首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome condensation at mitosis correlates with the activation of p34cdc2 kinase, the hyperphosphorylation of histone H1 and the phosphorylation of histone H3. Chromosome condensation can also be induced by treating interphase cells with the protein phosphatase 1 and 2A inhibitors okadaic acid and fostriecin. Mouse mammary tumour FT210 cells grow normally at 32 degrees C, but at 39 degrees C they lose p34cdc2 kinase activity and arrest in G2 because of a temperature-sensitive lesion in the cdc2 gene. The treatment of these G2-arrested FT210 cells with fostriecin or okadaic acid resulted in full chromosome condensation in the absence of p34cdc2 kinase activity or histone H1 hyperphosphorylation. However, phosphorylation of histones H2A and H3 was strongly stimulated, partly through inhibition of histone H2A and H3 phosphatases, and cyclins A and B were degraded. The cells were unable to complete mitosis and divide. In the presence of the protein kinase inhibitor starosporine, the addition of fostriecin did not induce histone phosphorylation and chromosome condensation. The results show that chromosome condensation can take place without either the histone H1 hyperphosphorylation or the p34cdc2 kinase activity normally associated with mitosis, although it requires a staurosporine-sensitive protein kinase activity. The results further suggest that protein phosphatases 1 and 2A may be important in regulating chromosome condensation by restricting the level of histone phosphorylation during interphase, thereby preventing premature chromosome condensation.  相似文献   

2.
The NH2-terminal domain (N-tail) of histone H3 has been implicated in chromatin compaction and its phosphorylation at Ser10 is tightly correlated with mitotic chromosome condensation. We have developed one mAb that specifically recognizes histone H3 N-tails phosphorylated at Ser10 (H3P Ab) and another that recognizes phosphorylated and unphosphorylated H3 N-tails equally well (H3 Ab). Immunocytochemistry with the H3P Ab shows that Ser10 phosphorylation begins in early prophase, peaks before metaphase, and decreases during anaphase and telophase. Unexpectedly, the H3 Ab shows stronger immunofluorescence in mitosis than interphase, indicating that the H3 N-tail is more accessible in condensed mitotic chromatin than in decondensed interphase chromatin. In vivo ultraviolet laser cross-linking indicates that the H3 N-tail is bound to DNA in interphase cells and that binding is reduced in mitotic cells. Treatment of mitotic cells with the protein kinase inhibitor staurosporine causes histone H3 dephosphorylation and chromosome decondensation. It also decreases the accessibility of the H3 N-tail to H3 Ab and increases the binding of the N-tail to DNA. These results indicate that a phosphorylation-dependent weakening of the association between the H3 N-tail and DNA plays a role in mitotic chromosome condensation.  相似文献   

3.
We have generated and characterized a novel site-specific antibody highly specific for the phosphorylated form of the amino-terminus of histone H3 (Ser10). In this study, we used this antibody to examine in detail the relationship between H3 phosphorylation and mitotic chromosome condensation in mammalian cells. Our results extend previous biochemical studies by demonstrating that mitotic phosphorylation of H3 initiates nonrandomly in pericentromeric heterochromatin in late G2 interphase cells. Following initiation, H3 phosphorylation appears to spread throughout the condensing chromatin and is complete in most cell lines just prior to the formation of prophase chromosomes, in which a phosphorylated, but nonmitotic, chromosomal organization is observed. In general, there is a precise spatial and temporal correlation between H3 phosphorylation and initial stages of chromatin condensation. Dephosphorylation of H3 begins in anaphase and is complete immediately prior to detectable chromosome decondensation in telophase cells. We propose that the singular phosphorylation of the amino-terminus of histone H3 may be involved in facilitating two key functions during mitosis: (1) regulate protein-protein interactions to promote binding of trans-acting factors that “drive” chromatin condensation as cells enter M-phase and (2) coordinate chromatin decondensation associated with M-phase. Received: 4 September 1997; in revised form: 14 September 1997 /Accepted: 14 September 1997  相似文献   

