首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan (CS) is considered a suitable biomaterial for enzyme immobilization. CS combination with polyethylene glycol (PEG) can improve the biocompatibility and the properties of the immobilized system. Thus, the present work investigated the effect of the PEG in the horseradish peroxidase (HRP) immobilization into chitosan nanoparticles from the morphological, physicochemical, and biochemical perspectives. CS and CS/PEG nanoparticles were obtained by ionotropic gelation and provided immobilization efficiencies (IE) of 65.8 % and 51.7 % and activity recovery (AR) of 76.4 % and 60.4 %, respectively. The particles were characterized by DLS, ZP, SEM, FTIR, TGA and DSC analysis. Chitosan nanoparticles showed size around 135 nm and increased to 229 nm after PEG addition and HRP immobilization. All particles showed positive surface charges (20−28 mV). Characterizations suggest nanoparticles formation and effective immobilization process. Similar values for optimum temperature and pH for immobilized HRP into both nanoparticles were found (45 °C, 7.0). Vmax value decreased by 5.07 to 3.82 and 4.11 mM/min and KM increased by 17.78 to 18.28 and 19.92 mM for free and immobilized HRP into chitosan and chitosan/PEG nanoparticles, respectively. Another biochemical parameters (Kcat, Ke, and Kα) evaluated showed a slight reduction for the immobilized enzyme in both nanoparticles compared to the free enzyme.  相似文献   

2.
A novel and efficient immobilization of β-d-galactosidase from Aspergillus oryzae has been developed by using magnetic Fe3O4–chitosan (Fe3O4–CS) nanoparticles as support. The magnetic Fe3O4–CS nanoparticles were prepared by electrostatic adsorption of chitosan onto the surface of Fe3O4 nanoparticles made through co-precipitation of Fe2+ and Fe3+. The resultant material was characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, vibrating sample magnetometry and thermogravimetric analysis. β-d-Galactosidase was covalently immobilized onto the nanocomposites using glutaraldehyde as activating agent. The immobilization process was optimized by examining immobilized time, cross-linking time, enzyme concentration, glutaraldehyde concentration, the initial pH values of glutaraldehyde and the enzyme solution. As a result, the immobilized enzyme presented a higher storage, pH and thermal stability than the soluble enzyme. Galactooligosaccharide was formed with lactose as substrate by using the immobilized enzyme as biocatalyst, and a maximum yield of 15.5% (w/v) was achieved when about 50% lactose was hydrolyzed. Hence, the magnetic Fe3O4–chitosan nanoparticles are proved to be an effective support for the immobilization of β-d-galactosidase.  相似文献   

3.
In this study, a unique carrier magnetic chitosan microspheres (MCTS) was simply synthesized by anchoring Fe3O4 onto chitosan for direct immobilization of cellulases cross-linked by gluteraldehye. The structure and morphology were characterized using FT-IR, TGA, VSM and SEM. The optimum immobilization conditions were investigated: immobilized pH 7.0, amount of enzyme 15?mL (0.1?mg/mL), immobilization temperature 30?°C, immobilization time 5?h. At optimum conditions, MCTS achieved maximum enzyme solid loading rate of 73.5?mg/g, while recovery of enzyme activity approached to 71.6%. In the recycle test, immobilized cellulases operated without significant loss in its initial performances after 3 cycles, which indicated that immobilized cellulases can be regenerated and reused. The immobilized enzyme has better values of thermal and storage stability than that of free enzyme. Therefore, MCTS may be considered as a candidate with potential value of application in large-scale operations for cellulases immobilization.  相似文献   

