首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody disulfide bond (DSB) reduction during manufacturing processes is a widely observed phenomenon attributed to host cell reductases present in harvest cell culture fluid. Enzyme-induced antibody reduction leads to product fragments and aggregates that increase the impurity burden on the purification process. The impact of reduction on bivalent bispecific antibodies (BisAbs), which are increasingly entering the clinic, has yet to be investigated. We focused on the reduction and reoxidation properties of a homologous library of bivalent BisAb formats that possess additional single-chain Fv (scFv) fragments with engineered DSBs. Despite all BisAbs having similar susceptibilities to enzymatic reduction, fragmentation pathways were dependent on the scFv-fusion site. Reduced molecules were allowed to reoxidize with and without low pH viral inactivation treatment. Both reoxidation studies demonstrated that multiple, complex BisAb species formed as a result of DSB mispairing. Furthermore, aggregate levels increased for all molecules when no low pH treatment was applied. Combined, our results show that complex DSB mispairing occurs during downstream processes while aggregate formation is dependent on sample treatment. These results are applicable to other novel monoclonal antibody-like formats containing engineered DSBs, thus highlighting the need to prevent reduction of novel protein therapeutics to avoid diminished product quality during manufacturing.  相似文献   

2.
《MABS-AUSTIN》2013,5(7):1245-1253
ABSTRACT

T-cell-dependent bispecific antibodies (TDBs) are promising cancer immunotherapies that recruit patients’ T cells to kill cancer cells. There are many TDBs in clinical trials, demonstrating their widely recognized therapeutic potential. However, their complex, multi-step mechanism of action (MoA), which includes bispecific antigen binding, T-cell activation, and target-cell killing, presents unique challenges for biological characterization and potency assay selection. Here, we describe the development of a single reporter-gene potency assay for a TDB (TDB1) that is MoA reflective and sensitive to binding of both antigens. Our reporter-gene assay measures T-cell activation using Jurkat cells engineered to express luciferase under the control of an NFkB response element. The potencies of select samples were measured both by this assay and by a flow-cytometry-based cell-killing assay using human lymphocytes as effector cells. Correlating the two sets of potency results clearly establishes our reporter-gene assay as MoA reflective. Furthermore, correlating potencies for the same panel of samples against binding data measured by binding assays for each individual arm demonstrates that the reporter-gene potency assay reflects dual-antigen binding and can detect changes in affinity for either arm. This work demonstrates that one reporter-gene assay can be used to measure the potency of TDB1 while capturing key aspects of its MoA, thus serving as a useful case study of selection and justification of reporter-gene potency assays for TDBs. Furthermore, our strategy of correlating reporter-gene potency, target-cell killing, and antigen binding for each individual arm serves as a useful example of a thorough, holistic approach to biological characterization for TDBs that can be applied to other bispecific molecules.  相似文献   

3.
《MABS-AUSTIN》2013,5(8):1236-1247
ABSTRACT

Bispecific antibodies are an emergent class of biologics that is of increasing interest for therapeutic applications. In one bispecific antibody format, single-chain variable fragments (scFv) are linked to or inserted in different locations of an intact immunoglobulin G (IgG) molecule to confer dual epitope binding. To improve biochemical stability, cysteine residues are often engineered on the heavy- and light-chain regions of the scFv to form an intrachain disulfide bond. Although this disulfide bond often improves stability, it can also introduce unexpected challenges to manufacturing or development. We report size variants that were observed for an appended scFv-IgG bispecific antibody. Structural characterization studies showed that the size variants resulted from the engineered disulfide bond on the scFv, whereby the engineered disulfide was found to be either open or unable to form an intrachain disulfide bond due to cysteinylation or glutathionylation of the cysteines. Furthermore, the scFv engineered cysteines also formed intermolecular disulfide bonds, leading to the formation of highly stable dimers and aggregates. Because both the monomer variants and dimers showed lower bioactivity, they were considered to be product-related impurities that must be monitored and controlled. To this end, we developed and optimized a robust, precise, and accurate high-resolution size-exclusion chromatographic method, using a statistical design-of-experiments methodology.  相似文献   

