首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a simple procedure for rapid determination of a DNA sequence recognized by a DNA binding protein based on immobilization of the protein on nitrocellulose filters. The procedure consists of the following steps: A recombinant protein with a functional DNA binding domain is expressed in E. coli. The protein is purified to homogeneity, immobilized on nitrocellulose paper, and exposed to a pool of double stranded oligonucleotides carrying in the central part a 20 bp random sequence, which is flanked by conserved sequences with restriction endonuclease recognition sites for analytical and subcloning purposes and sequences complementary to polymerase chain reaction primers. Oligonucleotides retained by the DNA-binding protein are liberated by increasing the ionic strength and used in a new binding process after amplification by the polymerase chain reaction technique. Finally the amplified product is cloned for determination of the DNA sequence selected by the DNA-binding protein. Murine Zn-finger and basic helix-loop-helix DNA binding proteins were used to demonstrate the efficiency of the method. We show that the yield of oligonucleotides binding to the protein was increased by several consecutive rounds of filter binding and amplification, and that the protein extracted a specific sequence from the pool of random oligonucleotides.  相似文献   

2.
J Davis  M Scherer  W P Tsai    C Long 《Journal of virology》1976,18(2):709-718
A sensitive nitrocellulose filter assay that measures the retention of 125I single-stranded calf thymus DNA has been used to detect and purify DNA-binding proteins that retain a biological function from Rauscher murine leukemia virus. By consecutive purification on oligo (dT)- cellulose and DEAE-Bio-Gel columns and centrifugation in 10 to 30% glycerol gradients, RNA-dependent DNA polymerase has been separated from a second virion DNA-binding protein. The binding of this protein to DNA was strongly affected by NaCl concentration but showed little change in activity over a wide range of temperature or pH. After glycerol gradient purification, polyacrylamide gel electrophoresis of this protein showed one major band with a molecular weight of approximately 9,800. This protein binds about as well as to single-stranded Escherichia coli or calf thymus DNA or 70S type C viral RNA. The binding to 125I single-stranded calf thymus DNA is very efficiently inhibited by unlabeled single-stranded DNA from either E. coli or calf thymus and by 70S murine or feline viral RNA. Much larger amounts of double-stranded DNA are required to produce an equivalent percentage of inhibition. This protein, therefore, shows preferential binding to single-stranded DNA or viral RNA.  相似文献   

3.
The specificity of the binding of purified non-histone proteins to DNA has been investigated through two types of experiments. Using a nitrocellulose filter assay at a low protein/DNA ratio, the binding of mouse non-histone proteins to mouse DNA was twice as great as the binding of mouse non histone protein to Drosophila DNA. The reverse experiment using Drosophila non-histone protein confirmed the interpretation that some protein . DNA complexes were specific. Protein . DNA complexes isolated by gel filtration chromatography indicated that 20% or 10% of the non-histone protein was bound to homologous or heterologous DNA respectively. Purified non-histone proteins bound with lower efficiency (15%) than unpurified but with higher specificity to soluble chromatin than to naked DNA. This binding did not result from an exchange between chromatin non-histone proteins and purified non-histone proteins added in excess. DNA-bound and chromatin-bound proteins were analysed on polyacrylamide gels. Whereas no major qualitative differences were observed with DNA-bound proteins, some proteins bound to homologous mouse chromatin were different from those bound to heterologous Drosophila chromatin. These results suggest a possible role of DNA-bound non-histone proteins in the regulation of gene expression.  相似文献   

4.
E. coli ribosomal proteins are retained by nitrocellulose filters. In contrast, 16S RNA passes through nitrocellulose filters. We have found that specific protein-RNA complexes involving single proteins also pass through nitrocellulose filters. Thus, by utilizing radioactively labeled r-proteins, nitrocellulose filtration can be used to study directly and sensitively the stoichiometry of r-protein-RNA association. The filtration process maintains near equilibrium conditions, making it applicable to weak as well as strong protein-RNA associations. We have used nitrocellulose filtration to obtain saturation binding curves for the association of proteins S4, S7, S8 and S20 with 16S RNA. In each case, the stoichiometry of binding was one mole of protein or less per mole of RNA. The stoichiometry of protein S8 binding to 16S RNA measured by filtration is comparable to that observed by sucrose gradient centrifugation. Association constants for the binding of proteins S4, S8 and S20 to 16S RNA have been determined by analysis of the saturation binding curves and were found to range from .3-6 X 10(7)M-1.  相似文献   