4.
Magnetic Fe3O4-chitosan nanoparticles are prepared by the coagulation of an aqueous solution of chitosan with Fe3O4 nanoparticles. The characterization of Fe3O4-chitosan is analyzed by FTIR, FESEM, and SQUID magnetometry. The Fe3O4-chitosan nanoparticles are used for the covalent immobilization of lipase from Candida rugosa using N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) as coupling agents. The response surface methodology (RSM) was employed to search the optimal immobilization conditions and understand the significance of the factors affecting the immobilized lipase activity. Based on the ridge max analysis, the optimum immobilization conditions were immobilization time 2.14 h, pH 6.37, and enzyme/support ratio 0.73 (w/w); the highest activity obtained was 20 U/g Fe3O4-chitosan. After twenty repeated uses, the immobilized lipase retains over 83% of its original activity. The immobilized lipase shows better operational stability, including wider thermal and pH ranges, and remains stable after 13 days of storage at 25 °C.  相似文献   

5.
A simple preparation process for the monodispersed pH-sensitive core-shell magnetic microspheres was carried out consisting of chitosan self-assembled on magnetic iron oxide nanoparticles. Meanwhile, glucoamylase was immobilized as a model enzyme on this carrier of Fe3O4/CS microspheres by ionic adsorption. The morphology, inner structure, and high magnetic sensitivity of the resulting magnetic chitosan microspheres were studied, respectively, with a field emission scanning electron microscope (SEM), transmission electron microscope (TEM), FT-IR spectroscopy, thermogravimetric analysis (TGA), and a vibrating sample magnetometer (VSM). Subsequently, the properties of glucoamylase immobilized on the regenerated supports were also investigated by determining storage stability, pH stability, reusability, magnetic response, and regeneration of supports. The results from characterization and determination remarkably indicated that the immobilized glucoamylase obtained presents excellent storage stability, pH stability, reusability, magnetic response, and regeneration of supports. Therefore, this kind of magnetic Fe3O4/CS microspheres with perfect monodispersity should be an ideal support for enzyme immobilization.  相似文献   

6.
Graphene oxide/chitosan and reduced graphene oxide/chitosan (GO/CS and RGO/CS) beads were prepared by precipitation with NaOH. Porcine liver esterase was immobilized on these beads to give GO/CS/E and RGO/CS/E beads. The optimum conditions for the maximum activity of RGO/CS/E beads were pH 8 and 50°C. The stability of the enzyme immobilized on GO/CS/E and RGO/CS/E was high in the pH range of 5–8. The GO/CS/E beads showed superior stability compared to that of the free enzyme and CS/E beads between 20 and 50°C. Kinetic analysis showed that GO/CS/E was a better catalyst than the RGO/CS/E beads with a lower Km value of 0.9?mM. The hybrid beads also retained more than 95% activity after 10 consecutive cycles. The GO/CS/E and RGO/CS/E beads retained 84% and 87% activity after 40 days at 4°C. The GO/CS/E beads were used for the successful hydrolysis of methyl 4-hydroxy benzoate.  相似文献   

7.
This study aimed to work out a simple and high-yield procedure for the immobilization of horseradish peroxidase on silver nanoparticle. Ultraviolet–visible (UV-vis) and Fourier-transform infrared spectroscopy and transmission electron microscopy were used to characterize silver nanoparticles. Horseradish peroxidase was immobilized on β-cyclodextrin-capped silver nanoparticles via glutaraldehyde cross-linking. Single-cell gel electrophoresis (Comet assay) was also performed to confirm the genotoxicity of silver nanoparticles. To decrease toxicity, silver nanoparticles were capped with β-cyclodextrin. A comparative stability study of soluble and immobilized enzyme preparations was investigated against pH, temperature, and chaotropic agent, urea. The results showed that the cross-linked peroxidase was significantly more stable as compared to the soluble counterpart. The immobilized enzyme exhibited stable enzyme activities after repeated uses.  相似文献   