4.
双特异抗体是指可以同时结合两个不同抗原或一个抗原不同表位的特殊抗体,目前已有3个双特异抗体批准上市,还有很多个双特异抗体处于临床或临床前研究阶段。文中就双特异抗体的发现、制备方法、结构类型和设计策略、作用机制以及目前研究现状进行综述。  相似文献   

5.
We developed an IgG1 domain-tethering approach to guide the correct assembly of 2 light and 2 heavy chains, derived from 2 different antibodies, to form bispecific monovalent antibodies in IgG1 format. We show here that assembling 2 different light and heavy chains by sequentially connecting them with protease-cleavable polypeptide linkers results in the generation of monovalent bispecific antibodies that have IgG1 sequence, structure and functional properties. This approach was used to generate a bispecific monovalent antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor that: 1) can be produced and purified using standard IgG1 techniques; 2) exhibits stability and structural features comparable to IgG1; 3) binds both targets simultaneously; and 4) has potent anti-tumor activity. Our strategy provides new engineering opportunities for bispecific antibody applications, and, most importantly, overcomes some of the limitations (e.g., half-antibody and homodimer formation, light chains mispairing, multi-step purification), inherent with some of the previously described IgG1-based bispecific monovalent antibodies.  相似文献   

6.
7.
Bispecific immunoglobulin‐like antibodies capable of engaging multiple antigens represent a promising new class of therapeutic agents. Engineering of these molecules requires optimization of the molecular properties of one of the domain components. Here, we present a detailed crystallographic and computational characterization of the stabilization patterns in the lymphotoxin‐beta receptor (LTβR) binding Fv domain of an anti‐LTβR/anti‐TNF‐related apoptosis inducing ligand receptor‐2 (TRAIL‐R2) bispecific immunoglobulin‐like antibody. We further describe a new hierarchical structure‐guided approach toward engineering of antibody‐like molecules to enhance their thermal and chemical stability. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
While the concept of Quality-by-Design is addressed at the upstream and downstream process development stages, we questioned whether there are advantages to addressing the issues of biologics quality early in the design of the molecule based on fundamental biophysical characterization, and thereby reduce complexities in the product development stages. Although limited number of bispecific therapeutics are in clinic, these developments have been plagued with difficulty in producing materials of sufficient quality and quantity for both preclinical and clinical studies. The engineered heterodimeric Fc is an industry-wide favorite scaffold for the design of bispecific protein therapeutics because of its structural, and potentially pharmacokinetic, similarity to the natural antibody. Development of molecules based on this concept, however, is challenged by the presence of potential homodimer contamination and stability loss relative to the natural Fc. We engineered a heterodimeric Fc with high heterodimeric specificity that also retains natural Fc-like biophysical properties, and demonstrate here that use of engineered Fc domains that mirror the natural system translates into an efficient and robust upstream stable cell line selection process as a first step toward a more developable therapeutic.  相似文献   

9.
In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at <0.2 mM, and supplementing medium with copper sulfate, were found to be effective in reducing lactate accumulation. Among them, copper sulfate supplementation was found to be critical for process optimization when glucose was in excess. When copper sulfate was supplemented in the new process, two-fold increase in cell density (66.5 ± 8.4 × 106 cells/mL) and titer (11.9 ± 0.6 g/L) was achieved. Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.  相似文献   

