共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sanket Patke Ji Li Peiyin Wang Dion Slaga Jennifer Johnston Sunil Bhakta 《MABS-AUSTIN》2017,9(3):430-437
Bispecific antibodies are a growing class of therapeutic molecules. Many of the current bispecific formats require DNA engineering to convert the parental monoclonal antibodies into the final bispecific molecules. We describe here a method to generate bispecific molecules from hybridoma IgGs in 3–4 d using chemical conjugation of antigen-binding fragments (Fabs) (bisFabs). Proteolytic digestion conditions for each IgG isotype were analyzed to optimize the yield and quality of the final conjugates. The resulting bisFabs showed no significant amounts of homodimers or aggregates. The predictive value of murine bisFabs was tested by comparing the T-cell redirected cytotoxic activity of a panel of antibodies in either the bisFab or full-length IgG formats. A variety of antigens with different structures and expression levels was used to extend the comparison to a wide range of binding geometries and antigen densities. The activity observed for different murine bisFabs correlated with those observed for the full-length IgG format across multiple different antigen targets, supporting the use of bisFabs as a screening tool. Our method may also be used for the screening of bispecific antibodies with other mechanisms of action, allowing for a more rapid selection of lead therapeutic candidates. 相似文献
3.
Nicole Swope Wai Keen Chung Mingyan Cao Dana Motabar Dengfeng Liu Sanjeev Ahuja Michael Handlogten 《Biotechnology and bioengineering》2020,117(4):1063-1071
Antibody disulfide bond (DSB) reduction during manufacturing processes is a widely observed phenomenon attributed to host cell reductases present in harvest cell culture fluid. Enzyme-induced antibody reduction leads to product fragments and aggregates that increase the impurity burden on the purification process. The impact of reduction on bivalent bispecific antibodies (BisAbs), which are increasingly entering the clinic, has yet to be investigated. We focused on the reduction and reoxidation properties of a homologous library of bivalent BisAb formats that possess additional single-chain Fv (scFv) fragments with engineered DSBs. Despite all BisAbs having similar susceptibilities to enzymatic reduction, fragmentation pathways were dependent on the scFv-fusion site. Reduced molecules were allowed to reoxidize with and without low pH viral inactivation treatment. Both reoxidation studies demonstrated that multiple, complex BisAb species formed as a result of DSB mispairing. Furthermore, aggregate levels increased for all molecules when no low pH treatment was applied. Combined, our results show that complex DSB mispairing occurs during downstream processes while aggregate formation is dependent on sample treatment. These results are applicable to other novel monoclonal antibody-like formats containing engineered DSBs, thus highlighting the need to prevent reduction of novel protein therapeutics to avoid diminished product quality during manufacturing. 相似文献
4.
《MABS-AUSTIN》2013,5(8):1236-1247
ABSTRACTBispecific antibodies are an emergent class of biologics that is of increasing interest for therapeutic applications. In one bispecific antibody format, single-chain variable fragments (scFv) are linked to or inserted in different locations of an intact immunoglobulin G (IgG) molecule to confer dual epitope binding. To improve biochemical stability, cysteine residues are often engineered on the heavy- and light-chain regions of the scFv to form an intrachain disulfide bond. Although this disulfide bond often improves stability, it can also introduce unexpected challenges to manufacturing or development. We report size variants that were observed for an appended scFv-IgG bispecific antibody. Structural characterization studies showed that the size variants resulted from the engineered disulfide bond on the scFv, whereby the engineered disulfide was found to be either open or unable to form an intrachain disulfide bond due to cysteinylation or glutathionylation of the cysteines. Furthermore, the scFv engineered cysteines also formed intermolecular disulfide bonds, leading to the formation of highly stable dimers and aggregates. Because both the monomer variants and dimers showed lower bioactivity, they were considered to be product-related impurities that must be monitored and controlled. To this end, we developed and optimized a robust, precise, and accurate high-resolution size-exclusion chromatographic method, using a statistical design-of-experiments methodology. 相似文献
5.