8.
Abstract

Glycerol dehydrogenase (GlyDH) which oxidizes glycerol to the value-added chemical, 1,3-dihydroxyacetone, is of interest due to the oversupply of glycerol as a by-product of the biodiesel industry. To exploit the enzymatic oxidation of glycerol industrially, silica coated magnetic Fe3O4 nanoparticles were prepared and then activated with an amino-silane reagent for covalent immobilization of GlyDH via a glutaraldehyde linkage. At the optimal glutaraldehyde concentration of 0.05% (v/v), an enzyme loading of up to 57.5 mg/g-nanoparticles was achieved with 81.1% of the original activity retained. Reaction kinetic analysis indicated that the immobilized GlyDH had almost the same Michaelis-Menten constants for both NAD+ and glycerol as the free GlyDH did. However, after immobilization the turnover number kcat of the GlyDH decreased from 164 s?1 to 113 s?1, and the reaction was 1.3-fold less sensitive to inhibition by DHA, which could compensate the decrease in kcat. The immobilized GlyDH was also less sensitive to changes in pH and temperature, and showed a 5.3-fold improvement in thermal stability at 50°C. Furthermore, excellent reusability was observed such that 10 cycles of re-use only led to 9% loss of enzyme activity.  相似文献   

9.
The glucose oxidase (GOx) enzyme was immobilized on chitosan-based porous composite membranes using a covalent bond between GOx and the chitosan membrane. The chitosan-based porous membranes were prepared by the combination of the evaporation- and non-solvent-induced phase separation methods. To increase the membrane conductivity, carbon nanotubes (CNTs) were added to the chitosan solution. The resulting membranes were characterized in terms of water permeability, surface morphology and surface chemistry. Enzyme immobilization was performed on the chitosan membranes with and without activation using glutaraldehyde (GA). Three different configurations of working electrodes were evaluated to investigate the potential use of the modified membranes in biosensors. The results show that enzyme immobilization capacity was greater for membranes that had been activated than for membranes that had not been activated. In addition, activation increased the stability of the enzyme immobilization. The immobilization of GOx on chitosan-based membranes was influenced by both pH and the concentration of the enzyme solution. The presence of CNTs significantly increased the electrical conductivity of the chitosan membranes. The evaluation of three different configurations of working electrodes suggested that the third configuration, which was composed of an electrode-mediator-(chitosan and carbon nanotube) structure and enzyme, is the best candidate for biosensor applications.  相似文献   

10.
Immobilization of pectinase fromS. rolfsii was studied on different matrices of which Amberlite XAD-7 showed maximum adsorption and expression of the enzyme. The most active preparation was obtained when XAD-7 was activated with 2% glutaraldehyde and 1.7 μkat of enzyme per g resin was used for immobilization at pH 5.5 and 28°C. Optimum pH and temperature of theS. rolfsii pectinase remain unaltered, 3.5 and 55°C, respectively, after immobilization. However, the apparentK M value of the enzyme decreased from 1.75 g/L for soluble enzyme preparation to 1.4 g/L for immobilized enzyme preparation. Both soluble and immobilized enzyme preparations were most stable at pH 4.0. The immobilized enzyme preparation was more stable than the soluble enzyme.  相似文献   

11.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

12.
《Process Biochemistry》2007,42(5):895-898
Chitosan beads were prepared by emulsion method and used for the immobilization of ω-transaminase of Vibrio fluvialis. The yield of enzyme immobilization (54.3%) and its residual activity (17.8%) were higher than those obtained with other commercial beads. ω-Transaminase was effectively immobilized on the chitosan beads at pH 6.0. The optimal pH of the immobilized enzyme was pH 9.0, which is the same as that of the free enzyme. The immobilized enzyme on chitosan beads retained ca. 77% of its conversion after five consecutive reactions with the 25 mM substrate, while the immobilized enzyme on Eupergit® C retained 12%. Also, the immobilized ω-transaminase on chitosan bead retained 70% of initial activity when it's stored at 4 °C for 3.5 weeks. Addition of the co-factor, pyridoxal 5-phosphate (PLP), was needed to maintain the stability of the immobilized ω-transaminase.  相似文献   

