling its production anddistribution, enter the embryo from the endosperm and aleuronelayer.  相似文献   

3.
The flowering behavior of two cultural varieties of Fagopyrumesculentum Moench aseptically cultured in total darkness wasstudied. The effect on the flower initiation of some chemicalsubstances added to sterilized dry seeds was also investigated.Low temperature was found to be more suitable for flower initiationin buckwheat plants. 2-Thiouracil promoted flower initiationat high temperature in total darkness and inhibited it at anytemperatures examined under light conditions. Sucrose promotedflower initiation at higher temperatures than 15. Lithium chlorideand peptone inhibited flower initiation only at high temperature.Indoleacetic acid, gibberellin and kinetin had no effect onflower initiation in total darkness. It is postulated that in the flowering response the primaryreaction may be connected with the metabolism of sucrose andribonucleic acid. (Received September 21, 1964; )  相似文献   

4.
Cell division contributing to longitudinal growth of the shoot apex was investigated inChenopodium rubrum in segments marked by the axils of leaf primordia. Plants treated with two short days (16h of darkness and 8h of light) were compared with two non-induced controls (cultivated in continuous light or treated by alternations of 8 h of darkness and 4 h of light for two days). During the short-day treatments the rate of cell division contributing to the longitudinal growth decreases in all segments of the shoot apex irrespective of whether the darkness was given in inductive or non-inductive photoperiods. The rate of cell division contributing to longitudinal growth increases in the upper internodes of the shoot apex after the termination of the photoperiodic treatment and transfer of the plants to continuous light. However, cell division remains inhibited in the lowest segment of the shoot apex. This inhibition in the differentiating parts of the shoot apical meristem is a direct consequence of photoperiodic induction. It is supposed that this inhibition is related to evocation similarly as the well-known phenomenon of stimulation of cell division in the apical dome.  相似文献   

5.
A techinique is described for recording automatically, withthe aid of an infrared gas analyzer, the rate CO2 output orabsorption by plant material under controlled conditions. An examination of the rate of CO2 output by excised leaves of16 species of succulent plants in darkness and in a CO-2-freeatmosphere revealed clearly defined rhythms in only Bryophyllumfedtschenkoi, B. daigremontianum and B. calycinum (pinnatum). Further investigation of the rhythm in leaves of B. fedtschenkoirevealed that: (1) daylength has no effect upon the period ofthe rhythm in subsequent darkness, the phase being set at thetime the lights are extinguished; (2) normal air suppressesthe rhythm; (3) removel of the epidermis and cutting the mesophyllinto pieces 1 cm2 does not effect either the phase or periodof the rhythm; (4) continuous illumination at an intensity of3,000 lux inhibits the rhythm which restarts when the lightsare extinguished. The phase of the rhythm can be set at anytime of day according to the time at which the lights are extinguished.The time which elapses between the onset of darkness and thefirst peak decreases as the length of the light treatment isincreased. The endogenuous nature of the rhythm is fully established. Theresults are compared with of other researches.  相似文献   

6.
ZIV  MEIRA 《Annals of botany》1981,48(3):353-359
Darkened excized gynophores ceased to elongate after 8–10days in vitro and started to form a pod. Gynophore elongationwas inhibited to a greater extent in total darkness than underlow irradiance, while pod and embryo growth was stimulated indarkness only. Intact gynophores, enclosed in transparent vials containingglass beads, continued to elongate in both light and darkness.In light the elongating gynophores thickened as they penetratedbetween the glass beads, forming a seedless pod at the bottomof the vials. In the dark the elongating gynophores producedsmall pods in which the seeds had started to grow. Excized gynophores elongated in vitro under continuous whitelight at a rate similar to that of intact exposed gynophores.The rate of elongation in vitro, was lower under continuousblue or red-enriched light, than under white light, and wasfurther reduced under continuous far-red irradiation. Pods didnot form during any of the continuous irradiation treatmentsbut only after transfer to darkness, the largest pods formingafter continuous far-red irradiation. As little as 10 min daily exposure to red or far-red irradiancehad the same effect on gynophore elongation as continuous irradiation.Pods formed only when the daily periods of far-red irradiationwere 30 min or less. Reducing the daily exposures to 2 min decreasedthe time to onset of pod formation from 30 to 16 days. Far-redfollowing red irradiation was effective in inhibiting gynophoreelongation stimulated by red irradiation. Pod formation in red/far-redirradiation was only 50 per cent of that observed in far-redirradiation. The involvement of light in continual gynophoreelongation and in the concomitant inhibition of proembryo growthis discussed. Arachis hypogaea L., peanut, gynophore, photomorphogenesis, embryo development, pod development, proembryo  相似文献   

