首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Control of oocyte aging during manipulation of matured oocytes should have advantages for recently developed reproductive technologies, such as cloning after nuclear transfer. We have shown that the enhanced activation ability and fragmentation of porcine in vitro matured and aged oocytes bore a close relationship to the gradual decrease in maturation/M-phase promoting factor (MPF) activity and that porcine aged oocytes contained plenty of MPF, but it was in an inactive form, pre-MPF, as a result of phosphorylation of its catalytic subunit p34(cdc2) and, therefore, had low MPF activity. We incubated porcine oocytes with vanadate and caffeine, which affected the phosphorylation status and MPF activity, and evaluated their activation abilities and fragmentation frequencies. Incubation of nonaged oocytes with vanadate increased p34(cdc2) phosphorylation and reduced MPF activity to levels similar to those of aged oocytes and increased their parthenogenetic activation and fragmentation rates compared with those of the control oocytes. Conversely, treating aged oocytes with caffeine reduced p34(cdc2) phosphorylation and increased MPF activity. These oocytes showed significantly lower parthenogenetic activation and fragmentation rates than aged mature oocytes. These results suggest that MPF activity is a key mechanism of oocyte aging and controlling MPF activity by altering p34(cdc2) phosphorylation with these chemicals may enable oocyte aging to be manipulated in vitro. We expect those ideas will be applied practically to pig cloning.  相似文献   

2.
Xenopus oocytes carry IGF-I receptors, and undergo meiotic maturation in response to binding of IGF-I or insulin to the IGF-I receptor. Maturation is initiated upon activation of the IGF-I receptor tyrosine kinase and requires tyrosine dephosphorylation of p34cdc2, the kinase component of maturation promoting factor (MPF). To further evaluate the role of tyrosine phosphorylation in the signalling pathway triggered by insulin/IGF-I, we have injected antibodies to phosphotyrosine into oocytes and examined their effects on oocyte maturation. Antibodies at a low concentration (40 ng/oocyte, corresponding to a concentration of 40 micrograms/ml), enhanced specifically insulin-, but not progesterone-induced maturation. In contrast, at 150 ng/oocyte, the same antibodies decreased maturation induced by insulin, progesterone, or microinjected MPF. In cell-free systems, antibodies to phosphotyrosine recognized the oocyte IGF-I receptor and modulated its ligand-induced tyrosine kinase activity in a biphasic manner, with a stimulation at 40 micrograms/ml and an inhibition at higher concentrations. Moreover, antibodies at 150 ng/oocyte neutralized the kinase activity of a crude MPF extract. This neutralization was not accompanied by a rephosphorylation of p34cdc2, but by a decrease in tyrosine phosphorylation of a 60-kDa protein, which was present in M phase extracts and undetectable in G2-arrested oocytes. Taken together, these results point to at least two levels of anti-phosphotyrosine antibody action: (i) the IGF-I receptor signalling system, and (ii) a regulatory step of MPF activation, which might be distinct of the well-documented inactivating phosphorylation of p34cdc2.  相似文献   

3.
A Palmer  A C Gavin    A R Nebreda 《The EMBO journal》1998,17(17):5037-5047
M-phase entry in eukaryotic cells is driven by activation of MPF, a regulatory factor composed of cyclin B and the protein kinase p34(cdc2). In G2-arrested Xenopus oocytes, there is a stock of p34(cdc2)/cyclin B complexes (pre-MPF) which is maintained in an inactive state by p34(cdc2) phosphorylation on Thr14 and Tyr15. This suggests an important role for the p34(cdc2) inhibitory kinase(s) such as Wee1 and Myt1 in regulating the G2-->M transition during oocyte maturation. MAP kinase (MAPK) activation is required for M-phase entry in Xenopus oocytes, but its precise contribution to the activation of pre-MPF is unknown. Here we show that the C-terminal regulatory domain of Myt1 specifically binds to p90(rsk), a protein kinase that can be phosphorylated and activated by MAPK. p90(rsk) in turn phosphorylates the C-terminus of Myt1 and down-regulates its inhibitory activity on p34(cdc2)/cyclin B in vitro. Consistent with these results, Myt1 becomes phosphorylated during oocyte maturation, and activation of the MAPK-p90(rsk) cascade can trigger some Myt1 phosphorylation prior to pre-MPF activation. We found that Myt1 preferentially associates with hyperphosphorylated p90(rsk), and complexes can be detected in immunoprecipitates from mature oocytes. Our results suggest that during oocyte maturation MAPK activates p90(rsk) and that p90(rsk) in turn down-regulates Myt1, leading to the activation of p34(cdc2)/cyclin B.  相似文献   