4.
H1 histones are progressively phosphorylated during the cell cycle. The number of phosphorylated sites is zero to three in late S phase and increases to five or six in late G2 phase and M phase. It is assumed that this phosphorylation modulates chromatin condensation and decondensation, but its specific role remains unclear. Recently, it was shown that the somatic H1 histone subtype H1.5 becomes pentaphosphorylated during mitosis, with phosphorylated threonine 10 being the last site to be phosphorylated. We have generated an antiserum specific for human H1.5 phosphorylated at threonine 10. Immunofluorescence labeling of HeLa cells with this antiserum revealed that the phosphorylation at this site appears in prometaphase and disappears in telophase, and that this hyperphosphorylated form of H1.5 is mainly chromatin-bound in metaphase when chromatin condensation is maximal. In search of the kinase responsible for the phosphorylation at this site, we found that threonine 10 of H1.5 can be phosphorylated by glycogen synthase kinase-3 in vitro, but not by cyclin-dependent kinase 1/cyclin B and cyclin-dependent kinase 5/p35, respectively. Furthermore, addition of specific glycogen synthase kinase-3 inhibitors led to a reduction in phosphorylation at this site both in vivo and in vitro.  相似文献   

5.
De Souza CP  Osmani AH  Wu LP  Spotts JL  Osmani SA 《Cell》2000,102(3):293-302
Phosphorylation of histone H3 serine 10 correlates with chromosome condensation and is required for normal chromosome segregation in Tetrahymena. This phosphorylation is dependent upon activation of the NIMA kinase in Aspergillus nidulans. NIMA expression also induces Ser-10 phosphorylation inappropriately in S phase-arrested cells and in the absence of NIMX(cdc2) activity. At mitosis, NIMA becomes enriched on chromatin and subsequently localizes to the mitotic spindle and spindle pole bodies. The chromatin-like localization of NIMA early in mitosis is tightly correlated with histone H3 phosphorylation. Finally, NIMA can phosphorylate histone H3 Ser-10 in vitro, suggesting that NIMA is a mitotic histone H3 kinase, perhaps helping to explain how NIMA promotes chromatin condensation in A. nidulans and when expressed in other eukaryotes.  相似文献   

6.
7.
8.
Histone phosphorylation has long been associated with condensed mitotic chromatin; however, the functional roles of these modifications are not yet understood. Histones H1 and H3 are highly phosphorylated from late G2 through telophase in many organisms, and have been implicated in chromatin condensation and sister chromatid segregation. However, mutational analyses in yeast and biochemical experiments with Xenopus extracts have demonstrated that phosphorylation of H1 and H3 is not essential for such processes. In this study, we investigated additional histone phosphorylation events that may have redundant functions to H1 and H3 phosphorylation during mitosis. We developed an antibody to H4 and H2A that are phosphorylated at their respective serine 1 (S1) residues and found that H4S1/H2AS1 are highly phosphorylated in the mitotic chromatin of worm, fly, and mammals. Mitotic H4/H2A phosphorylation has similar timing and localization as H3 phosphorylation, and closely correlates with the chromatin condensation events during mitosis. We also detected a lower level of H4/H2A phosphorylation in 5-bromo-2-deoxyuridine-positive S-phase cells, which corroborates earlier studies that identified H4S1 phosphorylation on newly synthesized histones during S-phase. The evolutionarily conserved phosphorylation of H4/H2A during the cell cycle suggests that they may have a dual purpose in chromatin condensation during mitosis and histone deposition during S-phase.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00412-004-0281-9Communicated by G. Almouzni  相似文献   

9.
Genetic and biochemical studies have shown that cdc2 protein kinase plays a pivotal role in a highly conserved mechanism controlling the entry of cells into mitosis. It is generally believed that one function of cdc2 kinase is to phosphorylate histone H1 which in turn promotes mitotic chromosome condensation. However, direct evidence linking H1 phosphorylation to mitotic chromatin condensation is limited and the exact cellular function(s) of H1 phosphorylation remains unclear. In this study, we show that mammalian cdc2 kinase phosphorylates H1 from the amitotic macronucleus of Tetrahymena with remarkable fidelity. Furthermore, we demonstrate that macronuclei from Tetrahymena contain a growth-associated H1 kinase activity which closely resembles cdc2 kinase from other eukaryotes. Using polyclonal antibodies raised against yeast p34cdc2, we have detected a 36 kd immunoactive polypeptide in macronuclei which binds to Suc1 (p13)-coated beads and closely follows H1 kinase activity. Since macronuclei divide without mitotic chromosome condensation, these data demonstrate that H1 phosphorylation by cdc2 kinase may be necessary, but is not sufficient to promote mitotic chromatin condensation. The fact that an activity which strongly resembles mammalian cdc2 kinase is active during cell growth in a nucleus which does not undergo mitosis and chromosome condensation suggests that other factors are needed for a true mitotic division to occur. These data also reinforce the notion that H1 phosphorylation has important functions outside mitosis both in Tetrahymena and in mammalian cells.  相似文献   