双特异性抗体(bispecific antibody,BsAb)有两个抗原结合位点,其中一个位点可与靶细胞表面抗原结合,另一个位点则可与载荷物(如效应细胞,分子等)结合。将BsAb应用于肿瘤治疗,发挥抗肿瘤效应的思想已有二十多年历史,随着对效应细胞生物学了解的加深和抗体工程的飞速发展,各种形式的BsAb相继出现,多种BsAb药物已进入临床初期试验或治疗使用阶段。本文就BsAb的各种新形式及其在肿瘤治疗中的应用新进展作简要概述。 相似文献
6.
Hiroshi Shinmoto Hiroki Murakami Shun-Ichi Dosako Koji Yamada Hirohisa Omura 《In vitro cellular & developmental biology. Plant》1988,24(6):505-510
Summary Some hybridoma clones made by fusion of a human lymphoblastoid cell line, HO323 with human B lymphocytes, secreted not only
IgA but also IgM-like immunoglobulin molecules. The IgM-like immunoglobulin had a molecular size of 900 K which corresponded
to that of IgM. Immunochemical analyses revealed that the IgM-like immunoglobulin contained two monomeric IgA and three monomeric
IgM molecules. In the IgA moieties, half of original light chains were replaced withx chains derived from the IgM, and vice versa. 相似文献
7.
Targeting of immune cells by bispecific antibodies has proven to be a powerful tool for the investigation of cellular cytotoxicity, lymphocyte activation and induction of cytokine production, as well as to represent an innovative form of immunotherapy for the treatment of cancer. The hallmark of this approach is the use of the specificity of monoclonal antibodies to join target and immune cells by virtue of the dual specificity of bispecific antibodies for the two entities. More precisely, the bispecific antibody has two different binding sites, which are capable of recognizing tumor associated antigens on the one hand and lymphocyte activation sites on the other. This process of crosslinking results in the activation of the lymphocyte and triggering of its lytic machinery, as well as lymphokine production. A major advantage of this therapeutic modality is, that use is made of the normal cellular immune defence system and therefore is only associated with minor toxicity. The distinct lymphocyte populations, which can be used for adoptive immunotherapy and the various bispecific antibody preparations, as well as the chimeric immunoglobulin/T cell receptor construction, are the major topics of this review. 相似文献
8.
《MABS-AUSTIN》2013,5(7):1254-1265
ABSTRACTMultiple strategies have been developed to facilitate the efficient production of bispecific IgG (BsIgG) in single host cells. For example, we previously demonstrated near quantitative (≥90%) formation of BsIgG of different species and isotypes by combining ‘knob-into-hole’ mutations for heavy chain heterodimerization with engineered antigen-binding fragments (Fabs) for preferential cognate heavy/light chain pairing. Surprisingly, in this study we found high yield (>65%) of BsIgG1 without Fab engineering to be a common occurrence, i.e., observed for 33 of the 99 different antibody pairs evaluated. Installing charge mutations at both CH1/CL interfaces was sufficient for near quantitative yield (>90%) of BsIgG1 for most (9 of 11) antibody pairs tested with this inherent cognate chain pairing preference. Mechanistically, we demonstrate that a strong cognate pairing preference in one Fab arm can be sufficient for high BsIgG1 yield. These observed chain pairing preferences are apparently driven by variable domain sequences and can result from a few specific residues in the complementarity-determining region (CDR) L3 and H3. Transfer of these CDR residues into other antibodies increased BsIgG1 yield in most cases. Mutational analysis revealed that the disulfide bond between heavy and light chains did not affect the yield of BsIgG1. This study provides some mechanistic understanding of factors contributing to antibody heavy/light chain pairing preference and subsequently contributes to the efficient production of BsIgG in single host cells. 相似文献
9.
10.