4.
Under the influence of maturation-inducing hormone (MIH) secreted from follicle cells, oocyte maturation is finally triggered by maturation-promoting factor (MPF), which consists of a homolog of the cdc2+ gene product of fission yeast (p34cdc2) and cyclin B. Two species of cyclin B clones were isolated from a cDNA library constructed from mature goldfish oocytes. Sequence comparisons revealed that these two clones are highly homologous (95%) and were found to be similar to Xenopus cyclin B1. Using monoclonal antibodies against Escherichia coli-produced goldfish cyclin B and the PSTAIR sequence of p34cdc2, we examined the levels of cyclin B and p34cdc2 proteins during goldfish oocyte maturation induced in vitro by 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one (17 alpha, 20 beta-DP), a natural MIH in fish. Protein p34cdc2 was found in immature oocyte extracts and did not remarkably change during oocyte maturation. Cyclin B was not detected in immature oocyte extracts and appeared when oocytes underwent germinal vesicle breakdown. Cyclin B that appeared during oocyte maturation was labelled with [35S]methionine, indicating its de novo synthesis. Introduction of E. coli-produced cyclin B into immature oocyte extracts induced p34cdc2 (MPF) activation. Although the possibility that immature goldfish oocytes contain an insoluble cyclin B is not completely excluded, these results strongly suggest that 17 alpha, 20 beta-DP induces oocytes to synthesize cyclin B, which in turn activates preexisting p34cdc2, forming active MPF.  相似文献   

5.
Culturing of matured porcine oocytes in vitro results in the enhancement of their cytoplasmic ability for oocyte activation (so-called ageing), although they are arrested at metaphase II. The enhanced ability for oocyte activation is related to decreased activity of the maturation promoting factor (MPF). In the present study we clarified the molecular mechanism of MPF inactivation during ageing, especially the changes in the phosphorylation status of p34cdc2, a catalytic subunit of MPF, compared with that in fertilised oocytes. The MPF activity decreased gradually when maturation culture was prolonged from 36 to 72 h, confirming the decreasing MPF activity in aged oocytes. The activity of 48 h matured oocytes also decreased after in vitro fertilisation. Immunoblotting of p34cdc2 with anti-PSTAIRE antibody revealed that the culturing of matured oocytes induces a gradual increase in pre-MPF, which is a p34cdc2 and cyclin B complex inactivated by phosphorylation at the inhibitory phosphorylation site of p34cdc2. In contrast, pre-MPF decreased after fertilisation, indicating the degradation of cyclin B. These results suggest that the molecular mechanisms of inactivation of MPF are different between oocyte activation and ageing, and that the mechanism during ageing might be based on the inhibitory phosphorylation of p34cdc2, whereas that of oocyte activation is based on the degradation of cyclin B.  相似文献   