10.
Here, we describe a new class of multivalent and multispecific antibody-based reagents for therapy. The molecules, termed “trimerbodies,” use a modified version of the N-terminal trimerization region of human collagen XVIII noncollagenous 1 domain flanked by two flexible linkers as trimerizing scaffold. By fusing single-chain variable fragments (scFv) with the same or different specificity to both N- and C-terminus of the trimerizing scaffold domain, we produced monospecific or bispecific hexavalent molecules that were efficiently secreted as soluble proteins by transfected mammalian cells. A bispecific anti-laminin x anti-CD3 N-/C-trimerbody was found to be trimeric in solution, very efficient at recognizing purified plastic-immobilized laminin and CD3 expressed at the surface of T cells, and remarkably stable in human serum. The bispecificity was further demonstrated in T cell activation studies. In the presence of laminin-rich substrate, the bispecific anti-laminin x anti-CD3 N-/C-trimerbody stimulated a high percentage of human T cells to express surface activation markers. These results suggest that the trimerbody platform offers promising opportunities for the development of the next-generation therapeutic antibodies, i.e., multivalent and bispecific molecules with a format optimized for the desired pharmacokinetics and adapted to the pathological context.  相似文献   

11.
12.
作物生产力模型及其应用研究   总被引:13,自引:1,他引:12  
从农业生态环境的角度论述了作物生产力模型的产生背景,讨论了作物生产力模型发展的幼年期、少年期、青年期和成熟期4个阶段,从科学研究,农业作物管理和农业决策分析等方面论述了作物生产力模型在保护农业生态环境中的作用,讨论了作物生产力模型的不足之处主要为简单的模型的地区适应性不强,而复杂的模型则由于参数的难以获取,且不同研究区域基础数据格式的一致性问题,也导致模型的地区适应性比较弱,因而提出要建立通用,统一的数据格式,以使作物生产力模型在不同地区易于推广应用;最后针对作物生产力模型普遍适应性能比较弱的问题,对作物生产力模型与地理信息系统的结合进行了研究,并综述了目前在作物生产力模型的界面友好化方面的一些工作,提出建立通用的作物生产力模型界面是今后发展的重点所在。  相似文献   

13.
The metabolic pattern and cell culture kinetics of high-cell-density perfusion cultures were compared under two different oxygen transfer conditions: oxygen limiting and not limiting. When oxygen was a limiting factor during perfusion culture, both specific glucose uptake and lactate production rates increased, compared to non-oxygen-limited condition, by about 60% and 30%, respectively. The specific glutamine uptake rate under oxygen-limited conditions was almost 4.0 times higher than that under non-oxygen-limited conditions. The activity of lactate dehydrogenase (LDH) released into the medium by the dead cells can be used as an indicator for the metabolic and physiological conditions related to oxygen limitation. There was a 3.2 times higher specific rate of LDH activity released by dead cells in oxygen-limited cultures than those in non-oxygen-limited cultures. The specific production rate of monoclonal antibody was not significantly affected by the oxygen transfer conditions during the rapid cell growth period, but it rapidly increased toward the end of perfusion cultures. The higher perfusion rate may have limited further cell growth during high-cell-density perfusion culture, because cell damage was caused by the hydrodynamic shear within a hollow fiber microfiltration cartridge installed to withdraw the spent medium and the waste metabolites. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
The micronutrient application in agriculture takes place through soil application, foliar spraying or added as seed treatments. The latter method, the nutri-priming, is an appealing option due to the easiness in handling it, environment-friendly, cost effectiveness and efficient against multiple environmental stressors. To assess the feasibility of Zn-priming technique on seeds germination, two experiments were conducted and assessed the efficiency on the growth rate, yield and biofortification on the forage maize (Zea mays L.). The first laboratory experiment assessed the effect of Zn-priming for three-time exposures (i.e., 8, 16 and 24 h) on germination parameters. The second experiment was done in a greenhouse, by using the 10 seeds obtained from 24 h priming. Five seed pretreatments were studied (0, 0.1, 0.5, 1 and 11 2 % of zinc sulfate heptahydrate (ZnSO4·7H2O)) compared to the recommended dose (5 ppm of Zn at 5–9 leaf stage) provided by soil application. The obtained results revealed that all seed priming, including hydro-priming, improve seed germination performance. Zn-priming increased the grain yield and helped to enrich the seeds in this element, especially seedlings treated with 0.5 % Zn sulphate for 24 h leading to an increase in yield by 47 % and in Zn content by 15 %. The comparison of the results from both techniques showed that Zn-priming could be was very effective than the traditional direct application in soil.  相似文献   

