首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A variety of eukaryotic viral and cellular proteins possesses an NH2-terminal N-myristoylglycine residue important for their biological functions. Recent studies of the primary structural requirements for peptide substrates of the enzyme responsible for this modification in yeast demonstrated that residues 1, 2, and 5 play a critical role in enzyme: ligand interactions (Towler, D. A., Adams, S. P., Eubanks, S. R., Towery, D. S., Jackson-Machelski, E., Glaser, L., and Gordon J. I. (1987b) Proc. Natl. Acad. Sci. U. S. A. 84, 2708-2812). This was determined by examining as substrates a series of synthetic peptides whose sequences were systematically altered from a "parental" peptide derived from the known N-myristoylprotein bovine heart cyclic AMP-dependent protein kinase (A kinase) catalytic subunit. We have now extended these studies in order to examine structure/activity relationships in the COOH-terminal regions of octapeptide substrates of yeast N-myristoyltransferase (NMT). The interaction between yeast NMT and the side chain of residue 5 in peptide ligands is apparently sterically constrained, since Thr5 is unable to promote the very high affinity binding observed with a Ser5 substitution. A substrate hexapeptide core has been defined which contains much of the information necessary for recognition by this lower eukaryotic NMT. Addition of COOH-terminal basic residues to this hexapeptide enhances peptide binding, while COOH-terminal acidic residues destabilize NMT: ligand interactions. Based on the results obtained from our in vitro studies of over 80 synthetic peptides and yeast NMT, we have identified a number of potential N-myristoylproteins from searches of available protein databases. These include hepatitis B virus pre-S1, human SYN-kinase, rodent Gi alpha, and bovine transducin-alpha. Peptides corresponding to the NH2-terminal sequences of these proteins and several known N-myristoylproteins were assayed using yeast NMT as well as partially purified rat liver NMT. While a number of the synthetic peptides exhibited similar catalytic properties with the yeast and mammalian enzymes, surprisingly, the SYN-kinase, Gi alpha, and transducin-alpha peptides were N-myristoylated by rat NMT but not by yeast NMT. This suggests that either multiple NMT activities exist in rat liver or the yeast and rodent enzymes have similar but distinct peptide substrate specificities.  相似文献   

2.
Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes the covalent attachment of myristic acid to the NH2-terminal Gly residues of a number of viral and cellular proteins. The remarkable specificity of this enzyme for myristoyl CoA observed in vivo appears to arise in large part from a cooperativity between NMT's acylCoA and peptide binding sites: the length of the acylCoA bound to NMT influences the interactions of peptide substrates with NMT. We have previously synthesized analogs of myristic acid with single oxygen or sulfur for methylene substitutions. These heteroatom substitutions produce significant reductions in acyl chain hydrophobicity without accompanying alterations in chain length or stereochemical restrictions. In vitro studies have shown that the CoA thioesters of these analogs are substrates for S. cerevisiae NMT and that the efficiency of their transfer to octapeptide substrates is peptide sequence-dependent. In vivo studies with cultured mammalian cells have confirmed that these fatty acid analogs are selectively incorporated into a subset of cellular N-myristoylproteins, that only a subset of analog-substituted proteins undergo redistribution from membrane to cytosolic fractions, and that these analogs can inhibit the replication of human immunodeficiency virus I and Moloney murine leukemia viruses--two retroviruses that depend upon N-myristoylation of their gag polyprotein precursors for assembly. We have now extended our analysis of NMT-acylCoA interactions by synthesizing additional analogs of myristic acid and testing them in a coupled in vitro assay system. Myristic acid analogs with two oxygen or two sulfur substitutions have hydrophobicities comparable to that of hexanoic acid and decanoic acid, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
A GTP-binding protein serving as the specific substrate of islet-activating protein (IAP), pertussis toxin, was partially purified from human leukemic (HL-60) cells that had been differentiated into neutrophil type. The partially purified protein, referred to as GHL, predominantly consisted of at least two polypeptides with molecular masses of 40,000 daltons (alpha) and 36,000 or 35,000 daltons (beta). The structure was similar to Gi or Go previously purified from rat brain as an alpha beta gamma-heterotrimeric IAP substrate (Katada, T., Oinuma, M., and Ui, M. (1986) J. Biol. Chem. 261, 8182-8191), although the existence of the gamma of GHL was unclear. The 40,000-dalton polypeptide contained the site for IAP-catalyzed ADP-ribosylation and the binding site for guanine nucleotide with a high affinity. The 36,000- and 35,000-dalton polypeptides were cross-reacted with the affinity-purified antibody raised against the beta of brain Gi and Go. Limited proteolysis with trypsin and immunoblot analyses with the use of the affinity-purified antibodies raised against the alpha of brain Gi or Go indicated that the alpha of GHL was different from the alpha of Gi or Go. Kinetics of guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding to GHL was also quite different from that to brain Gi or Go. Incubation of GHL with GTP gamma S resulted in a resolution into GTP gamma S-bound alpha and beta(gamma) thus purified had abilities to inhibit a membrane-bound adenylate cyclase activity and to associate with the alpha of brain IAP substrate in a fashion similar to the beta gamma of brain IAP substrates, suggesting that there were no significant differences in the biological activities between the beta(gamma) of GHL and those of Gi or Go. Physiological roles of the new GTP-binding protein, GHL, purified from the neutrophil-like cells in receptor-mediated signal transduction are discussed.  相似文献   