6.
The aim of this study was to analyze the relationship between oocyte diameter, meiotic and embryo developmental competence and the expression of the catalytic subunit of MPF, the p34(cdc2), at mRNA, RNA and protein level, as well as its kinase activity, in prepubertal (1-2 months old) goat oocytes. MPF is the main meiotic regulator and a possible regulator of cytoplasmic maturation; therefore, it could be a key factor in understanding the differences between competent and incompetent oocytes. Oocytes were classified according to oocyte diameter in four categories: <110, 110-125, 125-135 and >135 microm and matured, fertilized and cultured in vitro. The p34(cdc2) was analyzed in oocytes at the time of collection (0 h) and after 27 h of IVM (27 h) in each of the oocyte diameter categories. The oocyte diameter was positively related to the percentage of oocytes at MII after IVM (0, 20.7, 58 and 78%, respectively) and the percentage of blastocysts obtained at 8 days postinsemination (0, 0, 1.95 and 12.5%, respectively). The expression of RNA and mRNA p34(cdc2) did not vary between oocyte diameters at 0 and 27h. Protein expression of p34(cdc2) increased in each oocyte category after 27 h of maturation. MPF activity among diameter groups did not vary at 0h but after IVM there was a clear and statistically significant increase of MPF activity in the biggest oocytes.  相似文献   

7.
A R Nebreda  J V Gannon    T Hunt 《The EMBO journal》1995,14(22):5597-5607
The meiotic maturation of Xenopus oocytes triggered by progesterone requires new protein synthesis to activate both maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase). Injection of mRNA encoding mutant p34cdc2 (K33R) that can bind cyclins but lacks protein kinase activity strongly inhibited progesterone-induced activation of both MPF and MAP kinase in Xenopus oocytes. Similar results were obtained by injection of GST-p34cdc2 K33R protein or by injection of a monoclonal antibody (A17) against p34cdc2 that blocks its activation by cyclins. Both the dominant-negative p34cdc2 and monoclonal antibody A17 blocked the accumulation of p39mos and activation of MAP kinase in response to progesterone, as well as blocking the appearance of MPF, although they did not inhibit the translation of p39mos mRNA. These results suggest that: (i) activation of free p34cdc2 by newly made proteins, probably cyclin(s), is normally required for the activation of both MPF and MAP kinase by progesterone in Xenopus oocytes; (ii) the activation of translation of cyclin mRNA normally precedes, and does not require either MPF or MAP kinase activity; and (iii) de novo synthesis and accumulation of p39mos is probably both necessary and sufficient for the activation of MAP kinase in response to progesterone.  相似文献   

8.
M-Phase specific protein kinase or cdc2 protein kinase is a component of MPF (M-Phase promoting factor). During meiotic maturation of Xenopus oocytes, cdc2 protein kinase is activated in correlation with MPF activity. A protein phosphorylation cascade takes place involving several protein kinases, among which casein kinase II, and different changes associated with meiosis occur such as germinal vesicle breakdown, chromosome condensation, cytoskeletal reorganization and increase in protein synthesis. Our results provide a biochemical link between cdc2 protein kinase and protein synthesis since they show that the kinase phosphorylates in vitro a p47 protein identified as elongation factor EF1 (gamma subunit) and that the in vitro site of p47 corresponds to the site phosphorylated in vivo. Immunofluorescence showed that the elongation factor (EF1-beta gamma) is localized in the oocyte cortex. Furthermore, they show that cdc2 kinase phosphorylates and activates casein kinase II in vitro, strongly supporting the view that casein kinase II is involved in the phosphorylation cascade originated by cdc2 kinase.  相似文献   