Z. Zhu L. G. Presta G. Zapata P. Carter 《Protein science : a publication of the Protein Society》1997,6(4):781-788
An anti-p185HER2/anti-CD3 humanized bispecific diabody was previously constructed from two cross-over single-chain Fv in which YH and VL domains of the parent antibodies are present on different polypeptides. Here this diabody is used to evaluate domain interface engineering strategies for enhancing the formation of functional heterodimers over inactive homodimers. A disulfide-stabilized diabody was obtained by introducing two cysteine mutations, VL L46C and VH D101C, at the anti-p185HER2.VL/VH interface. The fraction of recovered diabody that was functional following expression in Escherichia coli was improved for the disulfide-stabilized compared to the parent diabody (> 96% versus 72%), whereas the overall yield was > 60-fold lower. Eleven \"knob-into-hole\" diabodies were designed by molecular modeling of sterically complementary mutations at the two VL/VH interfaces. Replacements at either interface are sufficient to improve the fraction of functional heterodimer, while maintaining overall recoverable yields and affinity for both antigens close to that of the parent diabody. For example, diabody variant v5 containing the mutations VL Y87A:F98M and VH V37F:L45W at the anti-p185HER2 VL/VH interface was recovered as 92% functional heterodimer while maintaining overall recovered yield within twofold of the parent diabody. The binding affinity of v5 for p185HER2 extracellular domain and T cells is eightfold weaker and twofold stronger than for the parent diabody, respectively. Domain interface remodeling based upon either sterically complementary mutations or interchain disulfide bonds can facilitate the production of a functional diabody heterodimer. This study expands the scope of domain interface engineering by demonstrating the enhanced assembly of proteins interacting via two domain interfaces. 相似文献
11.
《MABS-AUSTIN》2013,5(6):775-783
Bispecific antibodies are proteins that bind two different antigens and may retarget immune cells with a binding moiety specific for a leukocyte marker. A binding event in blood could in principle prevent antibody extravasation and accumulation at the site of disease. In this study, we produced and characterized two tetravalent bispecific antibodies that bind with high affinity to the alternatively-spliced EDB domain of fibronectin, a tumor-associated antigen. The bispecific antibodies simultaneously engaged the cognate antigens (murine T cell co-receptor CD3 and hen egg lysozyme) and selectively accumulated on murine tumors in vivo. The results, which were in agreement with predictions based on pharmacokinetic modeling and antibody binding characteristics, confirmed that bispecific antibodies can reach abluminal targets without being blocked by peripheral blood leukocytes. 相似文献
12.
13.
Bispecific antibodies are proteins that bind two different antigens and may retarget immune cells with a binding moiety specific for a leukocyte marker. A binding event in blood could in principle prevent antibody extravasation and accumulation at the site of disease. In this study, we produced and characterized two tetravalent bispecific antibodies that bind with high affinity to the alternatively-spliced EDB domain of fibronectin, a tumor-associated antigen. The bispecific antibodies simultaneously engaged the cognate antigens (murine T cell co-receptor CD3 and hen egg lysozyme) and selectively accumulated on murine tumors in vivo. The results, which were in agreement with predictions based on pharmacokinetic modeling and antibody binding characteristics, confirmed that bispecific antibodies can reach abluminal targets without being blocked by peripheral blood leukocytes. 相似文献
14.
Cassia Andrade Lindsay Arnold Dana Motabar Matthew Aspelund Alison Tang Alan Hunter Wai Keen Chung 《Biotechnology progress》2019,35(1):e2720
Single chain variable fragment-IgGs (scFv-IgG) are a class of bispecific antibodies consisting of two single chain variable fragments (scFv) that are fused to an intact IgG molecule. A common trend observed for expression of scFv-IgGs in mammalian cell culture is a higher level of aggregates (10%–30%) compared to mAbs, which results in lower purification yields in order to meet product quality targets. Furthermore, the high aggregate levels also pose robustness risks to a conventional mAb three column platform purification process which uses only the polishing steps (e.g., cation exchange chromatography [CEX]) for aggregate removal. Protein A chromatography with pH gradient elution, high performance tangential flow filtration (HP-TFF) and calcium phosphate precipitation were evaluated at the bench scale as means of introducing orthogonal aggregate removal capabilities into other aspects of the purification process. The two most promising process variants, namely Protein A pH gradient elution followed by calcium phosphate precipitation were evaluated at pilot scale, demonstrating comparable performance. Implementing Protein A chromatography with gradient elution and/or calcium phosphate precipitation removed a sufficient portion of the aggregate burden prior to the CEX polishing step, enabling CEX to be operated robustly under conditions favoring higher monomer yield. From starting aggregate levels ranging from 15% to 23% in the condition media, levels were reduced to between 2% and 3% at the end of the CEX step. The overall yield for the optimal process was 71%. Results of this work suggest an improved three-column mAb platform-like purification process for purification of high aggregate scFv-IgG bispecific antibodies is feasible. © 2018 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers. Biotechnol. Prog., 35: e2720, 2019 相似文献
15.