13.
A thiol protease purified from mungbean seedlings was immobilized on chitosan beads cross-linked with glutaraldehyde. The yield of the immobilized enzyme was maximum (~99%) at 1% concentration each of chitosan and glutaraldehyde. The immobilized enzyme showed reusability for 15 batch reactions. Immobilization shifted the optimum pH of the enzyme to a more acidic range and enhanced its stability both at acidic as well as alkaline pH values compared to the free enzyme. The stability of the enzyme to temperature and in aqueous non-conventional medium (ethanol and DMSO) was significantly improved by the immobilization process. The immobilized enzyme exhibited mass transfer limitation reflected by a higher apparent Km value. This study produced an immobilized biocatalyst having improved characteristics and better operational stability than the soluble enzyme. The increase in stability in the presence of high concentrations of ethanol and DMSO may make it useful for catalyzing organic reactions such as trans-esterification and trans-amidation similar to other cysteine proteinases.  相似文献   

14.
The main objective of this work was to investigate the removal of aqueous phenol using immobilized enzymes in both bench scale and pilot scale three-phase fluidized bed reactors. The enzyme used in this application was a fungal tyrosinase [E.C. 1.14.18.1] immobilized in a system of chitosan and alginate. The immobilization matrix consisted of a chitosan matrix cross-linked with glutaraldehyde with an aliginate-filled pore space. This support matrix showed superior mechanical properties along with retaining the unique adsorptive characteristics of the chitosan. Adsorption of the o-quinone product by the chitosan reduced tyrosinase inactivation that is normally observed for this enzyme under these conditions. This approach allowed reuse of the enzyme in repeated batch applications. For the bench scale reactor (1.2-l capacity) more than 92% of the phenol could be removed from the feed water using an immobilized enzyme volume of 18.5% and a residence time of the liquid phase of 150 min. Removal rates decreased with subsequent batch runs. For the pilot scale fluidized bed (60 l), 60% phenol removal was observed with an immobilized enzyme volume of 5% and a residence time of the liquid phase of 7 h. Removal decreased to 45% with a repeat batch run with the same immobilized enzyme.  相似文献   

15.
《Process Biochemistry》1999,34(4):391-398
The production of dextranase was investigated in static cultures of Penicillium funiculosum 258. Maximal enzyme productivity was attained at pH 8.0, with 3.5% (w/v) dextran (MW, 260 000) as carbon source, NaNO3 (1%, w/v) and yeast extract (0.2%, w/v) as nitrogen source, 0.4% (w/v) K2HPO4 and 0.06% (w/v) MgSO4. It was possible to increase the productivity of dextranase to 41.8 units ml−1 in the modified medium. The enzyme was immobilized on different carriers by different techniques of immobilization. The enzyme prepared by covalent binding on chitosan using glutaraldehyde had the highest activity, the immobilized enzyme retaining 63% of its original specific activity. Compared with the free dextranase, the immobilized enzyme exhibited: a higher pH optimum, a higher optimal reaction temperature and energy of activation, a higher Michaelis constant, improved thermal stability and higher values of deactivation rate constant. The immobilized enzyme retained about 80% of the initial catalytic activity even after being used for 12 cycles.  相似文献   

16.
The characterization of the hydrogel was performed using Fourier‐transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. Purified Bacillus pumilus Y7‐derived alkaline protease was immobilized in Poly (vinylimidazole)/clay (PVI/SEP) hydrogel with 95% yield of immobilization. Immobilization decreased the pH optimum from 9 to 6 for free and immobilized enzyme, respectively. Temperature optimum 3°C decreased for immobilized enzyme. The Km, Vm, and kcat of immobilized enzyme were 4.4, 1.7, and 7.5‐fold increased over its free counterpart. Immobilized protease retained about 65% residual activity for 16th reuse. The immobilized protease endured its 35% residual activity in the material after six cycle's batch applications. The results of thermodynamic analysis for casein hydrolysis showed that the ΔG (activation free energy) and ΔGE‐T (activation free energy of transition state formation) obtained for the immobilized enzyme decreased in comparison to those obtained for the free enzyme. On the other hand, the value of ΔGES (free energy of substrate binding) was observed to have increased. These results indicate an increase in the spontaneity of the biochemical reaction post immobilization. Enthalpy value of immobilized enzyme that was 2.2‐fold increased over the free enzyme indicated lower energy for the formation of the transition state, and increased ΔS value implied that the immobilized form of the enzyme was more ordered than its free form.  相似文献   