9.
Currently, it is believed that toad oocyte maturation is dependent on the physiological conditions of winter hibernation. Previous antibody-blocking experiments have demonstrated that toad ubiquitin carboxyl-terminal hydrolase L1 (tUCHL1) is necessary for germinal vesicle breakdown during toad oocyte maturation. In this paper, we first supply evidence that tUCHL1 is highly evolutionarily conserved. Then, we exclude protein availability and ubiquitin carboxyl-terminal hydrolase enzyme activity as factors in the response of oocytes to winter hibernation. In the context of MPF (maturation promoting factor) controlling oocyte maturation and to further understand the role of UCHL1 in oocyte maturation, we performed adsorption and co-immunoprecipitation experiments using toad oocyte protein extracts and determined that tUCHL1 is associated with MPF in toad oocytes. Recombinant tUCHL1 absorbed p34cdc2, a component of MPF, in obviously larger quantities from mature oocytes than from immature oocytes, and p13suc1 was isolated from tUCHL1 with a dependence on the ATP regeneration system, suggesting that still other functions may be involved in their association that require phosphorylation. In oocytes from hibernation-interrupted toads, the p34cdc2 protein level was significantly lower than in oocytes from toads in artificial hibernation, providing an explanation for the different quantities isolated by recombinant tUCHL1 pull-down and, more importantly, identifying a mechanism involved in the toad oocyte’s dependence on a low environmental temperature during winter hibernation. Therefore, in toads, tUCHL1 binds p34cdc2 and plays a role in oocyte maturation. However, neither tUCHL1 nor cyclin B1 respond to low temperatures to facilitate oocyte maturation competence during winter hibernation.  相似文献   

10.
The p34(cdc2) kinase has been identified as a protein factor that is a regulator of meiotic maturation in mammalian oocytes. To investigate the regulatory function of the meiotic resumption in bovine oocytes cultured in vitro, the changes in the phosphorylation states of p34(cdc2) kinase and the histone H1 kinase activity were examined around germinal vesicle breakdown (GVBD). All bovine oocytes just after isolation from their follicles were arrested at the germinal vesicle (GV) stage, and these extracts exhibited two (upper and lower) bands of p34(cdc2) kinase on SDS-PAGE followed by immunoblotting with an antibody against C-terminal peptide of p34(cdc2). When these oocytes were cultured for 24 h in a medium supplemented with 100 microg/ml genistein, tyrosine phosphorylation inhibitor, GVBD was induced in 85% of oocytes, indicating that the upper band of p34(cdc2) kinase in bovine oocytes at the GV stage was already fully phosphorylated tyrosine residue prior to culture. Another (middle) band of p34(cdc2) kinase between the upper and lower bands appeared in the extracts of the oocytes cultured for 4 h, and significant activation of the histone H1 kinase was found in these oocytes (67 +/- 18 fmol/h/oocyte) as compared to that in oocytes cultured for 0 h (46 +/- 11 fmol/h/oocyte). The staining intensity of the middle band and the activity of the histone H1 kinase were further increased after the initiation of GVBD at 6 h of culture, but the quantitative changes of upper and lower bands were not detected throughout the 12 h of culture. Thus, it is concluded that the dephosphorylation of p34(cdc2) kinase followed by activation of the histone H1 kinase after the onset of culture plays a key role in the resumption of meiosis in bovine oocytes.  相似文献   

11.
During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs which are translationally dormant or masked until meiotic maturation. Fertilisation of the oocyte leads to rapid polysomal recruitment of the abundant cyclin and ribonucleotide reductase mRNAs at about the time they undergo cytoplasmic polyadenylation. Clam p82, a 3' UTR RNA-binding protein, and a member of the CPEB (cytoplasmic polyadenylation element binding protein) family, functions as a translational masking factor in oocytes and as a polyadenylation factor in fertilised eggs. In meiotically maturing clam oocytes, p82/CPEB is rapidly phosphorylated on multiple residues to a 92-kDa apparent size, prior to its degradation during the first cell cleavage. Here we examine the protein kinase(s) that phosphorylates clam p82/CPEB using a clam oocyte activation cell-free system that responds to elevated pH, mirroring the pH rise that accompanies fertilisation. We show that p82/CPEB phosphorylation requires Ca2+ (<100 microM) in addition to raised pH. Examination of the calcium dependency combined with the use of specific inhibitors implicates the combined and independent actions of cdc2 and MAP kinases in p82/CPEB phosphorylation. Calcium is necessary for both the activation and the maintenance of MAP kinase, whose activity is transient in vitro, as in vivo. While cdc2 kinase plays a role in the maintenance of MAP kinase activity, it is not required for the activation of MAP kinase. We propose a model of clam p82/CPEB phosphorylation in which MAP kinase initially phosphorylates clam p82/CPEB, at a minor subset of sites that does not alter its migration, and cdc2 kinase is necessary for the second wave of phosphorylation that results in the large mobility size shift of clam p82/CPEB. The possible roles of phosphorylation for the function and regulation of p82/CPEB are discussed.  相似文献   