Construction of multiform scFv antibodies using linker peptide 总被引:1,自引:0,他引:1
Multiform single chain variable fragments (acFvs) including different length linker scFvs and bispecific seFv were constructed. The linker lengths of 0, 3, 5, 8, 12, and 15 amino acids between VH and VL of antideoxynivalenol (anti-DON) scFv were used to analyze the affinities of scFvs. The affinity constants of these scFvs increased when the linker was lower than 12 amino acids. The affinity constant would not change when the linker was longer than 12 amino acids. Fusion gene of anti-DON seFv and antizearalenone (anti-ZEN) scFv was also constructed through eormection by a short peptide tinker DNA to express a bispecific scFv. The affinity constants assay showed that the two scFvs of fusion bispecific scFv remained their own affinity compared to their parental scFvs. Competitive direct enzyme linked immunosorbent assay was used to detect DON and ZEN in contaminated wheat (Triticum aestivum L.) samples, and the results indicated that this bispecifie acFv was applicable in DON and ZEN detection. This work confirmed that bispecific scFv could be successfully obtained, and might also have an application in diagnosing fungal infection, and breeding transgertic plants. 相似文献
16.
《MABS-AUSTIN》2013,5(5):1243-1254
One approach to creating more beneficial therapeutic antibodies is to develop bispecific antibodies (bsAbs), particularly IgG-like formats with tetravalency, which may provide several advantages such as multivalent binding to each target antigen. Although the effects of configuration and antibody-fragment type on the function of IgG-like bsAbs have been studied, there have been only a few detailed studies of the influence of the variable fragment domain order. Here, we prepared four types of hEx3-scDb-Fc, IgG-like bsAbs, built from a single-chain hEx3-Db (humanized bispecific diabody [bsDb] that targets epidermal growth factor receptor and CD3), to investigate the influence of domain order and fusion manner on the function of a bsDb with an Fc fusion format. Higher cytotoxicities were observed with hEx3-scDb-Fcs with a variable light domain (VL)–variable heavy domain (VH) order (hEx3-scDb-Fc-LHs) compared with a VH–VL order, indicating that differences in the Fc fusion manner do not affect bsDb activity. In addition, flow cytometry suggested that the higher cytotoxicities of hEx3-scDb-Fc-LH may be attributable to structural superiority in cross-linking. Interestingly, enhanced degradation resistance and prolonged in vivo half-life were also observed with hEx3-scDb-Fc-LH. hEx3-scDb-Fc-LH and its IgG2 variant exhibited intense in vivo antitumor effects, suggesting that Fc-mediated effector functions are dispensable for effective anti-tumor activities, which may cause fewer side effects. Our results show that merely rearranging the domain order of IgG-like bsAbs can enhance not only their antitumor activity, but also their degradation resistance and in vivo half-life, and that hEx3-scDb-Fc-LHs are potent candidates for next-generation therapeutic antibodies. 相似文献
17.
Werner Scheuer Markus Thomas Petra Hanke Johannes Sam Franz Osl Diana Weininger 《MABS-AUSTIN》2016,8(3):562-573
Vascular endothelial growth factor (VEGF)-A blockade has been validated clinically as a treatment for human cancers. Angiopoietin-2 (Ang-2) is a key regulator of blood vessel remodeling and maturation. In tumors, Ang-2 is up-regulated and an unfavorable prognostic factor. Recent data demonstrated that Ang-2 inhibition mediates anti-tumoral effects. We generated a tetravalent bispecific antibody (Ang-2-VEGF-TAvi6) targeting VEGF-A with 2 arms based on bevacizumab (Avastin®), and targeting Ang-2 with 2 arms based on a novel anti-Ang-2 antibody (LC06). The two Ang-2-targeting single-chain variable fragments are disulfide-stabilized and fused to the C-terminus of the heavy chain of bevacizumab. Treatment with Ang-2-VEGF-A-TAvi6 led to a complete abrogation of angiogenesis in the cornea micropocket assay. Metastatic spread and tumor growth of subcutaneous, orthotopic and anti-VEGF-A resistant tumors were also efficiently inhibited. These data further establish Ang-2-VEGF bispecific antibodies as a promising anti-angiogenic, anti-metastatic and anti-tumor agent for the treatment of cancer. 相似文献
18.