17.
Cross-linked magnetic chitosan beads were prepared by phase-inversion technique in the presence of epichlorohydrin under alkaline condition, and used for covalent immobilization of laccase. The activity of the immobilized laccase on the magnetic chitosan was about 260 U (g/dry beads) with an enzyme loading of about 16.33 ± 0.39 mg [(g/dry beads) mg/g]. Kinetic parameters, V max and K m values were determined as 21.7 U/mg protein and 9.4 μM for free enzyme, and 15.6 U/mg protein and 19.7 μM for the immobilized laccase, respectively. The operational and thermal stabilities of the immobilized laccase were improved compared to free counterpart. The immobilized laccase was operated in a batch reactor for the decolorization of reactive dyes from aqueous solution. The laccase immobilized on magnetic chitosan beads was very effective for removal of textile dyes from aqueous solution which creates an important environmental problem in the discharged textile dying solutions.  相似文献   

18.
壳聚糖固定化琼脂酶的研究   总被引:1,自引:0,他引:1  
采用壳聚糖微球对琼脂酶进行固定化,在单因素实验的基础上用正交试验法确定最佳固定化工艺。结果表明:在戊二醛体积分数为2.5%,交联时间为6 h,加酶量为15 mL,固定时间为3 h时固定酶的活力最高;固定化酶的最适反应温度及最适pH分别为50℃和8.5,高于游离酶;同时其热稳定性及操作稳定性均高于游离酶。  相似文献   

19.
α-Amylase from mung beans (Vigna radiata) was immobilized on two different matrices, Amberlite MB 150 and chitosan beads. Maximum immobilization obtained was 72% and 69% in case of Amberlite and chitosan beads, respectively. The pH optima of soluble α-amylase were 5.6, whereas that for immobilized amylase on chitosan and Amberlite was 7.0. Soluble amylase and Amberlite immobilized amylase showed maximum activity at 65 °C, whereas chitosan immobilized amylase showed maximum activity at 75 °C. α-Amylase immobilized on Amberlite showed apparent Km of 2.77 mg/ml, whereas α-amylase immobilized on chitosan showed an apparent Km of 5 mg/ml. The Amberlite-amylase and chitosan-amylase showed a residual activity of 43% and 27%, respectively, after 10 uses. The loss of activity for free amylase after 100 days of storage at 4 °C was 70%, whereas that for Amberlite- and chitosan-amylases, under the same experimental conditions, the losses were 45% and 55%, respectively. The easy availability of mung bean α-amylase, the ease of its immobilization on low-cost matrices and good stability upon immobilization in the present study makes it a suitable product for further use in industrial applications.  相似文献   

20.
Alcalase was scarcely immobilized on monoaminoethyl-N-aminoethyl (MANAE)-agarose beads at different pH values (<20% at pH 7). The enzyme did not immobilize on MANAE-agarose activated with glutaraldehyde at high ionic strength, suggesting a low reactivity of the enzyme with the support functionalized in this manner. However, the immobilization is relatively rapid when using low ionic strength and glutaraldehyde activated support. Using these conditions, the enzyme was immobilized at pH 5, 7, and 9, and in all cases, the activity vs. Boc-Ala-ONp decreased to around 50%. However, the activity vs. casein greatly depends on the immobilization pH, while at pH 5 it is also 50%, at pH 7 it is around 200%, and at pH 9 it is around 140%. All immobilized enzymes were significantly stabilized compared to the free enzyme when inactivated at pH 5, 7, or 9. The highest stability was always observed when the enzyme was immobilized at pH 9, and the worst stability occurred when the enzyme was immobilized at pH 5, in agreement with the reactivity of the amino groups of the enzyme. Stabilization was lower for the three preparations when the inactivation was performed at pH 5. Thus, this is a practical example on how the cooperative effect of ion exchange and covalent immobilization may be used to immobilize an enzyme when only one independent cause of immobilization is unable to immobilize the enzyme, while adjusting the immobilization pH leads to very different properties of the final immobilized enzyme preparation. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2768, 2019.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号