5.
The ability to bind to nitrocellulose is commonly accepted as being a universal property of proteins and has been widely used in many different fields of study. This property was first exploited in the study of DNA-binding proteins 30 years ago, in studies involving DNA binding by the lactose repressor (LacR) of Escherichia coli. Termed the filter-binding assay, it remains the quickest and easiest assay available for the study of protein-DNA interactions. However, the exact mechanism by which proteins bind to nitrocellulose remains uncertain. Given the supposedly universal nature of the interaction, we were surprised to notice that certain LacR variants were completely unable to bind simultaneously to DNA containing a single lac operator and nitrocellulose. Investigation of this loss of binding suggests that LacR requires a protein region that is both hydrophobic in nature and more or less unstructured, in order to bind to both nitrocellulose and DNA. In the case of wild-type, tetrameric LacR, the DNA-recognition domain that is not bound to DNA suffices. Dimeric LacR variants will only bind if they have certain C-terminal extensions. These experiments sound a cautionary note for the use of filter binding as an assay of choice, particularly in applications involving screening for the DNA-binding site of putative DNA-binding proteins.  相似文献   

6.
We have examined aspects of the interaction of cycled microtubule protein preparations with 35S-labeled mouse DNA tracer in a competition system with unlabelled competitor E. coli or mouse DNA. The nitrocellulose filter binding assay was used to measure interaction by scintillation counting. DNA molecular weight affected the levels of filter retained 35S-labelled mouse tracer DNA. Filter retention levels increased if 35S-labelled mouse DNA tracer size was increased, and the filter binding level decreased if competitor DNA size was increased. There was a sizeable, reproducible difference in the 35S-labelled mouse DNA tracer binding level of about 1% when E. coli or mouse DNA competitors were compared. Mouse DNA more effectively competed with 35S-labelled mouse DNA for microtubule protein binding than did E. coli DNA, suggesting that a small class of higher-organism DNA sequences interacts very strongly with microtubule protein. From other studies we know this to be the MAP fraction (Marx, K.A. and Denial, T. (1984) in The Molecular Basis of Cancer (Rein, R., ed.), Alan R. Liss, New York, in the press; and Villasante, E., Corces, V.G., Manso-Martinez, R. and Avila, J. (1981) Nucleic Acids Res. 9, 895–908). We find that this difference in competitor DNA strength is qualitatively similar under high-stringency conditions (0.5 M NaCl, high competitor [DNA]) we developed for examining high-affinity complexes. Under high-stringency conditions we isolated 1.2% and 0.6% of 35S-labelled mouse DNA at 4200 and 350 bp respective sizes as nitrocellulose filter bound DNA-protein complexes. At both molecular weights these high-affinity DNA sequences, isolated from the filters, were shown to be significantly enriched in repetitive DNA sequences by S1 nuclease solution reassociation kinetics. The kinetics are consistent with about a 4-fold mouse satellite DNA enrichment as well as enrichment in other repetitious DNA sequence classes. The high molecular weight filter-bound DNA samples were sedimented to equilibrium in CsCl buoyant density gradients and found to contain primarily mouse satellite DNA density sequences (1.691 g/cm3) with some minor fractions at other density positions (1.670, 1.682, 1.705, 1.740, 1.760 g/cm3) similar to those observed by our laboratory in previous investigations of micrococcal nuclease-resistant chromatin (Marx, K.A. (1977) Biochem. Biophys. Res. Commun. 78, 777–784). That the high-affinity microtubule-bound DNA was some 3–5-fold enriched in mouse satellite sequences was demonstrated by its characteristic BstNI restriction enzyme cleavage pattern  相似文献   

7.
DNA colony hybridization was used to identify and enumerate enterotoxigenic Escherichia coli strains in foods. The cells were identified and enumerated by using synthetic polynucleotide probes for the heat-stable enterotoxin genes. These 22-base oligonucleotides, made from known nucleotide sequences of the genes for the heat-stable enterotoxins of human and porcine strains of E. coli, contain two mismatches between the two heat-stable enterotoxins. Colonies were replicated from agar medium onto paper filters and lysed with alkali followed by steam; probes were end labeled. After overnight hybridization at 40 degrees C and washing at 50 degrees C, autoradiograms were exposed at -70 degrees C. Results were consistent with suckling-mouse tests for heat-stable enterotoxins. A stronger signal was obtained on paper filters than on nitrocellulose filters. Enterotoxigenic E. coli cells were detected when mixed with a 1,000-fold excess of nonenterotoxigenic E. coli cells. This procedure appears to be more acceptable for routine testing than the use of cloned DNA fragments, labeling by nick translation, and lysing colonies on nitrocellulose filters.  相似文献   

