首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endoplasmic reticulum (ER) stress has been implicated in the pathophysiology of many diseases including heart disease, cancer and neurodegenerative diseases such as Alzheimer’s and Huntington’s. Prolonged or excessive ER stress results in the initiation of signaling pathways resulting in cell death. Over the past decade much research investigating the onset and progression of ER stress-induced cell death has been carried out. Owing to this we now have a better understanding of the signaling pathways leading to ER stress-mediated cell death and have begun to appreciate the importance of ER localized stress sensors, IRE1α, ATF6 and PERK in this process. In this article we provide an overview of the current thinking and concepts concerning the various stages of ER stress-induced cell death, focusing on the role of ER localized proteins in sensing and triggering ER stress-induced death signals with particular emphasis on the contribution of calcium signaling and Bcl-2 family members to the execution phase of this process. We also highlight new and emerging directions in ER stress-induced cell death research particularly the role of microRNAs, ER-mitochondria cross talk and the prospect of mitochondria-independent death signals in ER stress-induced cell death.  相似文献   

2.
Coupling endoplasmic reticulum stress to the cell death program   总被引:17,自引:0,他引:17  
The endoplasmic reticulum (ER) regulates protein synthesis, protein folding and trafficking, cellular responses to stress and intracellular calcium (Ca(2+)) levels. Alterations in Ca(2+) homeostasis and accumulation of misfolded proteins in the ER cause ER stress that ultimately leads to apoptosis. Prolonged ER stress is linked to the pathogenesis of several different neurodegenerative disorders. Apoptosis is a form of cell death that involves the concerted action of a number of intracellular signaling pathways including members of the caspase family of cysteine proteases. The two main apoptotic pathways, the death receptor ('extrinsic') and mitochondrial ('intrinsic') pathways, are activated by caspase-8 and -9, respectively, both of which are found in the cytoplasm. Recent studies point to the ER as a third subcellular compartment implicated in apoptotic execution. Here, we review evidence for the contribution of various cellular molecules that contribute to ER stress and subsequent cellular death. It is hoped that dissection of the molecular components and pathways that alter ER structure and function and ultimately promote cellular death will provide a framework for understanding degenerative disorders that feature misfolded proteins.  相似文献   

3.
The microenvironment of cancerous cells includes endoplasmic reticulum (ER) stress the resistance to which is required for the survival and growth of tumors. Acute ER stress triggers the induction of a family of ER stress proteins that promotes survival and/or growth of the cancer cells, and also confers resistance to radiation and chemotherapy. Prolonged or severe ER stress, however, may ultimately overwhelm the cellular protective mechanisms, triggering cell death through specific programmed cell death (pcd) pathways. Thus, downregulation of the protective stress proteins may offer a new therapeutic approach to cancer treatment. In this regard, recent reports have demonstrated the roles of the phytochemical curcumin in the inhibition of proteasomal activity and triggering the accumulation of cytosolic Ca2+ by inhibiting the Ca2+-ATPase pump, both of which enhance ER stress. Using a mouse melanoma cell line, we investigated the possibility that curcumin may trigger ER stress leading to programmed cell death. Our studies demonstrate that curcumin triggers ER stress and the activation of specific cell death pathways that feature caspase cleavage and activation, p23 cleavage, and downregulation of the anti-apoptotic Mcl-1 protein.  相似文献   

4.
Endoplasmic reticulum (ER) stress has increasingly come into focus as a factor contributing to neuronal injury. Although caspase-dependent mechanisms have been implicated in ER stress, the signaling pathways involved remain unclear. In this study, we examined the role of the extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase pathway that is highly conserved in many systems for balancing cell survival and death. Prolonged treatment of the human neuroblastoma cell line SH-SY5Y with thapsigargin, an inducer of ER stress, increased cell death over 24-48 h, as measured by LDH release. Caspases were involved; increased levels of active caspase-3 and cleaved caspase substrate PARP were detected, and treatment with Z-VAD-FMK reduced thapsigargin-induced cytotoxicity. In contrast, inhibition of calpain was not protective, although calpain was activated following thapsigargin treatment. An early and transient phosphorylation of ERK1/2 occurred after thapsigargin-induced ER stress, and targeting this pathway with the MEK inhibitors U0126 or PD98059 significantly reduced cell death. Similar cytoprotection was obtained against brefeldin A, another ER stress agent. However, protection against ER stress via ERK inhibition was not accompanied by amelioration of caspase-3 activation, PARP cleavage, or DNA laddering. These data indicate that ERK may contribute to non-caspase-dependent pathways of injury after ER stress.  相似文献   