12.
p34cdc2 acts as a lamin kinase in fission yeast   总被引:10,自引:3,他引:7  
The nuclear lamina is an intermediate filament network that underlies the nuclear membrane in higher eukaryotic cells. During mitosis in higher eukaryotes, nuclear lamins are phosphorylated by a mitosis-specific kinase and this induces disassembly of the lamina structure. Recently, p34cdc2 protein kinase purified from starfish has been shown to induce phosphorylation of lamin proteins and disassembly of the nuclear lamina when incubated with isolated chick nuclei suggesting that p34cdc2 is likely to be the mitotic lamin kinase (Peter, M., J. Nakagawa, M. Dorée, J.C. Labbe, and E.A. Nigg. 1990b. Cell. 45:145-153). To confirm and extend these studies using genetic techniques, we have investigated the role of p34cdc2 in lamin phosphorylation in the fission yeast. As fission yeast lamins have not been identified, we have introduced a cDNA encoding the chicken lamin B2 protein into fission yeast. We report here that the chicken lamin B2 protein expressed in fission yeast is assembled into a structure that associates with the nucleus during interphase and becomes dispersed throughout the cytoplasm when cells enter mitosis. Mitotic reorganization correlates with phosphorylation of the chicken lamin B2 protein by a mitosis-specific yeast lamin kinase with similarities to the mitotic lamin kinase of higher eukaryotes. We show that a lamin kinase activity can be detected in cell-free yeast extracts and in p34cdc2 immunoprecipitates prepared from yeast cells arrested in mitosis. The fission yeast lamin kinase activity is temperature sensitive in extracts and immunoprecipitates prepared from strains bearing temperature-sensitive mutations in the cdc2 gene. These results in conjunction with the previously reported biochemical studies strongly suggest that disassembly of the nuclear lamina at mitosis in higher eukaryotic cells is a consequence of direct phosphorylation of nuclear lamins by p34cdc2.  相似文献   

13.
The roles of phosphatidylinositol 3-kinase (PI 3-kinase) during meiotic progression beyond the meiosis I (MI) stage in porcine oocytes were investigated. PI 3-kinase exists in cumulus cells and oocytes, and the PI 3-kinase inhibitor, LY294002, suppressed the activation of mitogen-activated protein (MAP) kinase in denuded oocytes during the beginning of the treatment. However, in denuded oocytes cultured with LY294002, the MAP kinase activity steadily increased, and at 48 h of cultivation MAP kinase activity, p34(cdc2) kinase activity, and proportion of oocytes that had reached the meiosis II (MII) stage were at a similar level to those of oocytes cultured without LY294002. In contrast, LY294002 almost completely inhibited the activation of MAP kinase, p34(cdc2) kinase activity, and meiotic progression to the MII stage in oocytes surrounded with cumulus cells throughout the treatment. Treating cumulus oocyte complexes (COCs) with LY294002 produced a significant decrease in the phosphorylation of connexin-43, a gap junctional protein, in cumulus cells compared with that in COCs cultured without LY294002. These results indicate that PI 3-kinase activity in cumulus cells contributes to the activation of MAP kinase and p34(cdc2) kinase, and to meiotic progression beyond the MI stage. Moreover, gap junctional communications between cumulus cells and oocytes may be closed by phosphorylation of connexin-43 through PI 3-kinase activation in cumulus cells, leading to the activation of MAP kinase in porcine oocytes.  相似文献   