8.
DNA colony hybridization was used to identify and enumerate enterotoxigenic Escherichia coli strains in foods. The cells were identified and enumerated by using synthetic polynucleotide probes for the heat-stable enterotoxin genes. These 22-base oligonucleotides, made from known nucleotide sequences of the genes for the heat-stable enterotoxins of human and porcine strains of E. coli, contain two mismatches between the two heat-stable enterotoxins. Colonies were replicated from agar medium onto paper filters and lysed with alkali followed by steam; probes were end labeled. After overnight hybridization at 40 degrees C and washing at 50 degrees C, autoradiograms were exposed at -70 degrees C. Results were consistent with suckling-mouse tests for heat-stable enterotoxins. A stronger signal was obtained on paper filters than on nitrocellulose filters. Enterotoxigenic E. coli cells were detected when mixed with a 1,000-fold excess of nonenterotoxigenic E. coli cells. This procedure appears to be more acceptable for routine testing than the use of cloned DNA fragments, labeling by nick translation, and lysing colonies on nitrocellulose filters.  相似文献   

9.
We have examined high affinity interactions of chick brain microtubule proteins with 35S labelled tracer DNAs from chick, mouse and D. melanogaster under equilibrium conditions by the nitrocellulose filter binding technique. Ternary reaction mixtures of the above two components and a third component, an excess of unlabelled competitor DNA from either E. coli., mouse, D. melanogaster or chick, were used to measure small fractions of DNA in each case (1–4%) bound to microtubule protein under high stringency- large competitor DNA concentration and 0.5 M NaCl. As seen in part previously (Marx, K.A. and Denial, T. (1985) in The Molecular Basis of Cancer, 172B, 65–75 (Rein, ed), A. Liss, N.Y.) the measured order of competitor DNA strengths was identical for all three tracer DNAs. That is: chick > mouse > D. melanogaster > E. coli competitor DNA. Since the homologous interaction, chick competitor DNA with chick brain microtubule protein, is always the strongest interaction measured, we interpret this as evidence for a conserved protein-DNA sequence interaction. 35S chick DNA tracer sequences, isolated from nitrocellulose filters following the stringent binding in the presence of 0.9 mM–1 E. coli. competitor DNA, was used in driven reassociation reactions with total chick driver DNA. This fraction was found to be significantly enriched in repetitive chick DNA sequences. Since we have observed a similar phenomenon in mouse, we then compared the stringent binding mouse sequences and showed that the bulk of these sequences did not cross-hybridize with total chick DNA. Finally, all three 35S tracer DNAs binding to nitrocellulose were isolated and sedimented to equilibrium on CsCl density gradients. The CsCl density distributions from all three DNAs showed significant (100-fold) enrichment in classical satellite DNAs as well as higher enrichment in two very unusual high CsCl density families of DNA (1.720–1.740 g/cm3; 1.750–1.765 g/cm3). These families are never observed as distinct bands in total DNA CsCl gradients, nor could we isolate them in purified tubulin control binding experiments. This apparently general phenomena may be identifying some of the sequence families involved in the high affinity microtubule interaction, which appears to be conserved in evolution.  相似文献   

10.
Eukaryotic DNA-binding proteins can be detected by a filter binding assay combining protein blotting on nitrocellulose, incubation with DNA by filtration, and the application of radioactively or nonradioactively labeled DNA probes. Basic nuclear and non-nuclear standard proteins are assayed in dot blots as well as in Western blots from sodium dodecyl sulfate gels. The DNA-binding ability of fractionated proteins is compared employing two different blotting techniques, conventional electro-transfer and protein-renaturating capillary transfer. Biotinylated DNA probes exhibit high sensitivity and a distinct discrimination of detection signals corresponding only to defined DNA-binding proteins. In contrast, phosphorus-labeled DNA probes show higher sensitivity, but less effective resolving power, especially for bands localized close to each other. Using the DNA-incubation procedure described, biotinylated DNA probes are preferable to radioactively-labeled probes for screening DNA-binding proteins in complex protein fractions.  相似文献   