10.
In vitro phosphorylation of histones H1 and H3 by cAMP-dependent protein kinase A and endogenous phosphokinases in the presence of [γ-32P]ATP was studied in isolated rat liver nuclei with different variants of chromatin structural organization: condensed (diameter of fibrils 100–200 nm; N-1) and partly decondensed (diameter of fibrils ~30 nm; N-2). In the N-1 state histone, H1 is phosphorylated approximately twice as much than histone H3. Upon the decondensation of the chromatin in the N-2 state, 1.5-fold decrease of total phosphorylation of H1 is observed, while that of H3 does not change, although the endogenous phosphorylation of both histones is reduced by half. Changes in histone phosphorylation in the presence of low or high concentrations of distamycin and chromomycin differ for H1 and H3 in N-1 and N-2. It was found that distamycin (DM) stimulates the phosphorylation of tightly bound H1 fraction, which is not extractable by polyglutamic acid (PG), especially in N-1. Chromomycin (CM) increases the phosphorylation of both histones in PG extracts and in the nuclear pellets, particularly in N-2. At the same time, in N-1 one can detect phosphorylation of a tightly bound fraction of histones H1 whose N-termini are located on AT-rich sites that become inaccessible for protein kinase in the process of chromatin decondensation in N-2. At the same time, in N-2 the accessibility for protein kinase A of tightly bound H1 fractions, whose N-termini are located on GC-rich sites, increases dramatically. High concentrations of both CM and DM in N-1 and N-2 stimulated phosphorylation of the non-extractable by PG fraction of H1 whose N-termini are located on sites where AT ≈ GC. CM at high concentration stimulated 4–7 times the phosphorylation of a small fraction of H3, which is extracted by PG from both types of nuclei. We detected an effect of endogenous methylation of histones H1 and H3 in the nuclei on their subsequent phosphorylation depending on the chromatin structure, histone-chromatin binding strength, and concentration of DM.  相似文献   

11.
In this article we describe three distinct biological systems where histone H1 phosphorylation is uncoupled from mitosis and highly condensed chromatin is enriched in dephosphorylated forms of H1: the amitotic macronucleus of Tetrahymena, terminally differentiated avian erythrocytes and sea urchin sperm. Each system offers informative contrasts to the idea that H1 hyperphosphorylation is causally related to mitotic chromosome condensation. Assuming that higher order chromatin folding is primarily driven by electrostatic interactions between H1 and DNA, an alternative model is presented for the role of H1 phosphorylation in chromatin condensation.  相似文献   

12.
Phosphorylation of histone H1 is intimately related to the cell cycle progression in higher eukaryotes, reaching maximum levels during mitosis. We have previously shown that in the flagellated protozoan Trypanosoma cruzi, which does not condense chromatin during mitosis, histone H1 is phosphorylated at a single cyclin-dependent kinase site. By using an antibody that recognizes specifically the phosphorylated T. cruzi histone H1 site, we have now confirmed that T. cruzi histone H1 is also phosphorylated in a cell cycle-dependent manner. Differently from core histones, the bulk of nonphosphorylated histone H1 in G(1) and S phases of the cell cycle is concentrated in the central regions of the nucleus, which contains the nucleolus and less densely packed chromatin. When cells pass G(2), histone H1 becomes phosphorylated and starts to diffuse. At the onset of mitosis, histone H1 phosphorylation is maximal and found in the entire nuclear space. As permeabilized parasites preferentially lose phosphorylated histone H1, we conclude that this modification promotes its release from less condensed and nucleolar chromatin after G(2).  相似文献   