14.
A R Nebreda  T Hunt 《The EMBO journal》1993,12(5):1979-1986
During studies of the activation and inactivation of the cyclin B-p34cdc2 protein kinase (MPF) in cell-free extracts of Xenopus oocytes and eggs, we found that a bacterially expressed fusion protein between the Escherichia coli maltose-binding protein and the Xenopus c-mos protein kinase (malE-mos) activated a 42 kDa MAP kinase. The activation of MAP kinase on addition of malE-mos was consistent, whereas the activation of MPF was variable and failed to occur in some oocyte extracts in which cyclin A or okadaic acid activated both MPF and MAP kinase. In cases when MPF activation was transient, MAP kinase activity declined after MPF activity was lost, and MAP kinase, but not MPF, could be maintained at a high level by the presence of malE-mos. When intact oocytes were treated with progesterone, however, the activation of MPF and MAP kinase occurred simultaneously, in contrast to the behaviour of extracts. These observations suggest that one role of c-mos may be to maintain high MAP kinase activity in meiosis. They also imply that the activation of MPF and MAP kinase in vivo are synchronous events that normally rely on an agent that has still to be identified.  相似文献   

15.
MPF extracted from starfish oocytes copurifies with an M phase-specific H1 histone kinase encoded by a homolog of the fission yeast cell cycle control gene cdc2+. The most purified preparations contain p34cdc2 as the only major protein. Activation of the p34cdc2 kinase is correlated with appearance of the MPF activity both in vivo and in vitro. The increase in protein kinase activity is associated with p34cdc2 dephosphorylation and the decrease in protein kinase activity on leaving M phase with rephosphorylation. Microinjection of a peptide perfectly conserved in p34cdc2 from yeast to humans induces meiotic maturation, suggesting that an inhibitory component in G2 arrested oocytes interacts with this region of the p34cdc2 kinase. We propose that initiation of M phase is brought about by the dephosphorylation of p34cdc2, leading to increase in its protein kinase activity.  相似文献   

16.
Maturation-promoting factor (MPF) activity has been demonstrated for the first time in fish oocytes. We purified MPF from a 100,000g supernatant of crushed, naturally spawned carp oocytes using four chromatography columns: Q-Sepharose Fast-Flow, p13suc1-affinity Sepharose, Mono S, and Superose 12. The final preparation was purified over 1000-fold with a recovery of about 1%. On Superose 12, MPF eluted as a single peak with an apparent molecular weight of 100 kDa. SDS-PAGE analysis of the active fractions after Superose 12 revealed the presence of four proteins of 33, 34, 46, and 48 kDa. A monoclonal antibody against the PSTAIR sequence of cdc2 kinase recognized the 33- and 34-kDa proteins for which the 46- and 48-kDa proteins are endogenous substrates. The 46- and 48-kDa proteins were recognized by a monoclonal antibody against Escherichia coli-produced goldfish cyclin B, but not by an anti-cyclin A antibody. When oocytes were matured in the presence of 32P, the labeling was seen with the 34-kDa protein, but not with the 33-kDa protein. The 34-kDa protein corresponded to the MPF activity, but the 33-kDa protein did not. These findings indicate that carp MPF is a complex of cdc2 kinase and cyclin B, and further that active MPF contains the phosphorylated form of cdc2 kinase.  相似文献   

17.
During mitosis the lamins are found in a hyperphosphorylated and soluble state. p34cdc2 kinase (MPF), a protein kinase complex with a pivotal role during mitosis, has been found to phosphorylate the lamins and, in some cases, though not all, to cause depolymerization of the lamina in vitro. Due to the variety of protein interactions in the lamina, there is a probable requirement for multiple enzyme activities to effect its breakdown in mitosis. Using nuclear ghosts as substrate, we have fractionated a Xenopus mitotic extract into a lamin-releasing fraction (p34cdc2 kinase) and a fraction that inhibits p34cdc2 kinase-mediated lamin release if the nuclear ghosts are first preincubated in it. The lamin-release-inhibiting activity in the p34cdc2 kinase-depleted mitotic extract is, in turn, inhibited if PKI, a protein kinase inhibitor specific for PKA, is included in the preincubation reaction mixture. Furthermore, a similar degree of inhibition can be achieved by using purified PKA to preincubate the nuclear ghosts. This suggests that dephosphorylation of PKA substrate sites is necessary for lamin depolymerization.  相似文献   