5.
Recent studies provide some evidence that the HtrA2 protein is intimately associated with the pathogenesis of neurodegenerative disorders and that endoplasmic reticulum (ER) quality control and ER stress-associated cell death play critical roles in neuronal cell death. However, little is known about the intimate relationship between HtrA2 and ER stress-associated cellular responses. In the present study, we have demonstrated that the HtrA2 protein level was gradually and significantly increased by up to 10-fold in the mitochondria under tunicamycin (Tm)-induced ER stress, which eventually promoted cell death through the release of HtrA2 into the cytoplasm. Using an ecdysoneinducible mammalian expression system, we demonstrate that the extent of cell death in 293-HtrA2 cells was approximately 20 times higher under Tm-induced ER stress, indicating that the increase in the HtrA2 protein level in the mitochondria itself is necessary but not sufficient for the promotion of cell death. Taken together, these results suggest that HtrA2 may serve as a mediator of ER stress-induced apoptosis and ER-mitochondrial cross-talk in some cellular processes.  相似文献   

6.
NF-kappaB is critical for determining cellular sensitivity to apoptotic stimuli by regulating both mitochondrial and death receptor apoptotic pathways. The endoplasmic reticulum (ER) emerges as a new apoptotic signaling initiator. However, the mechanism by which ER stress activates NF-kappaB and its role in regulation of ER stress-induced cell death are largely unclear. Here, we report that, in response to ER stress, IKK forms a complex with IRE1alpha through the adapter protein TRAF2. ER stress-induced NF-kappaB activation is impaired in IRE1alpha knockdown cells and IRE1alpha(-/-) MEFs. We found, however, that inhibiting NF-kappaB significantly decreased ER stress-induced cell death in a caspase-8-dependent manner. Gene expression analysis revealed that ER stress-induced expression of tumor necrosis factor alpha (TNF-alpha) was IRE1alpha and NF-kappaB dependent. Blocking TNF receptor 1 signaling significantly inhibited ER stress-induced cell death. Further studies suggest that ER stress induces down-regulation of TRAF2 expression, which impairs TNF-alpha-induced activation of NF-kappaB and c-Jun N-terminal kinase and turns TNF-alpha from a weak to a powerful apoptosis inducer. Thus, ER stress induces two signals, namely TNF-alpha induction and TRAF2 down-regulation. They work in concert to amplify ER-initiated apoptotic signaling through the membrane death receptor.  相似文献   

7.
The induction of cell death by radiation has largely been attributed to pro-apoptotic mechanisms. Autophagy, an alternative form of programmed cell death, has recently been shown to contribute significantly to anti-neoplastic effects of radiation therapy. In light of this, ER stress has been shown to trigger both apoptosis and autophagy, and act as an important mediator linking the two programmed cell death pathways. Recent data reveal that ER stress leads to activation of autophagosome formation with LC3 conversion via either PERK-eIF2α pathway or IRE1-JNK pathway. In this focused review, we summarize the main molecular mediators that control cellular “switches” between apoptosis and autophagy pathways by utilizing radiation therapy as a model.  相似文献   

8.
The therapeutic efficacy of tamoxifen (TAM) in cancer therapy is thought to arise primarily from its ability to compete with estrogens for binding to the estrogen receptor (ER). We show that TAM and its active metabolite, 4-hydroxytamoxifen (OHT), can actively induce programmed cell death through distinct ER-dependent and ER-independent pathways. The ER-independent pathway is activated by 10-20 microm TAM and OHT and by 10-20 microm 17beta-estradiol and raloxifene, and occurs in ER-negative cells. The ER dependence of a second pathway, caused by submicromolar concentrations of TAM and OHT, was demonstrated by the ability of the ER ligands 17beta-estradiol, raloxifene, and ICI 182,780 to effectively block the cell death-inducing effects of TAM and OHT. Because the p38-specific inhibitor SB203580 blocks OHT.ER-induced cell death, stress kinase pathways are likely involved. ER-independent cell death triggers classic caspase-dependent apoptosis. However, although OHT.ER triggers some hallmarks of apoptosis, including Bax translocation and cytochrome c release, the absence of poly(ADP-ribose) polymerase cleavage or DNA laddering indicates that the death pathway involved is caspase-independent. The OHT.ER-dependent cell death pathway appears to diverge from classical apoptosis at the level of caspase 9 activation. The ability to promote ER-dependent programmed cell death represents a novel activity of TAM and OHT.  相似文献   