7.
The effects of blue light (B) pretreatments on internode extensiongrowth and their possible interaction with phytochrome mediatedresponses were examined in Sinapis alba seedlings grown for11 d under 280 µmol m–2 s–1 of continuousblue-deficient light from low pressure sodium lamps (SOX). SupplementaryB (16 µmol m–2 s–1) caused no detectable inhibitionof the first internode growth rate under continuous SOX, butgrowth rate was inhibited after transfer to darkness. This effect,and the growth promotion caused by far-red bend-of-day' lightpulses were additive. The addition of B at 16 µmol m–2s–1 during 11 d, or only during the first 9 or 10 d orthe latest 0.75, 1 or 2 d of the SOX pretreatment caused approximatelythe same extent of inhibition after the transition to darkness.A single hour of supplementary B before darkness caused morethan 50% of the maximum inhibition. However, 24 h of lower fluencerates of B (4 or 7 µmol m–2 s–1) were ineffective.Covering the internode during the supplementary B period didnot prevent the response to B after the transition to darkness.Far-red light given simultaneously with B (instead of the SOXbackground) reduced the inhibitory effect of B. Above a given threshold fluence rate, B perceived mainly inthe leaves inhibits extension growth in subsequent darkness,provided that high phytochrome photo-equilibria are presentduring the irradiation with B. Once triggered, this effect doesnot interact significantly with the ‘end-of-day’phytochrome effect. Key words: Blue light, extension growth, phytochrome  相似文献   

8.
Abstract The ‘end-of-day’ phytochrome control of internode growth was characterized in Sinapis alba, seedlings previously grown under continuous white light for 13 d. The transition from white light to darkness caused a reduction in internode extension rate with a lag of less than 10 min. Following this, extension rate remained almost constant for at least 48 h. i.e. ‘re-etiolation’ was not noticed. The phytochorme controlling the growth processes was stable in the Pfr form. The growth rate of plants receiving a red light pulse, and the growth promotion caused by a far-red light pulse, increased with increasing fluence rate of the previous white light treatment. In far-red treated plants a first growth rate acceleration peaked at 20–30 min after the end of white light, followed by a transient deceleration which led to a growth rate minimum at 40–60 min, followed by a final growth rate recovery yielding a more-or-less steady elevated rate. Pulses establishing different Pfr/P modified the extent, but not the early kinetics, of the growth response. The relative promotion of growth caused by low Pfr/P was limited by darkness as follows: (a), The growth promotion caused by far-red directed to the internode alone was transient. (b), The promotion caused by a reduction of Pfr/P in the whole shoot persisted in darkness for at least 48 h and also persisted if, after a 3–9 h dark period, the plants were returned to continuous white light. In darkness, however, the magnitude of this growth rate promotion decreased with time, particularly when the previous white light fluence rate was low, or the pulse preceding darkness provided the lowest Pfr/P. (c), When compared over the same period in darkness, growth rate was higher in those seedlings in which Pfr/P was reduced during the continuous white light pretreatment than in those ones in which the Pfr/P was only reduced immediately before darkness. It is proposed that in the natural environment, red/far-red signals could be more effective when provided during daytime than at the end of the photoperiod, as both the background growth rate and the relative promotion caused by low Pfr/P are reduced by darkness.  相似文献   

9.
Dwarf cultivar Progress No. 9 and normal cultivar Alaska ofPisum sativum L. were grown under conditions of darkness orred light. Red light decreased the stem elongation rate of bothcultivars. Gibberellins present during the linear phase of stemelongation were isolated and the two main components were tentativelyidentified by gas chromato-chromatography and mass spectrometryas Gibberellin A1 and A5. Both gibberellins varied quantitativelywithin and between cultivar and treatment groups, and the amountspresent were inversely related to stem elongation rate. Althoughthe stem elongation rate of plants grown under red light wasrepressed, endogenous gibberellin was not limiting and was asmuch as two-fold higher in red light-grown plants than in dark-grownplants. The levels of endogenous gibberellin in dawrf plantsindicated that the genetic growth limitation was not due toa gibberellin deficiency. (Received May 26, 1981; Accepted January 28, 1982)  相似文献   