4.
The covalent attachment of myristic acid to the NH2-terminal glycine residue of proteins is catalyzed by the enzyme myristoyl CoA:protein N-myristoyltransferase (NMT). Using synthetic octapeptide substrates we have identified and characterized an NMT activity in wheat germ lysates used for cell-free translation of exogenous mRNAs. C-12 and C-14 fatty acids are efficiently transferred to the peptides by this plant NMT, but C-10 and C-16 fatty acids are not. Glycine is required as the NH2-terminal residue: peptides with an NH2-terminal alanine were not substrates. Peptides with proline, aspartic acid, or tyrosine residues adjacent to the NH2-terminal glycine were also not myristoylated. Serine in the fifth position reduced the peptide's Km up to 4000-fold. We have chemically synthesized a sulfur analogue of myristate, 11-(ethylthio)undecanoic acid. Its CoA ester is as good a substrate as myristoyl-CoA for both wheat germ and yeast NMT. Peptides linked to 11-(ethylthio)undecanoic acid are less hydrophobic than the corresponding myristoylpeptides. 11-(Ethylthio)-undecanoic acid may, therefore, help define the role of myristic acid in targeting of acyl proteins within cells.  相似文献   

5.
Antisera were raised in rabbits against purified alpha subunit of G protein Gi1 (Gi1 alpha) and also against a synthetic decapeptide corresponding to a sequence of Gi1 alpha. Antibodies in both antisera were purified with a Gi1-coupled Sepharose column, but purified anti-Gi1 alpha protein antibodies still reacted equally with both Gi1 alpha and Gi3 alpha, while anti-Gi1 alpha peptide antibodies reacted principally with Gi1 alpha. Using these antibodies, an enzyme immunoassay method for the quantification of Gi1 alpha was developed. The assay system consisted of polystyrene balls with immobilized anti-Gi1 alpha protein antibody F(ab')2 fragments and the anti-Gi1 alpha peptide antibody Fab' fragments labeled with beta-D-galactosidase from Escherichia coli. The minimum detection limit of the assay was 25 fmol of Gi1 alpha, and it did not cross-react with Gi2 alpha, Go alpha, or beta gamma. Samples from various regions of the rat central nervous system were homogenized in a 2% sodium cholate solution, and the concentration of Gi1 alpha in each extract was determined. Gi1 alpha was detected in all the regions, and the highest concentration was found in the olfactory bulb. Immunohistochemical study showed that Gi1 was mainly localized in the neuropil.  相似文献   