AimThe aim of this study was to synthesize 18FDG in some consecutive runs and check the quality of manufactured radiopharmaceuticals and to determine the distribution of metallic impurities in the synthesis process.BackgroundFor radiopharmaceuticals the general requirements are listed in European Pharmacopeia and these parameters have to be checked before application for human use.Materials and methodsStandard methods for the determination of basic characteristics of radiopharmaceuticals were used. Additionally, high resolution γ spectrometry was used for the assessment of nuclidic purity and inductively coupled plasma with mass spectrometry to evaluate metallic content.ResultsResults showed sources and distribution of metallic and radiometallic impurities in the production process. Main part is trapped in the initial separation column of the synthesis unit and is not distributed to the final product in significant amounts.ConclusionsProduced 18FDG filled requirements of Ph.Eur. and the content of radionuclidic and metallic impurities was in the acceptable range. 相似文献
19.
Ryutaro Asano Ippei Shimomura Shota Konno Akiko Ito Yosuke Masakari Ryota Orimo Shintaro Taki Kyoko Arai Hiromi Ogata Mai Okada Shozo Furumoto Masayoshi Onitsuka Takeshi Omasa Hiroki Hayashi Yu Katayose Michiaki Unno Toshio Kudo Mitsuo Umetsu Izumi Kumagai 《MABS-AUSTIN》2014,6(5):1243-1254
One approach to creating more beneficial therapeutic antibodies is to develop bispecific antibodies (bsAbs), particularly IgG-like formats with tetravalency, which may provide several advantages such as multivalent binding to each target antigen. Although the effects of configuration and antibody-fragment type on the function of IgG-like bsAbs have been studied, there have been only a few detailed studies of the influence of the variable fragment domain order. Here, we prepared four types of hEx3-scDb-Fc, IgG-like bsAbs, built from a single-chain hEx3-Db (humanized bispecific diabody [bsDb] that targets epidermal growth factor receptor and CD3), to investigate the influence of domain order and fusion manner on the function of a bsDb with an Fc fusion format. Higher cytotoxicities were observed with hEx3-scDb-Fcs with a variable light domain (VL)–variable heavy domain (VH) order (hEx3-scDb-Fc-LHs) compared with a VH–VL order, indicating that differences in the Fc fusion manner do not affect bsDb activity. In addition, flow cytometry suggested that the higher cytotoxicities of hEx3-scDb-Fc-LH may be attributable to structural superiority in cross-linking. Interestingly, enhanced degradation resistance and prolonged in vivo half-life were also observed with hEx3-scDb-Fc-LH. hEx3-scDb-Fc-LH and its IgG2 variant exhibited intense in vivo antitumor effects, suggesting that Fc-mediated effector functions are dispensable for effective anti-tumor activities, which may cause fewer side effects. Our results show that merely rearranging the domain order of IgG-like bsAbs can enhance not only their antitumor activity, but also their degradation resistance and in vivo half-life, and that hEx3-scDb-Fc-LHs are potent candidates for next-generation therapeutic antibodies. 相似文献
20.
构建和表达抗CD3/抗Pgp微型双功能抗体,并测定该微型双功能抗体的生物学活性。 采用PCR和overlap PCR方法构建抗CD3/抗Pgp微型双功能抗体,并用双脱氧终止法测定DNA序列;采用亲和层析法纯化该产物,并用Western blot和分子排阻层析鉴定纯化产物;采用免疫荧光法、放射免疫分析法鉴定纯化产物与靶细胞的结合活性。DNA序列测定结果表明:抗CD3/抗Pgp微型双功能抗体已构建成功,表达可溶性产物的产量达2mg/L以上,纯化产物中二聚体的比例达90%,具有与Jurkat(CD3+)和K562/A02细胞(Pgp+)结合的活性,与抗CD3 ScFv及抗Pgp ScFv的亲合常数相当。成功地构建了抗CD3/抗Pgp微型双功能抗体,并获得高效表达,表达产物具有与相应二个靶抗原结合的活性。 相似文献