15.
砾石覆盖在改变旱区水文循环和物质转化方面有着至关重要的作用。然而,长期连作给砂田土壤质量及土地生产力带来危机和不确定性。以连作砂田为研究对象,归纳总结了连作年限对砂层质地结构、土壤物理结构、土壤水盐热效应、土壤养分状况、土壤酶活性、土壤微生物特性、作物生长发育以及产量品质的影响效应和可能机制,发现砂田土壤生态环境和土地生产力在人类活动及自然侵蚀的扰动和破坏下整体呈现退化态势,但对不同覆盖条件、施肥水平和种植结构等农田管理措施的响应过程表现出差异性。继而,基于土壤质量和土地生产力的协同和互作效应深入揭示了砂田性能逐年退化机理,并简述了生物、农业及工程调控措施在砂田退化阻控和修复方面的应用进展。在此基础上,提出了砂田退化进程中急需解决的关键科学问题和未来发展方向,主要包括土壤质量演变的基本过程及其发生机制、"砾石-土壤-微生物-植物"系统的叠加和互作效应及其分子机理、土壤改良与生物防治措施的定量化及其调控机制三个方面。在气候变化、植被演替和土地退化背景下,废弃风化砾石的劣化增肥机制及其环境效应将是今后研究的重点。  相似文献   

16.
《MABS-AUSTIN》2013,5(7):1254-1265
ABSTRACT

Multiple strategies have been developed to facilitate the efficient production of bispecific IgG (BsIgG) in single host cells. For example, we previously demonstrated near quantitative (≥90%) formation of BsIgG of different species and isotypes by combining ‘knob-into-hole’ mutations for heavy chain heterodimerization with engineered antigen-binding fragments (Fabs) for preferential cognate heavy/light chain pairing. Surprisingly, in this study we found high yield (>65%) of BsIgG1 without Fab engineering to be a common occurrence, i.e., observed for 33 of the 99 different antibody pairs evaluated. Installing charge mutations at both CH1/CL interfaces was sufficient for near quantitative yield (>90%) of BsIgG1 for most (9 of 11) antibody pairs tested with this inherent cognate chain pairing preference. Mechanistically, we demonstrate that a strong cognate pairing preference in one Fab arm can be sufficient for high BsIgG1 yield. These observed chain pairing preferences are apparently driven by variable domain sequences and can result from a few specific residues in the complementarity-determining region (CDR) L3 and H3. Transfer of these CDR residues into other antibodies increased BsIgG1 yield in most cases. Mutational analysis revealed that the disulfide bond between heavy and light chains did not affect the yield of BsIgG1. This study provides some mechanistic understanding of factors contributing to antibody heavy/light chain pairing preference and subsequently contributes to the efficient production of BsIgG in single host cells.  相似文献   