6.
Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (Nmt1p) is an essential, 455-residue, monomeric enzyme. Amino- and carboxyl-terminal deletion mutants of Nmt1p were genetically engineered to determine the minimal domain necessary to maintain catalytic activity. Enzyme activity was assessed by (i) sequentially inducing Nmt1p or its mutant derivatives and one of two eukaryotic substrates for the wild type enzyme (S. cerevisiae Gpa1p and rat Go alpha) in Escherichia coli, a bacterium with no endogenous myristoyltransferase activity, and monitoring Nmt-dependent incorporation of exogenous [3H]myristate into the G protein alpha subunits or (ii) an in vitro enzyme assay using lysates prepared from bacteria producing wild type or mutant Nmts. The data indicate that the minimal catalytic domain of Nmt1p is located between Ile59-->Phe96 and Gly451-->Leu455. Analyses of the ability of mutant nmtps to rescue the lethal phenotype of an nmt1 null allele in a haploid strain of yeast grown on rich media, with or without blockade of cellular fatty acid synthetase, suggest that the amino-terminal 59 residues of Nmt1p may play an important noncatalytic role, functioning as a targeting signal so this cytosolic enzyme can access cellular myristoyl-CoA pools generated from activation of exogenous C14:0 by acyl-CoA synthetase(s). Moreover, there appear to be differences in the location or accessibility of myristoyl-CoA pools derived from fatty acid synthetase and acyl-CoA synthetases. The E. coli co-expression system was used to map structural elements that determine differences in the peptide substrate specificities of Nmt1p and the orthologous human Nmt. Rat Go alpha is a substrate for both enzymes, whereas human Gz alpha is a substrate only for human NMT. Studies of a series of chimeric enzymes composed of elements from the amino- or carboxyl-terminal portions of human and yeast Nmts indicate that (i) recognition/utilization of Gz alpha involves elements distributed from the amino-terminal half through the region defined by Leu352-->Lys410 of the 416 residue human enzyme and (ii) formation of a fully functional peptide binding site and a fully functional myristoyl-CoA binding site in either of these enzymes requires contributions from both their amino-terminal and carboxyl-terminal halves.  相似文献   

7.
The GTP-binding proteins involved in signal transduction now constitute a large family of so called 'G proteins'. Among them, Gs and Gi mediate the stimulation and inhibition of adenyl cyclase, respectively. Recently, another G protein (Go) abundant in brain was purified, but its function is still unknown. Like other G proteins, Go is a heterotrimer (alpha, beta, gamma) and the beta-gamma subunits seem to be identical to those of Gs and Gi. The alpha subunit of Go (Go-alpha) has a molecular weight of 39 kDa lower than those of Gi (41 kDa) or Gs (45-52 kDa). A positive immunoreativity with antibodies against Go-alpha was found in peripheral nervous tissues, adrenal medulla, heart, adenohypophysis and adipocytes. Go ressembles Gi in its ability to be ADP-ribosylated by pertussis toxin, and sequence analysis reveals a 68% homology between their alpha subunits. The GTPase activity of Go is several times higher than that of Gi. The affinity of the beta-gamma entity is about 3 times higher for Gi than for Go. In reconstitution studies, Go does not mimic the inhibitory effect of Gi on adenyl cyclase-stimulated by Gs. On the contrary, Go is as efficient as Gi in reconstituting the functional coupling with the muscarinic, alpha 2-adrenergic and chemotactic agent f-Met-Leu-Phe (fMLP), receptors. Recent studies seem to rule out Go as the coupling G protein of phospholipase C, the enzyme involved in phosphatidyl inositol trisphosphate hydrolysis. However, Go remains a putative candidate for transduction mechanisms coupled to a potassium channel or to a voltage-dependent calcium channel.  相似文献   