13.
DNA topoisomerase II has been implicated in regulating chromosome interactions. We investigated the effects of the specific DNA topoisomerase II inhibitor, teniposide on nuclear events during oocyte maturation, fertilization, and early embryonic development of fertilized Spisula solidissima oocytes using DNA fluorescence. Teniposide treatment before fertilization not only inhibited chromosome separation during meiosis, but also blocked chromosome condensation during mitosis; however, sperm nuclear decondensation was unaffected. Chromosome separation was selectively blocked in oocytes treated with teniposide during either meiotic metaphase I or II indicating that topoisomerase II activity may be required during oocyte maturation. Teniposide treatment during meiosis also disrupted mitotic chromosome condensation. Chromosome separation during anaphase was unaffected in embryos treated with teniposide when the chromosomes were already condensed in metaphase of either first or second mitosis; however, chromosome condensation during the next mitosis was blocked. When interphase two- and four-cell embryos were exposed to topoisomerase II inhibitor, the subsequent mitosis proceeded normally in that the chromosomes condensed, separated, and decondensed; in contrast, chromosome condensation of the next mitosis was blocked. These observations suggest that in Spisula oocytes, topoisomerase II activity is required for chromosome separation during meiosis and condensation during mitosis, but is not involved in decondensation of the sperm nucleus, maternal chromosomes, and somatic chromatin.  相似文献   

14.
The relationship between histone phosphorylation and chromosome condensation was investigated by determining changes in phosphorylation levels of histones H1 and H3 following fusion between mitotic and interphase cells and subsequent premature chromosome condensation. We detected significant increases in the levels of phosphorylation of H1 and H3 from interphase chromatin in which a majority of nuclei had undergone premature chromosome condensation. In addition, we noted significant decreases in the phosphate content of the highly phosphorylated mitotic H1 and H3, presumably resulting from phosphatase activity contributed by the interphase component of mitotic/interphase fused cells. These observations further strengthen the correlation between histone phosphorylation and the changes in chromosome condensation associated with the initiation of mitosis. This study also suggests that maintenance of the mitotic chromosomes in a highly condensed state does not require the continued presence of histones in a highly phosphorylated form.  相似文献   

15.
Proper chromosome condensation requires the phosphorylation of histone and nonhistone chromatin proteins. We have used an in vitro chromosome assembly system based on Xenopus egg cytoplasmic extracts to study mitotic histone H3 phosphorylation. We identified a histone H3 Ser(10) kinase activity associated with isolated mitotic chromosomes. The histone H3 kinase was not affected by inhibitors of cyclin-dependent kinases, DNA-dependent protein kinase, p90(rsk), or cAMP-dependent protein kinase. The activity could be selectively eluted from mitotic chromosomes and immunoprecipitated by specific anti-X aurora-B/AIRK2 antibodies. This activity was regulated by phosphorylation. Treatment of X aurora-B immunoprecipitates with recombinant protein phosphatase 1 (PP1) inhibited kinase activity. The presence of PP1 on chromatin suggested that PP1 might directly regulate the X aurora-B associated kinase activity. Indeed, incubation of isolated interphase chromatin with the PP1-specific inhibitor I2 and ATP generated an H3 kinase activity that was also specifically immunoprecipitated by anti-X aurora-B antibodies. Nonetheless, we found that stimulation of histone H3 phosphorylation in interphase cytosol does not drive chromosome condensation or targeting of 13 S condensin to chromatin. In summary, the chromosome-associated mitotic histone H3 Ser(10) kinase is associated with X aurora-B and is inhibited directly in interphase chromatin by PP1.  相似文献   

16.
Topoisomerase II cleavage in chromatin   总被引:12,自引:0,他引:12  
We have examined the effect of the anti-tumor drug VM-26 on purified Drosophila topoisomerase II, and used this drug to map (putative) topoisomerase II cleavage sites in chromatin. These studies indicate that VM-26 interferes with the strand breakage-rejoining catalytic cycle. VM-26 appears to stabilize the topoisomerase-II-cleavable complex and markedly enhances the formation of double-strand breaks in naked DNA. VM-26 also stimulates the formation of double-strand breaks in isolated Drosophila nuclei. Analysis of the parameters of the VM-26-stimulated cleavage reaction in nuclei strongly suggests that the double-strand scissions are generated by endogenous topoisomerase II. Finally, we have examined the distribution of (putative) cleavage sites for endogenous topoisomerase II in the chromatin of the 87A7 heat shock locus and the histone repeat unit. We have found that there are prominent VM-26-induced cleavage products from the 5' ends of the 87A7, the two heat shock protein 70 genes, and in the intergenic spacer separating these genes. Moreover, the pattern of VM-26-induced cleavage products is altered in nuclei prepared from heat-shocked cells. In the case of the histone repeat unit, only minor VM-26-induced cleavage products are observed in nuclei (in spite of the fact that experiments on naked DNA indicate that the histone repeat contains many major cleavage sites for purified topoisomerase II). These findings suggest that the nucleoprotein organization of different DNA segments may be important in determining whether specific sites are accessible to endogenous topoisomerase II in nuclei.  相似文献   