17.
Aeration is a promising alternative to the use of pesticides for the control of storage insects by cooling bulk grain, but its effectiveness against mite pests is neither fully understood nor optimised. For this reason, the productivity of three species of storage mites, Acarus siro, Lepidoglyphus destructor and Tyrophagus longior, was studied in a laboratory-based experiment at four combinations of temperature and humidity (10°C and 70% RH, 10°C and 80% RH, 20°C and 70% RH, 20°C and 80% RH) with and without an airflow (at 10 m3/h/tonne, equalling 2.5 l/s/tonne, in tubes containing 15 g of grain). This is the first time that a study has examined the three principal components of aeration separately from each other. The effect of these factors was different for each species. For A. siro, temperature was the most important factor, while airflow and humidity were of similar but lesser importance. For T. longior, temperature was more important than humidity, while the reverse was true for L. destructor. For these two species, airflow was the least important factor. The airflow decreased the productivity of L. destructor and T. longior but increased the productivity of A. siro. This increase in productivity confirms that, in practice, prevention of mite infestations, in particular A. siro, will require storage of grain at low temperature, relative humidity and moisture content. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The flow-cytometric (FCM) analysis of bivariate DNA/lgG distributions has been conducted to study the cell cycle kinetics and monoclonal antibody (MAb) production during perfusion culture of hybridoma cells. Three different perfusion rates were employed to demonstrate the dependency of MAb synthesis and secretion on cell cycle and growth rate. The results showed that, during the rapid growth period of perfusion culture, the level of intracellular igG contents of hybridoma cells changed significantly at each perfusion rate, while the DNA histograms showing cell cycle phases were almost constant. Meanwhile, during the reduced growth period of perfusion culture, the fraction of cells in the S phase decreased, and the fraction cells in the G1/G0 phase increased with decreasing growth rate. The fraction of cells in the G2/M phase was relatively constant during the whole period of perfusion culture. Positive correlation was found between mean intracellular IgG contents and the specific MAb production rate, suggesting that the deletion of intracellular IgG contents by a flow cytometer could be used as a good indicator for the prediction of changes in specific MAb productivity following manipulation of the culture condition. (c) 1994 John Wiley & Sons, Inc.  相似文献   

19.
《MABS-AUSTIN》2013,5(6):1012-1024
ABSTRACT

T cell redirection mediated by bispecific antibodies (BsAbs) is a promising cancer therapy. Dual antigen binding is necessary for potent T cell redirection and is influenced by the structural characteristics of a BsAb, which are dependent on its IgG subclass. In this study, model BsAbs targeting CD19xCD3 were generated in variants of IgG1, IgG2, and IgG4 carrying Fc mutations that reduce FcγR interaction, and two chimeric IgG subclasses termed IgG1:2 and IgG4:2, in which the IgG1- or IgG4-F(ab)2 are grafted on an IgG2 Fc. Molecules containing an IgG2 or IgG4-F(ab)2 domain were confirmed to be the most structurally compact molecules. All BsAbs were shown to bind both of their target proteins (and corresponding cells) equally well. However, CD19xCD3 IgG2 did not bind both antigens simultaneously as measured by the absence of cellular clustering of T cells with target cells. This translated to a reduced potency of IgG2 BsAbs in T-cell redirection assays. The activity of IgG2 BsAbs was fully restored in the chimeric subclasses IgG4:2 and IgG1:2. This confirmed the major contribution of the F(ab)2 region to the BsAb’s functional activity and demonstrated that function of BsAbs can be modulated by engineering molecules combining different Fc and F(ab)2 domains.

Abbreviations: ADCC: Antibody-dependent cellular cytotoxicity; AlphaScreenTM: Amplified Luminescent Proximity Homogeneous Assay Screening; ANOVA: Analysis of variance; BiTE: bispecific T-cell engager; BSA: bovine serum albumin; BsAb: bispecific antibody; cFAE: controlled Fab-arm exchange; CDC: complement-dependent cellular cytotoxicity; CIEX: cation-exchange; CIR: chimeric immune receptor; DPBS: Dulbecco’s phosphate-buffered saline; EC50 value: effective concentration to reach half-maximum effect; EGFR: epidermal growth factor receptor; EI: expansion index (RAt=x/RAt=0); FACS: fluorescence-activated cell sorting; FVD: fixable viability dye; HI-HPLC: hydrophobic interaction HPLC; HI-FBS: heat-inactivated fetal bovine serum; HPLC: high-pressure liquid chromatography; IC50 value: effective concentration to reach half-maximum inhibition; IQ: Inhibition Quotient; IS: immunological synapse; MES: 2-(N-morpholino)ethanesulfonic acid; R-PE: recombinant phycoerythrin; RA: red area in μm2/well; RD: receptor density; RFP: red fluorescent protein; Rg: radius of gyration; RSV: respiratory syncytial virus; SAXS: small-angle x-ray scattering; scFv: single-chain variable fragment; SD: standard deviation; SPR: surface plasmon resonance; WT: wild-type  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号