9.
10.
The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. This article is part of a Special Section entitled: Cell Death Pathways. Guest Editors: Frank Madeo and Slaven Stekovic.  相似文献   

11.
ABSTRACT: MEK Partner 1 (MP1 or MAPKSP1) is a scaffold protein that has been reported to function in multiple signaling pathways, including the ERK, PAK and mTORC pathways. Several of these pathways influence the biology of breast cancer, but MP1's functional significance in breast cancer cells has not been investigated. In this report, we demonstrate a requirement for MP1 expression in estrogen receptor (ER) positive breast cancer cells. MP1 is widely expressed in both ER-positive and negative breast cancer cell lines, and in non-tumorigenic mammary epithelial cell lines. However, inhibition of its expression using siRNA duplexes resulted in detachment and apoptosis of several ER-positive breast cancer cell lines, but not ER-negative breast cancer cells or non-tumorigenic mammary epithelial cells. Inhibition of MP1 expression in ER-positive MCF-7 cells did not affect ERK activity, but resulted in reduced Akt1 activity and reduced ER expression and activity. Inhibition of ER expression did not result in cell death, suggesting that decreased ER expression is not the cause of cell death. In contrast, pharmacological inhibition of PI3K signaling did induce cell death in MCF-7 cells, and expression of a constitutively active form of Akt1 partially rescued the cell death observed when the MP1 gene was silenced in these cells. Together, these results suggest that MP1 is required for pro-survival signaling from the PI3K/Akt pathway in ER-positive breast cancer cells.  相似文献   

12.
Accumulating data indicates that following anti-cancer treatments, cancer cell death can be perceived as immunogenic or tolerogenic by the immune system. The former is made possible due to the ability of certain anti-cancer modalities to induce immunogenic cell death (ICD) that is associated with the emission of damage-associated molecular patterns (DAMPs), which assist in unlocking a sequence of events leading to the development of anti-tumour immunity. In response to ICD inducers, activation of endoplasmic reticulum (ER) stress has been identified to be indispensable to confer the immunogenic character of cancer cell death, due to its ability to coordinate the danger signalling pathways responsible for the trafficking of vital DAMPs and subsequent anti-cancer immune responses. However, in recent times, certain processes apart from ER stress have emerged (e.g., autophagy and possibly viral response-like signature), which have the ability to influence danger signalling. In this review, we discuss the molecular nature, emerging plasticity in the danger signalling mechanisms and immunological impact of known DAMPs in the context of immunogenic cancer cell death. We also discuss key effector mechanisms modulating the interface between dying cancer cells and the immune cells, which we believe are crucial for the therapeutic relevance of ICD in the context of human cancers, and also discuss the influence of experimental conditions and animal models on these.  相似文献   

13.
Advanced glycation endproducts (AGEs) are elevated in aging and neurodegenerative diseases such as Alzheimer??s disease (AD), and they can stimulate the generation of reactive oxygen species (ROSs) via NADPH oxidase, induce oxidative stress that lead to cell death. In the current study, we investigated the molecular events underlying the process that AGEs induce cell death in SH-SY5Y cells and rat cortical neurons. We found: (1) AGEs increase intracellular ROSs; (2) AGEs cause cell death after ROSs increase; (3) oxidative stress-induced cell death is inhibited via the blockage of AGEs receptor (RAGE), the down-regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and the increase of scavenging by anti-oxidant alpha-lipoic acid (ALA); (4) endoplasmic reticulum (ER) stress was triggered by AGE-induced oxidative stress, resulting in the activation of C/EBP homologous protein (CHOP) and caspase-12 that consequently initiates cell death, taurine-conjugated ursodeoxycholic acid (TUDCA) inhibited AGE-induced ER stress and cell death. Blocking RAGE?CNADPH oxidase, and RAGE?CNADPH oxidase?CROSs and ER stress scavenging pathways could efficiently prevent the oxidative and ER stresses, and consequently inhibited cell death. Our results suggest a new prevention and or therapeutic approach in AGE-induced cell death.  相似文献   