11.
12.
DNA-binding domain of human c-Myc produced in Escherichia coli.   总被引:7,自引:6,他引:1       下载免费PDF全文
We have identified the domain of the human c-myc protein (c-Myc) produced in Escherichia coli that is responsible for the ability of the protein to bind sequence-nonspecific DNA. Using analysis of binding of DNA by proteins transferred to nitrocellulose, DNA-cellulose chromatography, and a nitrocellulose filter binding assay, we examined the binding properties of c-Myc peptides generated by cyanogen bromide cleavage, of mutant c-Myc, and of proteins that fuse portions of c-Myc to staphylococcal protein A. The results of these analyses indicated that c-Myc amino acids 265 to 318 were responsible for DNA binding and that other regions of the protein (including a highly conserved basic region and a region containing the leucine zipper motif) were not required. Some mutant c-Mycs that did not bind DNA maintained rat embryo cell-cotransforming activity, which indicated that the c-Myc property of in vitro DNA binding was not essential for this activity. These mutants, however, were unable to transform established rat fibroblasts (Rat-1a cells) that were susceptible to transformation by wild-type c-Myc, although this lack of activity may not have been due to their inability to bind DNA.  相似文献   

13.
We have isolated the MAP/tau proteins from twice-cycled chick brain microtubule preparations and demonstrated that they are responsible for the nitrocellulose DNA binding activity we and others have measured. Using the isolated MAP/tau proteins we then measured the apparent affinity constant Kapp for the homologous chick DNA interaction and found evidence for two equilibrium affinity classes-a Kapp = 6 × 107 M–1, responsible for the bulk of the DNA binding activity and a small (< 10%) higher affinity Kapp = 108 – 109 M–1, likely due to sequence specific binding protein species. Using the same chick brain MAP-tau protein, a heterologous interaction with D. melanogaster DNA, was found to possess just the lower affinity class-Kapp = 2 × 107 M–1. Under stringent binding conditions we carried out equilibrium nitrocellulose filter binding experiments in a ternary reaction mixture at constant MAP/tau protein and 35S radiolabelled chick DNA concentration using increasing and excess concentrations of competitor DNAs of different sources. The order of competitor strengths found was-chick DNA > mouse DNA > D. melanogaster = E. coli. DNA. These data and specifically the homologous DNA: protein case being the strongest competitor corroborate our previous studies using total microtubule protein and provide new evidence for a conserved interaction of a small DNA sequence class with MAP/tau protein species. Moreover, these data allow us to conclude that the conserved DNA sequence: MAP/tau protein interactions do not critically depend upon any energetic feature co-involving tubulin for their properties since tubulin is absent from these preparations.  相似文献   

14.
Purification of the Tn3 transposase and analysis of its binding to DNA   总被引:3,自引:0,他引:3  
The transposase encoded by the tnpA gene of Tn3 is a protein specifically required for Tn3 transposition. We have purified it to homogeneity from an Escherichia coli strain containing a mutant Tn3 that overproduces transposase. About a 10-fold additional increase in transposase resulted from growth into stationary phase. The initial purification was guided by the presence of a protein band with the electrophoretic mobility of the tnpA gene product. The identity of the purified protein was proven by the agreement of five NH2-terminal amino acids with the nucleotide sequence of the A gene; this, in turn, fixed the initiation codon. Transposase formed large aggregates in the absence of Mg2+ at salt concentrations of 0.1 M or less. In nonaggregating conditions, it had 1 or 2 copies of 113,000-dalton protomers. Subsequent purifications exploited the rapid and simple assay of transposase-mediated retention of labeled DNA to a nitrocellulose filter. Transposase bound tightly to single-stranded DNA but weakly to intact duplex DNA. DNA binding did not require Mg2+ and was highly salt-resistant. Binding did not require specific sequences, because poly(dT) was as good a substrate as phi X174 viral DNA. The high DNA binding constant of 4 X 10(9) M-1 is about the same as for some single-stranded DNA binding proteins.  相似文献   