17.
18.
Posttranslational modifications of core histones contribute to driving changes in chromatin conformation and compaction. Herein, we investigated the role of histone deacetylation on the mitotic process by inhibiting histone deacetylases shortly before mitosis in human primary fibroblasts. Cells entering mitosis with hyperacetylated histones displayed altered chromatin conformation associated with decreased reactivity to the anti-Ser 10 phospho H3 antibody, increased recruitment of protein phosphatase 1-delta on mitotic chromosomes, and depletion of heterochromatin protein 1 from the centromeric heterochromatin. Inhibition of histone deacetylation before mitosis produced defective chromosome condensation and impaired mitotic progression in living cells, suggesting that improper chromosome condensation may induce mitotic checkpoint activation. In situ hybridization analysis on anaphase cells demonstrated the presence of chromatin bridges, which were caused by persisting cohesion along sister chromatid arms after centromere separation. Thus, the presence of hyperacetylated chromatin during mitosis impairs proper chromosome condensation during the pre-anaphase stages, resulting in poor sister chromatid resolution. Lagging chromosomes consisting of single or paired sisters were also induced by the presence of hyperacetylated histones, indicating that the less constrained centromeric organization associated with heterochromatin protein 1 depletion may promote the attachment of kinetochores to microtubules coming from both poles.  相似文献   

19.
Chromatin undergoes a rapid ATP-dependent, ATM and H2AX-independent decondensation when DNA damage is introduced by laser microirradiation. Although the detailed mechanism of this decondensation remains to be determined, the kinetics of decondensation are similar to the kinetics of poly(ADP-ribosyl)ation. We used laser microirradiation to introduce DNA strand breaks into living cells expressing a photoactivatable GFP-tagged histone H2B. We find that poly(ADP-ribosyl)ation mediated primarily by poly(ADP-ribose) polymerase 1 (PARP1) is responsible for the rapid decondensation of chromatin at sites of DNA damage. This decondensation of chromatin correlates temporally with the displacement of histones, which is sensitive to PARP inhibition and is transient in nature. Contrary to the predictions of the histone shuttle hypothesis, we did not find that histone H1 accumulated on poly(ADP-ribose) (PAR) in vivo. Rather, histone H1, and to a lessor extent, histones H2A and H2B were rapidly depleted from the sites of PAR accumulation. However, histone H1 returns to chromatin and the chromatin recondenses. Thus, the PARP-dependent relaxation of chromatin closely correlates with histone displacement.  相似文献   

20.
Histone phosphorylation was investigated in several mammalian cells undergoing apoptosis (human HL-60 and HeLa, mouse FM3A and N18 cells, and rat thymocytes). Among the four nucleosomal core histones (H2A, H2B, H3, and H4), H2B, which is not usually phosphorylated in quiescent or growing cells, was found to be phosphorylated after treatment with various apoptotic inducers. The H2B was phosphorylated around the time when nucleosomal DNA fragmentation was initiated and, like this fragmentation, was completely blocked with Z-Asp-CH(2)-DCB, an inhibitor of ICE or ICE-like caspase. The involved single phosphopeptide of H2B proved to be phosphorylatable in vitro with a protein kinase C, and the site Ser-32 was tentatively identified. Despite typical apoptotic chromatin condensation, the H3 phosphorylation was at a low level, and the sites where phosphorylation did occur did not include any mitosis-specific phosphopeptides. Phosphorylation of H4 was increased, but the other two histone proteins (H1 and H2A) were not appreciably changed. These observations imply that 1) H2B phosphorylation occurs universally in apoptotic cells and is associated with apoptosis-specific nucleosomal DNA fragmentation, 2) chromatin condensation in apoptosis occurs by a different biochemical mechanism from those operating during mitosis or premature chromosome condensation, and 3) this unique phosphorylation of H2B is a useful biochemical hallmark of apoptotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号