10.
The effects of light on the accumulation of bacteriochlorophylland carotenoids were investigated in an aerobic photosyntheticbacterium, Roseobacter denitrificans during anaerobic respiration.Accumulation of pigments occurred in darkness but not in whitelight, with the growth rate being similar under both dark andlight conditions. Once pigments had accumulated during growthin darkness, subsequent irradiation with white light did notresult in degradation of the accumulated pigments, an indicationthat the pigments were stabilized in the membranes. The presentresults, therefore, exclude the possibility of inhibition ofthe accumulation of the photosynthetic pigments by the photochemicaldegradation of the pigments in the presence of molecular oxygenand light (blue light). The action spectrum for the inhibitionof the accumulation of the pigments showed that light at 470nm was the most effective and light at wavelengths longer than500 nm had little inhibitory effect. Together with previousresults [Shimada et al. (1992) Plant Cell Physiol. 33: 471],the present data suggest that a signal-transduction system associatedwith an unidentified blue pigment(s) is involved in the inhibitionof the accumulation of the photosynthetic pigments in R. denitrificans. (Received May 6, 1992; Accepted September 21, 1992)  相似文献   

11.
The rates of growth of coleoptiles of intact Avena seedlingswere studied by means of time-lapse photography, using infra-redradiation. When the seedlings are germinated in red light and subsequentlytransferred to darkness, a growth rhythm is established in whichthe first peak in the growth-rate curve occurs about 16–17hours after the transfer, and the second peak 24 hours later.When the transfer is made sufficiently early, three peaks mayoccur before growth ceases. The occurrence of the peaks andthe emergence of the primary leaf are independent of one another. Alteration of the point in the life-history at which the seedlingsare transferred from light to darkness changes the times ofoccurrence of the peaks, but does not affect the period of therhythm. The incidence of the rhythm shows no correlation withtime of day; therefore the rhythm is not due to diurnal changesin external conditions. Interruption of the dark period by several hours' exposure tored light causes the suppression of a previously induced rhythmand the establishment of a new one which commences at the timethe seedlings are restored to darkness. When they are grownunder continuous red light no rhythm is induced. Within the range 16 to 28 C., temperature has little or noeffect on the period of the rhythm. When seedlings of Triticum are grown under the same conditionsas those which induce a rhythm in Avena, no rhythmical variationin the growth rate can be detected.  相似文献   

12.
Transpiration rates of single leaves of Pelargonium and wheatwere measured under constant conditions of light, temperature,and air flow. Concurrently, stomatal movement was followed withthe resistance porometer during cycles of changing water contentof the leaf and changes induced by light and darkness. Stomatalmovement was found to exert a large controlling influence onthe transpiration rate, whereas water content had an extremelysmall or negligible effect. An approximately inverse linearrelation between transpiration rate and logarithm of resistanceto viscous flow through the leaf is believed to be the resultantof an inverse curvilinear relationship between the diffusiveconductance of the stomata and log. leaf resistance and thedecreasing difference of vapour pressure arising from the highertranspiration rates with increasing stomatal conductances. Nevertheless,the relation demonstrates that the transpiration rate is influencedby the degree of stomatal opening throughout its entire range. There was some evidence of lower transpiration rates duringand after recovery from wilting than before wilting. This isattributed to a decrease in a cell-wall conductance, the evaporatingsurface being located within the cell wall. During wilting partiallyirreversible contraction of the cell wall occurs. There wasalso evidence of slow changes in cell volume at full turgidityattributable to plastic flow. These occurred when the leaf wastransferred from environments of a high to low potential forevaporation. Extensive movement of the stomata followed changes in leaf water,passive opening resulting from decrease and closure from increaseof leaf water. It is suggested that the direction and extentof stomatal changes induced by water deficits is a consequenceof the rate of change of leaf water content and not of the absolutevalues. The stomata also showed an enhanced tendency to closein dry moving air following a period of wilting even after theleaf had regained turgidity.  相似文献   