14.
Accumulation of abnormal proteins occurs in many neurodegenerative diseases including Huntington's disease (HD). However, the precise role of protein aggregation in neuronal cell death remains unclear. We show here that the expression of N-terminal huntingtin proteins with expanded polyglutamine (polyQ) repeats causes cell death in neuronal PC6.3 cell that involves endoplasmic reticulum (ER) stress. These mutant huntingtin fragment proteins elevated Bip, an ER chaperone, and increased Chop and the phosphorylation of c-Jun-N-terminal kinase (JNK) that are involved in cell death regulation. Caspase-12, residing in the ER, was cleaved in mutant huntingtin expressing cells, as was caspase-3 mediating cell death. In contrast, cytochrome-c or apoptosis inducing factor (AIF) was not released from mitochondria after the expression of these proteins. Treatment with salubrinal that inhibits ER stress counteracted cell death and reduced protein aggregations in the PC6.3 cells caused by the mutant huntingtin fragment proteins. Salubrinal upregulated Bip, reduced cleavage of caspase-12 and increased the phosphorylation of eukaryotic translation initiation factor-2 subunit-alpha (eIF2alpha) that are neuroprotective. These results show that N-terminal mutant huntingtin proteins activate cellular pathways linked to ER stress, and that inhibition of ER stress by salubrinal increases cell survival. The data suggests that compounds targeting ER stress may be considered in designing novel approaches for treatment of HD and possibly other polyQ diseases.  相似文献   

15.
The unfolded protein response (UPR) is an evolutionarily conserved adaptive reaction that increases cell survival under endoplasmic reticulum (ER) stress conditions. ER stress–associated neuronal cell death pathways play roles in the pathogenesis of neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and Huntington’s disease. Neuropeptide Y (NPY) has an important role in neuroprotection against neurodegenerative diseases. In this study, we investigated whether NPY has a protective role in ER stress–induced neuronal cell death in SK-N-SH human neuroblastoma cells. An ER stress–inducing chemical, tunicamycin, increased the activities of caspase-3 and -4, whereas pretreatment with NPY decreased caspase-3 and -4 activities during the ER stress response. In addition, NPY suppressed the activation of three major ER stress sensors during the tunicamycin-induced ER stress response. NPY-mediated activation of PI3K increased nuclear translocation of XBP1s, which in turn induced expression of Grp78/BiP. Taken together, our data indicated that NPY plays a protective role in ER stress–induced neuronal cell death through activation of the PI3K–XBP1 pathway, and that NPY signaling can serve as therapeutic target for ER stress–mediated neurodegenerative diseases.  相似文献   

16.
The endoplasmic reticulum (ER) is the primary site for synthesis and folding of secreted and membrane-bound proteins. Proteins are translocated into ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to assist in proper folding. Properly folded proteins traffic from the ER to the Golgi apparatus; misfolded proteins are targeted to degradation. Unfolded protein response (UPR) is a highly regulated intracellular signaling pathway that prevents accumulation of misfolded proteins in the ER lumen. UPR provides an adaptive mechanism by which cells can augment protein folding and processing capacities of the ER. If protein misfolding is not resolved, the UPR triggers apoptotic cascades. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintain cellular homeostasis and determine cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of prosurvival/prodeath pathways. We discuss the signaling/communication between the ER and mitochondria and focus on the role of the mitochondrial permeability transition pore in these complex processes.  相似文献   

17.
Alzheimer??s disease (AD) poses a huge challenge for society and health care worldwide as molecular pathogenesis of the disease is poorly understood and curative treatment does not exist. The mechanisms leading to accelerated neuronal cell death in AD are still largely unknown, but accumulation of misfolded disease-specific proteins has been identified as potentially involved. In the present review, we describe the essential role of endoplasmic reticulum (ER) in AD. Despite the function that mitochondria may play as the central major player in the apoptotic process, accumulating evidence highlights ER as a critical organelle in AD. Stress that impairs ER physiology leads to accumulation of unfolded or misfolded proteins, such as amyloid ?? (A??) peptide, the major component of amyloid plaques. In an attempt to ameliorate the accumulation of unfolded proteins, ER stress triggers a protective cellular mechanism, which includes the unfolded protein response (UPR). However, when activation of the UPR is severe or prolonged enough, the final cellular outcome is pathologic apoptotic cell death. Distinct pathways can be activated in this process, involving stress sensors such as the JNK pathway or ER chaperones such as Bip/GRP94, stress modulators such as Bcl-2 family proteins, or even stress effectors such as caspase-12. Here, we detail the involvement of the ER and associated stress pathways in AD and discuss potential therapeutic strategies targeting ER stress.  相似文献   