8.
T Katada  M Oinuma  K Kusakabe  M Ui 《FEBS letters》1987,213(2):353-358
A new GTP-binding protein serving as the specific substrate of islet-activating protein (IAP), pertussis toxin, was purified from porcine brain membranes as an alpha beta gamma-heterotrimeric structure. The alpha-subunit of the purified protein (alpha 40 beta gamma) had a molecular mass of 40 kDa and differed from that of Gi (alpha 41 beta gamma) or Go (alpha 39 beta gamma) previously purified from brain tissues. The fragmentation patterns of limited tryptic digestion and immunological cross-reactivities among the three alpha were different from one another. However, the beta gamma-subunit resolved from the three IAP substrates similarly inhibited a membrane-bound adenylate cyclase and their beta-subunits were immunologically indistinguishable from one another. Thus, the alpha 40 beta gamma is a new IAP substrate protein different from Gi or Go, in the alpha-subunit only.  相似文献   

9.
T Asano  R Morishita  R Semba  H Itoh  Y Kaziro  K Kato 《Biochemistry》1989,28(11):4749-4754
Antisera were raised in rabbits against the 40-kDa alpha subunit of bovine lung GTP-binding protein, which were identified as the alpha subunit of Gi2 (Gi2 alpha) by the analysis of the partial amino acid sequence. Antibodies were purified with a Gi2 alpha-coupled Sepharose column and then were passed through a Gi1 alpha-coupled Sepharose column to remove antibodies reactive also with 41-kDa alpha. Purified antibodies reacted with Gi2 alpha, but not with Gi1 alpha, Gi3 alpha, or Go alpha in an immunoblot assay. A sensitive enzyme immunoassay method for the quantification of Gi2 alpha was developed by using these purified antibodies. The assay system consisted of polystyrene balls with immobilized antibody F(ab')2 fragments and the same antibody Fab' fragments labeled with beta-D-galactosidase from Escherichia coli. The minimal detection limit of the assay was 1 fmol, or 40 pg. Samples from various tissues were solubilized with 2% sodium cholate and 1 M NaCl, and the concentrations of Gi2 alpha were determined. Gi2 alpha was detected in all the tissues examined in the rat. The highest concentration was found in platelets and leukocytes when the data were expressed as picomoles per milligram of protein. The spleen, lung, and cerebral cortex contained relatively high levels of Gi2 alpha. In the bovine brain, Gi2 alpha was distributed almost uniformly among the various regions. The concentrations of Gi2 alpha were constant in the rat brain throughout ontogenic development, in contrast with those of Go alpha which were markedly increased with age.  相似文献   

10.
Here we investigate the molecular mechanisms that govern the targeting of G-protein alpha subunits to the plasma membrane. For this purpose, we used Gi1alpha as a model dually acylated G-protein. We fused full-length Gi1alpha or its extreme NH2-terminal domain (residues 1-32 or 1-122) to green fluorescent protein (GFP) and analyzed the subcellular localization of these fusion proteins. We show that the first 32 amino acids of Gi1alpha are sufficient to target GFP to caveolin-enriched domains of the plasma membrane in vivo, as demonstrated by co-fractionation and co-immunoprecipitation with caveolin-1. Interestingly, when dual acylation of this 32-amino acid domain was blocked by specific point mutations (G2A or C3S), the resulting GFP fusion proteins were localized to the cytoplasm and excluded from caveolin-rich regions. The myristoylated but nonpalmitoylated (C3S) chimera only partially partitioned into caveolin-containing fractions. However, both nonacylated GFP fusions (G2A and C3S) no longer co-immunoprecipitated with caveolin-1. Taken together, these results indicate that lipid modification of the NH2-terminal of Gi1alpha is essential for targeting to its correct destination and interaction with caveolin-1. Also, a caveolin-1 mutant lacking all three palmitoylation sites (C133S, C143S, and C156S) was unable to co-immunoprecipitate these dually acylated GFP-G-protein fusions. Thus, dual acylation of the NH2-terminal domain of Gi1alpha and palmitoylation of caveolin-1 are both required to stabilize and perhaps regulate this reciprocal interaction at the plasma membrane in vivo. Our results provide the first demonstration of a functional role for caveolin-1 palmitoylation in its interaction with signaling molecules.  相似文献   