13.
Goto  Ken 《Plant & cell physiology》1979,20(3):513-521
Two types of clocks, i.e., the circadian oscillator and thehourglass mechanism, which under continuous light and darknessrespectively control the mutually inverse temporal changes inthe activities of Cyt-NAD-GPD and Chl-NADP-GPD of Lemna gibbaG3, were studied. Both clocks controlled the apparent Km values,not the Vmax values, of the GPD reactions for their substrateand coenzymes. A red light pulse inserted 3 hr after the onsetof the dark period eliminated the sigmoidal changes in darkness,but evoked rhythmical changes which otherwise did not occurin continuous darkness. Thus, the photosynthetic rhythm, ifpresent, would not sustain the GPD rhythms. This effect of ared light pulse was not nullified by a subsequent far red lightpulse. A far red light pulse given at the 3rd hour of an extendeddark period made conspicuous the sigmoidal changes in activityof GPDs in the dark period, and its effect was nullified bya subsequent red light pulse, suggesting that phytochrome isinvolved in the hourglass mechanism. (Received September 26, 1978; )  相似文献   

14.
Callus cultures of Ipomoea pes-caprae and I. batatas were establishedon MS medium containing 10–5 M 2,4-D and 10–8 Mbenzyladenine. Ipomoea pes-caprae calli exhibited green pigmentationand grew better in the light than in darkness. Callus tissuesof I. batatas showed a pale-yellow colouration and they grewat the same rate in light as in dark conditions. I. pes-capraeand I. batatas callus cultures were sensitive to the presenceof 60 mM NaCl in the culture medium, the growth of the formerbeing more sensitive in light than in darkness. The significanceof the responses of I. pes-caprae callus cultures in relationto the mechanism of salt tolerance is discussed. Ipomoea batatas, Ipomoea pes-caprae, sweet potato, railroad vine, callus cultures, salinity, light  相似文献   

15.
Flower buds of Pharbitis nil (due to open the next morning)cut from plants in the field before noon open very slowly bothin darkness and at a low temperature (20°C), unlike thebuds cut in the evening. On cool cloudy days, even the budscut in the evening open very slowly. Addition of sucrose, mineralnutrients or plant growth regulators other than ABA to the waterin which the cut buds were placed did not promote flower-openingunder such conditions, but addition of ABA (10–100 µM)greatly promoted it. IAA (100 µM) given alone or in combinationwith ABA suppressed floweropening completely. Mature flowerbuds placed in an ABA solution opened even under continuouslight at 25°C just as those kept in darkness without ABA;flower-opening occurred about 12 h after the application ofABA. ABA given to the buds in darkness at 25°C and thatgiven in continuous light at 20°C also advanced the timeof flower-opening. The action mechanism of ABA is discussed. 1 This paper is dedicated to the memory of Dr. Joji Ashida,the first president of the Japanese Society of Plant Physiologist. (Received October 28, 1982; Accepted January 7, 1983)  相似文献   

16.
Periodicity of Spore Discharge in Daldinia   总被引:1,自引:0,他引:1  
INGOLD  C. T.; COX  V. J. 《Annals of botany》1955,19(2):201-209
In Daldinia concentrica spore discharge under natural conditionsis periodic, most spores being discharged during the night andfew in the daytime. An experimental study has been made of dischargeunder controlled conditions of light and temperature. In continuousdarkness periodic discharge was maintained for 12 days, butthen, although spore output continued, it ceased to be periodic.Return to alternating light (12 hrs., 100 f.c.) and darkness(12 hrs.) at once re-established the periodicity. In continuouslight (100 f.c.) periodic discharge ceased after 2 to 3 days,but was immediately re-established in alternating light (12hrs.) and darkness (12 hrs.). When the fungus was placed underconditions of alternating light and darkness each of 6 hours'duration, two peaks of spore-output were soon developed in the24-hour period. The experiments suggest that the natural periodicityis determined by the alternation of day and night.  相似文献   

17.
The presence of ferric chelate reducing activity in sunflower[Helianthus annuus L.) leaves has been studied by submergingleaf discs in a solution with Fe(III)-ethylenediaminetetra-acetate(FeEDTA), batho-phenanthroline disulphonate (BPDS) and vacuuminfiltration. The effect of different factors on the Fe(III)reduction rate was studied. Ferric reduction rate was about10-fold higher in the light than in darkness. The light effectwas greatly inhibited by 3-(3,4-dichloro-phenyl)-1,1-dimethylurea(DCMU), a photosystem II inhibitor. Several inhibitors of redoxsystems [cis-platinum (II) diamine dichloride (cis-platin),p-nitro-phenylacetate (p-NPA) and p-hydroxymercuribenzoic acid(pHMB)] decreased the FeEDTA reduction rate. The greatest inhibitionwas produced by the - SH group reagent pHMB (17% of control,in light). The FeEDTA reduction rate was much higher in theabsence of O2 than with air or 100% O2. Superoxide dismutase(SOD) decreased FeEDTA reduction with air in the light. Youngleaves reduced Fe(III)-chelate at a higher rate than did olderleaves. In iron-deficient plants, leaves did not exhibit enhancedferric chelate-reducing activity as was observed in roots. Itis suggested that at least two different redox systems or twostates of the same redox system work in the light and in darkness. Key words: Iron, leaves, plasma membrane-redox, light, oxygen level  相似文献   