18.
Cell survival is dependent on both external and internally generated signalling processes and current strategies for medical intervention in neoplastic disease are directed towards signal transduction blockade. Redundancy in signalling pathways may mean, however, that a combination of agents is required for the maximal therapeutic benefit. We have explored this idea with regard to the antiestrogen sensitivity of estrogen dependent tumours. Using estrogen receptor (ER) containing tumour cell lines, we have determined whether antiestrogens increase the cytotoxicity of the potent calmodulin inhibitior, calmidzolium chloride (CCl). For the pituitary tumour cell line GH(3), CCl induces a form of apoptotic cell death and co-treatment with the pure antiestrogen, ZM 182780, enhances sensitivity to the calmodulin inhibitor, by at least two fold. In contrast to the pure steroidal antiestrogens, the triphenylethylenes, tamoxifen and 4-hydroxytamoxifen give no enhancing effect on CCl induced cell death. Although CCl induces apoptosis of several ER containing breast cancer cell lines, unlike the pituitary tumour cells, ZM 182780 is unable to increase their sensitivity to calmodulin inhibition. Further studies strongly suggest that cell death in response to calmodulin inhibition is the result of metabolic disruption and that for GH(3) cells, this is enhanced by antiestrogen treatment.  相似文献   

19.
Autophagy plays a crucial role in cancer cell survival and the inhibition of autophagy is attracting attention as an emerging strategy for the treatment of cancer. Chloroquine (CQ) is an anti-malarial drug, and is also known as an inhibitor of autophagy. Recently, it has been found that CQ induces cancer cell death through the inhibition of autophagy; however, the underlying mechanism is not entirely understood. In this study, we identified the role of CQ-induced cancer cell death using Primary Effusion Lymphoma (PEL) cells. We found that a CQ treatment induced caspase-dependent apoptosis in vitro. CQ also suppressed PEL cell growth in a PEL xenograft mouse model. We showed that CQ activated endoplasmic reticulum (ER) stress signal pathways and induced CHOP, which is an inducer of apoptosis. CQ-induced cell death was significantly decreased by salbrinal, an ER stress inhibitor, indicating that CQ-induced apoptosis in PEL cells depended on ER stress. We show here for the first time that the inhibition of autophagy induces ER stress-mediated apoptosis in PEL cells. Thus, the inhibition of autophagy is a novel strategy for cancer chemotherapy.  相似文献   

20.
Accumulation of misfolded proteins and alterations in Ca2+ homeostasis in the endoplasmic reticulum (ER) causes ER stress and leads to cell death. However, the signal-transducing events that connect ER stress to cell death pathways are incompletely understood. To discern the pathway by which ER stress-induced cell death proceeds, we performed studies on Apaf-1(-/-) (null) fibroblasts that are known to be relatively resistant to apoptotic insults that induce the intrinsic apoptotic pathway. While these cells were resistant to cell death initiated by proapoptotic stimuli such as tamoxifen, they were susceptible to apoptosis induced by thapsigargin and brefeldin-A, both of which induce ER stress. This pathway was inhibited by catalytic mutants of caspase-12 and caspase-9 and by a peptide inhibitor of caspase-9 but not by caspase-8 inhibitors. Cleavage of caspases and poly(ADP-ribose) polymerase was observed in cell-free extracts lacking cytochrome c that were isolated from thapsigargin or brefeldin-treated cells. To define the molecular requirements for this Apaf-1 and cytochrome c-independent apoptosis pathway further, we developed a cell-free system of ER stress-induced apoptosis; the addition of microsomes prepared from ER stress-induced cells to a normal cell extract lacking mitochondria or cytochrome c resulted in processing of caspases. Immunodepletion experiments suggested that caspase-12 was one of the microsomal components required to activate downstream caspases. Thus, ER stress-induced programmed cell death defines a novel, mitochondrial and Apaf-1-independent, intrinsic apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号