11.
The expression and developmental regulation of the alpha and beta subunits of the guanine nucleotide binding regulatory proteins, Gi and Go, were examined in rat atria and ventricles. Protein levels were determined by quantitative immunoblot analysis using affinity purified monospecific antibodies. Northern blot and dot blot analyses were used to characterize and quantitate relative amounts of mRNA encoding these G protein subunits. The concentrations of Go alpha, Gi alpha, and beta subunit protein were found to be greater in adult atrial than in adult ventricular membranes (5.2-, 1.5-, and 2.8-fold, respectively). A corresponding 3.4-fold difference in Go alpha mRNA level was also observed, as well as a 1.3-fold difference in Gi alpha-3 mRNA level. No difference was seen between the amount of beta, Gi alpha-1, Gi alpha-2 mRNA in adult atria and adult ventricles. Comparison of neonatal and adult tissues revealed a developmental decrease in ventricular Gi alpha protein and Gi alpha-2 mRNA levels (70 and 47%, respectively). Developmental decreases were also observed in the amount of mRNA encoding beta and Go alpha in ventricles (47 and 61%, respectively), and beta and Gi alpha-2 in atria (40 and 36%, respectively), while a developmental increase in atrial Gi alpha-3 mRNA levels was observed (57%). These results demonstrate differences in the expression of G protein subunits in rat atria and ventricles, as well as regulation of the levels of these subunits during cardiac development.  相似文献   

12.
Antisera AS/6 and 7, raised against a synthetic peptide KENLKDCGLF corresponding to the carboxyl-terminal decapeptide of transducin-alpha, react on immunoblots with purified transducin-alpha and with proteins of 40-41 kDa in all tissues tested. The latter represent one or more forms of Gi alpha but not Go alpha, since a synthetic peptide, KNNLKDCGLF, corresponding to the carboxyl-terminal decapeptide of two forms of Gi alpha blocks AS/6 and 7 reactivity with transducin-alpha and Gi alpha on immunoblots, whereas the corresponding Go-related peptide, ANNLRGCGLY, does not. Antisera LE/2 and 3, raised against the synthetic peptide LERIAQSDYI, corresponding to an internal sequence predicted by one form of Gi alpha cDNA (Gi alpha-2) and differing by 3 residues from the sequence of another form, Gi alpha-1, react strongly with a 40-kDa protein abundant in neutrophil membranes and with the major pertussis toxin substrate purified from bovine neutrophils. LE/2 and 3 reveal a relatively faint 40-kDa band on immunoblots of crude brain membranes or of purified brain Gi/Go. LE/2 and 3 do not react with transducin-alpha or Go alpha nor with the 41-kDa form of pertussis toxin substrate in brain, Gi alpha-1. These antisera distinguish between the major pertussis toxin substrates of brain and neutrophil and tentatively identify the latter as Gi alpha-2.  相似文献   