18.
Tyrosine-phosphorylated p34cdc2 and cyclin B2 are present and physically associated in small growing stage IV oocytes (800 microns in diameter) of Xenopus laevis. Microinjection of M-phase promoting factor (MPF) into stage IV oocytes induces germinal vesicle breakdown and the activation of the kinase activity of the p34cdc2/cyclin B2 complex measured on p13suc1 beads. During the in vivo activation of MPF in stage IV oocytes, p34cdc2 tyrosine dephosphorylation is not detectable, in contrast to stage VI oocytes. Addition of cycloheximide in MPF-injected stage IV oocytes induces neither the inhibition of histone H1 kinase activity nor the cyclin B2 degradation. Therefore, the activation mechanism of histone H1 kinase in stage IV oocytes does not require detectable tyrosine dephosphorylation of p34cdc2. It is suggested rather that the tyrosine phosphorylation of p34cdc2 plays a role in inhibiting cyclin B2 degradation.  相似文献   

19.
In mammals, matured oocytes are arrested at the MII stage until fertilization, which is regulated by cytostaticfactor (CSF) activity. Maturation-promoting factor (MPF) and the mitogen-activated protein kinase (MAPK) pathway are known as candidates for CSF. Despite of the results that nuclear and perinuclear materials were dispensable for activation of MPF and MAPK in other species, our previous study in rats demonstrated that MPF activity was rapidly decreased after enucleation. We showed here for the first time that nuclear and perinuclear materials were indispensable for CSF activity in matured rat oocytes. In both cytoplasm-removed and enucleated oocytes, high activity of p34(cdc2) kinase was observed immediately after manipulation, but the activity of enucleated oocytes was dramatically reduced within 1 h. Cyclin B level was also decreased, corresponding with inactivation of p34(cdc2) kinase. In enucleated oocytes, the Mos level was dramatically decreased, and both MEK and MAPK dephosphorylation were also induced. A combined treatment with a proteasome inhibitor, MG132, and a protein phosphatase inhibitor, okadaic acid, dramatically improved both levels of p-MAPK and cyclin B in these enucleated oocytes. These data suggest that nuclear and perinuclear materials of matured rat oocytes suppress proteasome and protein phosphatase activation, which is indispensable for stability of CSF.  相似文献   

20.
MPM-2 antigens, a discrete set of phosphoproteins that contain similar phosphoepitopes recognized by the monoclonal antibody MPM-2, are phosphorylated during M-phase induction. Our previous studies suggested that certain MPM-2 antigens are involved in the appearance of maturation-promoting factor (MPF) activity. Because the central mitotic regulator cdc2 kinase has been shown to exhibit MPF activity, we explored the possibility that certain MPM-2 antigens are regulators of cdc2 kinase. We found that MPM-2 binding of its antigens would inhibit the autoamplification of cdc2 kinase in Xenopus oocytes and interfere with cyclin-activation of cdc2 kinase in Xenopus interphase egg extract. Immunodepletion of MPM-2 antigens from cyclin-induced M-phase egg extract caused the inactivation of cdc2 kinase, which was accompanied by an inhibitory phosphorylation of p34cdc2 on Thr 14 and Tyr 15, indicating that at least one MPM-2 antigen is a positive regulator of p34cdc2 dephosphorylation. We then showed that cdc25 from M-phase arrested egg extract is an MPM-2 antigen. These results suggest that phosphorylation of the epitope recognized by MPM-2 may be a crucial event in the activation of cdc25 and that the kinase(s) that phosphorylates this MPM-2 epitope may be an important regulator of cdc2 kinase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号