15.
We have developed a screen for detecting E. coli colonies that produce soluble recombinant target proteins at the colony level: the colony filtration (CoFi) blot. Colonies are transferred, induced and lysed on a filter membrane that can separate soluble proteins from inclusion bodies. Upon lysis, the soluble proteins diffuse through the filter membrane and are captured on a nitrocellulose membrane. The nitrocellulose membrane is incubated with antibodies or probes specific for the target protein and are then developed. In the resulting image, colonies expressing soluble protein can easily be identified. This protocol can be used to screen thousands of constructs in a matter of days, making it very suitable for expression libraries. The protocol is robust and flexible with regard to lysis conditions, induction temperatures and strains. The method requires only standard laboratory equipment and is based on immunochemicals used for western blotting. The following protocol describes the screening of a DNA library with detection done using chemiluminescence. Depending on induction temperature, the whole procedure can be performed in <2 d.  相似文献   

16.
We have developed a rapid and sensitive method for total DNA measurement using single-stranded DNA binding protein from E coli conjugated with horseradish peroxidase or urease. To detect DNA, the sample is heated or alkali treated to denature the DNA and then filtered through nylon or nitrocellulose membranes. After the single-stranded DNA is bound to the membrane, single-stranded DNA binding protein enzyme-conjugate is incubated with the membrane. Next, the unbound conjugate is washed off the membrane and the bound conjugate detected colorimetrically. The assay can detect 10 pg of DNA in less than 3 hr. This method can be applied to the detection of DNA contamination in therapeutic proteins produced by recombinant DNA or hybridoma techniques.  相似文献   

17.
A rapid assay involving filtration through a nitrocellulose filter is described for the quantitative detection of a protein which specifically and reversibly binds a small molecule. This assay is quantitatively characterized by direct comparison with equilibrium dialysis. The filtration assay is highly sensitive and reproducible when applied to the binding of histidine by the J protein, a component of histidine transport. The effects of several variables on this method are examined. Also, an equilibrium dialysis procedure designed for optimal sensitivity and range in the assay of proteins by binding activity is described.  相似文献   

18.
Single-stranded, labeled deoxyribonucleic acid (DNA) fragments from Escherichia coli were incubated at 60 and 66 C with a large excess of single-stranded, unlabeled DNA fragments from E. coli and Salmonella typhimurium. The resulting reassociated DNA was adsorbed to hydroxylapatite and eluted in a series of washes at increasing temperatures. The thermal stability of the reassociated DNA was determined by means of this procedure. Neither the extent of reassociation nor stability of the reassociated E. coli DNA was affected by increasing the incubation temperature from 60 to 66 C. The double-stranded molecules resulting from the reassociation of E. coli DNA with S. typhimurium DNA had a markedly lower thermal stability than reassociated E. coli DNA. More reassociation occurred between E. coli and S. typhimurium at 60 C than at 66 C. In addition, the product of interspecies reassociation occurring at 66 C had a higher thermal stability than that occurring at 60 C. Preliminary results indicate that the decreased thermal stability of the interspecies duplex is in part the result of unpaired bases.  相似文献   

19.
A rapid method for preparation of bacterial plasmids   总被引:7,自引:0,他引:7  
A method for isolating plasmids from Escherichia coli which requires less than 8 h from cell pellet to purified plasmid essentially free of protein, RNA, and chromosomal DNA is presented. By this procedure, amplified plasmid pBR322 was isolated from E. coli strain RR1. The final product had no detectable protein or RNA, and plasmid comprised approximately 99% of the total DNA. The procedure includes lysozyme treatment in hypertonic solution followed by lysis with a mild detergent in the presence of high salt and an RNase inhibitor--conditions which prevent unfolding of the bacterial nucleoid. After centrifuging out the nucleoid and cell debris, the nucleic acids are selectively precipitated with a neutral solution of sodium trichloroacetate and ethanol. RNA is degraded with RNase and the degradation products and RNase are eliminated through a second trichloroacetate/ethanol precipitation. Finally, the plasmid is resuspended and passed through a nitrocellulose filter to remove aggregates and any residual protein and single-stranded DNA--giving a plasmid preparation suitable for electrophoretic fractionation or cleavage with restriction nucleases.  相似文献   

20.
Abstract The protein binding Escherichia coli heat-stable enterotoxin II (STII) was isolated from cell membranes of mouse intestine. The binding of 125I-labeled STII to the proteins was inhibited by unlabeled STII, showing that it is specific. Proteins cross-linked with 125I-STII were purified by column chromatography on hydroxyapatite and TSK gel. Analyses of the purified protein by SDS-polyacrylamide gel electrophorosis and gel filtration showed that the molecular mass was 25 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号