13.
A full-length cDNA clone, pKK-DTD4, complementary to rat liver cytosolic DT-diaphorase [NAD(P)H:quinone oxidoreductase (EC 1.6.99.2)] mRNA was expressed in Escherichia coli. The pKK-DTD4 cDNA was obtained by extending the 5'-end sequence of a rat liver DT-diaphorase cDNA clone, pDTD55, to include an ATG initiation codon and the NH2-terminal codons using polymerase chain reaction (PCR). Restriction sites for EcoRI and HindIII were incorporated at the 5'- and 3'-ends of the cDNA, respectively, by the PCR reaction. The resulting full-length cDNA was inserted into an expression vector, pKK2.7, at the EcoRI and HindIII restriction sites. E. coli strain AB1899 was transformed with the constructed expression plasmid, and DT-diaphorase was expressed under the control of the tac promotor. The expressed DT-diaphorase exhibited high activity of menadione reduction and was inhibited by dicumarol at a concentration of 10(-5)M. After purification by Cibacron Blue affinity chromatography, the expressed enzyme migrated as a single band on 12.5% sodium dodecyl sulfate-polyacrylamide gel with a molecular weight equivalent to that of the purified rat liver cytosolic DT-diaphorase. The purified expressed protein was recognized by polyclonal antibodies against rat liver DT-diaphorase on immunoblot analysis. It utilized either NADPH or NADH as electron donor at equal efficiency and displayed high activities in reduction of menadione, 1,4-benzoquinone, and 2,6-dichlorophenolindophenol which are typical substrates for DT-diaphorase. The expressed DT-diaphorase exhibited a typical flavoprotein spectrum with absorption peaks at 380 and 452 nm. Flavin content determination showed that it contained 2 mol of FAD per mole of the enzyme. Edman protein sequencing of the first 20 amino acid residues at the NH2 terminus of the expressed protein indicated that the expressed DT-diaphorase is not blocked at the NH2 terminus and has an alanine as the first amino acid. The remaining 19 amino acid residues at the NH2 terminus were identical with those of the DT-diaphorase purified from rat liver cytosol.  相似文献   

14.
Expression of Go alpha mRNA and protein in bovine tissues   总被引:4,自引:0,他引:4  
Go alpha is a 39-kDa guanine nucleotide-binding protein (G protein) similar in structure and function to Gs alpha and Gi alpha of the adenylate cyclase complex and to transducin (Gt alpha) of the retinal photon receptor system. Although expression of Go alpha protein has been reported to be tissue-specific, other workers have found Go alpha mRNA in all rat tissues examined. In order to clarify this contradiction, studies to verify the distribution of Go alpha mRNA and protein in bovine and rat tissues were performed. Tissues were screened for the presence of Go alpha mRNA by use of a series of restriction fragments of a bovine retinal cDNA clone, lambda GO9, and oligonucleotide probes complementary to sequences specific among G alpha subunits for the 5' untranslated and coding regions of Go alpha. These probes hybridized predominantly with mRNA of 4.0 and 3.0 kb in bovine brain and retina. A 2.0-kb mRNA in retina also hybridized strongly with the cDNA but weakly with the oligonucleotide probes. In bovine lung, two mRNAs of 1.6 and 1.8 kb hybridized with the cDNA while only the 1.6-kb species hybridized with the coding-region oligonucleotide. In bovine heart, only a 4.0-kb mRNA was detected and in amounts much less than those in the other tissues. A similar distribution of Go alpha mRNAs was seen in rat tissues. In bovine tissues, Go alpha protein was identified with rabbit polyclonal antibodies directed against purified bovine brain Go alpha. An immunoreactive 39-kDa membrane protein was found principally in retina and brain, and in a lesser amount in heart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Myristoyl-CoA:protein N-myristoyltransferase (NMT) is an essential eukaryotic enzyme that catalyzes the co-translational transfer of myristate to the NH2-terminal glycine residue of a number of important proteins of diverse function. Recently, we have isolated full length cDNA encoding bovine spleen NMT [27] the full length cDNA was cloned and expressed in E. coli, resulting in the expression of functionally active 50 kDa NMT. Using the combination of SP-Sepharose fast flow and Mono S fast protein liquid chromatography, the enzyme was purified 20-fold with a high yield. The spleen NMT (sNMT) fusion protein exhibited an apparent molecular weight of 53 kDa on SDS-PAGE. Upon cleavage by the Enterokinase the sNMT exhibited an apparent molecular weight of 50 kDa without loss of catalytic activity. The two synthetic peptide substrates based on the N-terminal sequence of pp60src (GSSKSKMR) and cAMP dependent protein kinase (GNAAAKKRR) have different kinetic parameters of Km values of 40 and 200 M. Recombinant sNMT was also potently inhibited by Ni2+ (histidine binder) in a concentration dependent manner with a half maximal inhibition of 280 & mgr;M. The E. coli expressed sNMT was homogenous and showed enzyme activity.  相似文献   