18.
The capacity to sense and respond to light is widespread in animals, plants, fungi and bacteria. The effect of light quality on growth and pigment yield of Monascus purpureus was investigated. Incubation in total darkness increased red pigment production from 14. 5 OD/g dry substrate to 22 OD/g dry substrate. In contrast, growth of the fungus in direct illumination resulted in total suppression of pigment production. It was found that both red and blue light influenced pigment yield as well as culture morphology. The authors propose the existence of a light-perception system in Monascus purpureus.  相似文献   

19.
The primary roots of the "Golden Cross Bantam 70" cultivar ofZea mays are agravitropic in darkness and their orthogravitropismis light-dependent. Analysis of the agravitropic roots providesimportant information about the mechanism of orthogravitropism.However, the underlying mechanism of the agravitropic responsein darkness is unknown. We found that the growth of intact primaryroots was inhibited by gravitropic stimulation (i.e., changingthe orientation of the roots from vertical to horizontal) indarkness, but that of detipped roots was not. The role of calciumin this gravistimulation-dependent inhibition of growth wasinvestigated using apical 5-mm segments of the primary roots.The gravistimulation-dependent inhibition of growth was preventedby applying 10 mM MES-KOH buffer at pH 6.0 to the root cap.By contrast, the application of 0.1–1 mM buffer at pH6.0 and 10 mM buffer at pH 4.5–5.0 allowed the gravistimulation-dependentinhibition of growth. Furthermore, when the buffer of 10 mM(pH 6.0) contained 1–5 mM CaCl2, the gravistimulation-dependentinhibition of growth was apparent. By contrast, when weak (1mM) buffer at pH 6.0 or 10 mM buffer at pH 4.5 contained 5 mMEGTA, no gravistimulation-dependent inhibition of growth wasobserved. Thus, the gravistimulation-dependent inhibition ofgrowth in darkness seemed to be mediated by an increase in thelevel of free Ca2+ in the root tip. These results suggest thatfree Ca2+ in the apoplast of the root tip plays an importantrole in the agravitropic response in darkness as well as inorthogravitropism under light of the roots of this cultivarof Zea mays. (Received March 21, 1994; Accepted July 25, 1994)  相似文献   

20.
The stay-green mutations cytG and Gd1d2 prevent the normal yellowingduring senescence of soybean (Glycine max) leaves and cotyledons.Because light plays such an important role in regulating morphogenesisand it promotes the formation of chlorophyll (Chl), we determinedthe effect of cytG and Gd1d2 (in a cv. Clark background) onthe development and some light responses of seedlings. AlthoughcytG and Gd1d2 seeds, particularly the cotyledons, are greenwhen mature, 44 and 71 % respectively of this Chl broke downwhen the seeds were germinated in darkness. Chlorophyllidesand phaeophytins were not present in the seeds in significantamounts. cytG and Gd1d2 as well as wild type (cv. Clark) seedlingsdeveloped a full etiolation syndrome (morphology and lack ofChl) in darkness. Light induced rapid Chl accumulation in thedark-grown seedlings with no apparent difference among the threeisolines. A short (8 h) exposure to light induced some Chl inthe cotyledons of dark-grown plants, and 22 h of light producedfour times more. Following return to darkness, the 8-h groupshowed very little breakdown over the next 12 d. After the 22-hgroup was returned to darkness, the wild-type lost Chl steadily,but Gd1d2 and eventually also cytG inhibited this breakdown.In the 22-h group, the Chl a/b ratio decreased in wild typeand cytG indicating preferential breakdown of Chl a relativeto Chl b; however, Gd1d2 prevented this change. cytG and Gd1d2seem to act preferentially on Chl breakdown rather than synthesis.Copyright1995, 1999 Academic Press Glycine max, soybean, chlorophyll, chlorophyll a/b ratio, cotyledons, etiolation, cytG, Gd1d2, mutations, senescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号