16.
A ubiquitin-protein ligase specific for type III protein substrates   总被引:9,自引:0,他引:9  
A previously studied species of ubiquitin-protein ligase contains specific sites for the binding of basic (Type I) and bulky hydrophobic (Type II) NH2-terminal amino acid residues of protein substrates. We now describe another enzyme that ligates ubiquitin specifically to proteins that have NH2-terminal residues other than the above two categories (Type III substrates). The new species of ligase, that we call E3 beta, is separable from the formerly described ligase (termed E3 alpha) by affinity chromatography on protein substrate columns. E3 beta was partially purified from extracts of rabbit reticulocytes and was shown to be required for the breakdown of Type III proteins. Apart from its different substrate specificity, it resembles E3 alpha in some physical properties, in a requirement for ubiquitin carrier protein (E2) for conjugate formation, and in its action to ligate multiple ubiquitin units to the substrate protein. The denatured derivative of bovine pancreatic ribonuclease is a specific substrate for E3 alpha, while that of ribonuclease S-protein is a good substrate for E3 beta. Since S-protein is formed by the removal from ribonuclease of NH2-terminal S-peptide, it is suggested that E3 beta interacts with an NH2-terminal determinant exposed in ribonuclease S-protein.  相似文献   

17.
A1 adenosine receptors and associated guanine nucleotide-binding proteins (G proteins) were purified from bovine cerebral cortex by affinity chromatography (Munshi, R., and Linden, J. (1989) J. Biol. Chem. 264, 14853-14859). In this study we have identified the pertussis toxin-sensitive G protein subunits that co-purify with A1 adenosine receptors by immunoblotting with specific antipeptide antisera. Gi alpha 1, Gi alpha 2, Go alpha, G beta 35, and G beta 36 were detected. Of the total [35S]guanosine 5'-O-(3-thio)triphosphate [( 35S]GTP gamma S) binding sites, Gi alpha 1 and Go alpha each accounted for greater than 37% whereas Gi alpha 2 comprised less than 13%. G beta 35 was found in excess over G beta 36. Low molecular mass (21-25 kDa) GTP-binding proteins were not detected. We also examined the characteristics of purified receptors and various purified bovine brain G proteins reconstituted into phospholipid vesicles. All three alpha-subunits restored GTP gamma S-sensitive high affinity binding of the agonist 125I-aminobenzyladenosine to a fraction (25%) of reconstituted receptors with a selectivity order of Gi2 greater than Go greater than or equal to Gi1 (ED50 values of G proteins measured as fold excess over the receptor concentration were 4.7 +/- 1.2, 24 +/- 5, and 34 +/- 7, respectively). Furthermore, receptors occupied with the agonist R-phenylisopropyladenosine catalytically increased the rate of binding of [35S]GTP gamma S to reconstituted G proteins by 6.5-8.5-fold. These results suggest that A1 adenosine receptors couple indiscriminately to pertussis toxin-sensitive G proteins.  相似文献   

18.
Gs and Gi, respectively, activate and inhibit the enzyme adenylyl cyclase. Regulation of adenylyl cyclase by the heterotrimeric Gs and Gi proteins requires the dissociation of GDP and binding of GTP to the alpha s or alpha i subunit. The beta gamma subunit complex of Gs and Gi functions, in part, to inhibit GDP dissociation and alpha subunit activation by GTP. Multiple beta and gamma polypeptides are expressed in different cell types, but the functional significance for this heterogeneity is unclear. The beta gamma complex from retinal rod outer segments (beta gamma t) has been shown to discriminate between alpha i and alpha s subunits (Helman et al: Eur J Biochem 169:431-439, 1987). beta gamma t efficiently interacts with alpha i-like G protein subunits, but poorly recognizes the alpha s subunit. beta gamma t was, therefore, used to define regions of the alpha i subunit polypeptide that conferred selective regulation compared to the alpha s polypeptide. A series of alpha subunit chimeras having NH2-terminal alpha i and COOH-terminal alpha s sequences were characterized for their regulation by beta gamma t, measured by the kinetics of GTP gamma S activation of adenylyl cyclase. A 122 amino acid NH2-terminal region of the alpha i polypeptide encoded within an alpha i/alpha s chimera was sufficient for beta gamma t to discriminate the chimera from alpha s. A shorter 54 amino acid alpha i sequence substituted for the corresponding NH2-terminal region of alpha s was insufficient to support the alpha i-like interaction with beta gamma t. The findings are consistent with our previous observation (Osawa et al: Cell 63:697-706, 1990) that a region in the NH2-terminal moiety functions as an attenuator domain controlling GDP dissociation and GTP activation of the alpha subunit polypeptide and that the attenuator domain is involved in functional recognition and regulation by beta gamma complexes.  相似文献   

19.
Membrane and cytosolic fractions prepared from ventricular myocardium of young (21-day-old) hypo- or hyperthyroid rats and adult (84-day-old) previously hypo- or hyperthyroid rats were analyzed by immunoblotting with specific anti-G-protein antibodies for the relative content of Gs alpha, Gi alpha/Go alpha, Gq alpha/G11 alpha, and G beta. All tested G protein subunits were present not only in myocardial membranes but were at least partially distributed in the cytosol, except for Go alpha2, and G11 alpha. Cytosolic forms of the individual G proteins represented about 5-60% of total cellular amounts of these proteins. The long (Gs alpha-L) isoform of Gs alpha prevailed over the short (Gs alpha-S) isoform in both crude myocardial membranes and cytosol. The Gs alpha-L/Gs alpha-S ratio in membranes as well as in cytosol increased during maturation due to a substantial increase in Gs alpha-L. Interestingly, whereas the amount of membrane-bound Gi alpha/Go alpha and Gq alpha/G11 alpha proteins tend to lower during postnatal development, cytosolic forms of these G proteins mostly rise. Neonatal hypothyroidism reduced the amount of myocardial Gs alpha and increased that of Gi alpha/Go alpha proteins. By contrast, neonatal hyperthyroidism increased expression of Gs alpha and decreased that of Gi alpha and G11 alpha in young myocardium. Changes in G protein content induced by neonatal hypo- and hyperthyroidism in young rat myocardium were restored in adulthood. Alterations in the membrane-cytosol balance of G protein subunits associated with maturation or induced by altered thyroid status indicate physiological importance of cytosolic forms of these proteins in the rat myocardium.  相似文献   

20.
Prostaglandin (PG) E2 binding protein, a putative PGE2 receptor, was purified 26-fold with 0.4% recovery from canine renal outer medullary membranes solubilized with 12% digitonin with the sequential use of a Superose 12, Wheat Germ Agglutinin (WGA) Affigel 10, DEAE-5PW and Ampholine column chromatographies. The final preparation retained the binding activity specific for PGE2, but lost most of the sensitivity to guanosine-5'-(gamma-thio)triphosphate (GTP gamma S). An antibody against alpha subunit of the inhibitory guanine nucleotide-binding protein (alpha Gi)1 and alpha Gi2 or that against common sequences of alpha subunit of guanine nucleotide-binding proteins (alpha G(common)) reacted at 41 kDa protein in the sample of each step of purification, but failed to do so in the final preparation. An antibody against alpha Gi3 or alpha Go had no effect. In fact, peaks of the binding activity and immunoreactivity for alpha Gi1,2 were chromatographically separated by isoelectric focusing. Moreover, antibodies against alpha G(common) or alpha Gi1,2, but not that against alpha Gi3 and alpha Go, precipitated PGE2 binding activity in the active fractions of WGA-Affigel 10 column chromatography. These results suggest that the PGE2 receptor is an acidic glycoprotein and that Gi1 or Gi2 is physically associated with the PGE2 receptor and dissociates from the receptor protein during purification procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号