首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-performance liquid chromatography using, as adsorbent, novel square tile-shaped hydroxyapatite crystals (with thicknesses of about 2 microns and diameters of 3-7 microns) has been developed. The chromatographic efficiencies of the novel hydroxyapatite packed columns are almost equal to those of the previously developed spherical hydroxyapatite packed columns; high chromatographic resolutions can be obtained by using extremely reduced column lengths of 0.5-3 cm. Since both the square and the spherical hydroxyapatite have roughly the same particle size of some micrometers, the chromatographic efficiency can be deduced to be determined mainly by the particle size rather than the particle shape.  相似文献   

2.
The ability of membrane ultra- and diafiltration and two chromatography media, Matrex Cellufine Sulfate (Millipore) and Macro-Prep ceramic hydroxyapatite (Bio-Rad), to adsorb, elute, and purify gene therapy vectors based on Moloney murine leukaemia virus (MoMuLV) carrying the 4070A amphotropic envelope protein was studied. Membrane ultra- and diafiltration provided virus concentration up to 160-fold with an average recovery of infectious viruses of 77 +/- 14%. In batch experiments, Macro-Prep ceramic hydroxyapatite (type 2, particle size 40 microm) proved superior to Matrex Cellufine Sulfate for MoMuLV vector particle adsorption. Furthermore, functional vector particles could be eluted using phosphate buffer pH 6.8 (highest titres from >or=300 mM phosphate) from the Macro-Prep adsorbent, with higher specific titres (cfu/mg protein) than the starting material. Similar results were obtained when this ceramic hydroxyapatite was packed into a column and used in a liquid chromatography system. Recovery of transduction-competent virus was between 18 and 31% for column experiments and 32 and 46% for batch experiments.  相似文献   

3.
High-performance liquid chromatography (HPLC) using spherical aggregates of hydroxyapatite (HA) microcrystals as adsorbent has been developed; preliminary performance tests were carried out by using several types of protein. In comparison with previously developed plate-like HA packed columns for HPLC, spherical HA packed columns show considerably high chromatographic resolutions in spite of extremely reduced column lengths of 0.5-3 cm. The pressure generated by the latter columns is much higher than that generated by the former, however.  相似文献   

4.
Rigid chromatography resins, such as controlled pore glass based adsorbents, offer the advantage of high permeability and a linear pressure‐flow relationship irrespective of column diameter which improves process time and maximizes productivity. However, the rigidity and irregularly shaped nature of these resins often present challenges in achieving consistent and uniform packed beds as formation of bridges between resin particles can hinder bed consolidation. The standard flow‐pack method when applied to irregularly shaped particles does not yield well‐consolidated packed beds, resulting in formation of a head space and increased band broadening during operation. Vibration packing methods requiring the use of pneumatically driven vibrators are recommended to achieve full packed bed consolidation but limitations in manufacturing facilities and equipment may prevent the implementation of such devices. The stop‐flow packing method was developed as an improvement over the flow‐pack method to overcome these limitations and to improve bed consolidation without the use of vibrating devices. Transition analysis of large‐scale columns packed using the stop‐flow method over multiple cycles has shown a two‐ to three‐fold reduction of change in bed integrity values as compared to a flow‐packed bed demonstrating an improvement in packed bed stability in terms of the height equivalent to a theoretical plate (HETP) and peak asymmetry (As). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1319–1325, 2014  相似文献   

5.
To describe axial dispersion, particle film mass transfer, intraparticle diffusion, and the chemical reaction of the substrate for enzymes immobilized in porous particles in packed columns, we have developed mathematical models for first- and zero-order limits of Michaelis-Menten kinetics. Steady-state solutions were derived for both long and short column boundary conditions and for plug flow. Theory was compared to experiments by hydrolysis of sucrose catalyzed by invertase bound to porous glass particles. Steady-state conversions were measured for a range of flow rates. Pulse response experiments with inert packing were used to determine values of bed void fraction and particle porosity.  相似文献   

6.
Two columns of 100 mm and 200 mm in diameter for bench-scale liquid chromatography were designed to obtain a small dead volume and an appropriately uniform distribution of liquid, and the values of the height equivalent to a theoretical plate were measured for three kinds of packing beads, Sepharose 4B, Cellulofine GC-700 m and Silica. A suitable pressure drop through a distribution plate and/or a packed bed helps to distribute liquid flow uniformly over the column diameter, and reasonable HETP values were obtained.  相似文献   

7.
A new procedure for size-dependent fractionation of DNA was investigated. DNA fragments ranging from 10 to 40 kbp were separated by using columns for high-performance gel permeation chromatography. However, the order of elution was opposite to that which would be expected for gel permeation chromatography, i.e., smaller fragments were eluted faster than larger fragments, though separation based on normal gel permeation chromatography was observed when smaller DNA fragments (less than 5 kbp) were applied. The size range of DNA which can be resolved by this new procedure was found to depend on both particle size and flow rate; the use of a column packed with smaller particles or the application of a faster flow rate enabled us to resolve smaller DNA fragments, but the pore size or chemical nature of the column packing had scarcely any effect on the resolution. This mode of separation was attained by using both silica and polymer packings. The results suggest that the separation is based on a hydrodynamic phenomenon.  相似文献   

8.
Developments in packing and packing port design of radial columns in recent years have resulted in a claimed significant increase in performance of this process chromatography technology. In this first study, the main chromatographic parameters as efficiency, capacity factor, asymmetry and resolution were evaluated in a unique one-to-one comparison between a 120 ml bed-volume and 6 cm bed length radial chromatography mini-process column against a 50 mm diameter, 6 cm bed height and 120 ml bed-volume axial chromatography column. Radial chromatography showed an increase in efficiency by 31% in the number of plates per meter while the equilibration could be reduced by 0.4-0.5 column volumes. The asymmetry factor for bovine serum albumin in radial chromatography showed a reduction of 20% while the reduction of the asymmetry factor of the smaller protein ovotransferrin decreased even by 46% in comparison to the performance of the comparative axial chromatography column. Therefore in radial chromatography resolution improved up to 20%. The retention volume was similar in both cases. For radial chromatography, the decrease in "width at half height" at Height Equivalent of Theoretical Plates (HETP) measurements was 40% while the decrease of the over-all width of the peak was 27%. For adsorbed/desorbed proteins, the elution peak showed similar results: "width at half height" decreased to 45% while the over-all width of the peak decreased by 28%. The concentration of the non-retained protein in the flow-through (lysozyme), increased by 35% while the concentration of the eluted fraction (serum albumin bovine), increased with 40% in the radial chromatography columns. The better results obtained with the radial column were probably the consequence of the geometrical design of this device (larger inlet surface area and small outlet surface area which concentrate the eluted fraction).  相似文献   

9.
Nonporous particles of microsize were prepared by the dispersion polymerization of styrene and glycidyl methacrylate and chemically modified to introduce amino groups on the surface by grafting with either hexamethylenediamine or N-methyl-1,3-propanediamine. Aminated particles were then coupled with phosphorylated single-stranded polynucleotides at the 5'-end through covalent linkages. The affinity columns packed with these prepared polynucleotide-immobilized particles effectively retained single-stranded DNA, which could base-pair with the immobilized sequence. Bound DNAs could be eluted to yield a sharp peak by using an aqueous solution of 0.4M NaOH. The nonspecific adsorption due to the electrostatic interaction between the polynucleotide and the residual amino groups on the particle surface via the amination with hexamethylenediamine was significant and could only be reduced by using a high salt (NaCl) concentration. A higher salt concentration in the elution solution could result in a portion of complementary polynucleotide eluted in the nonretained fraction. However, the nonspecific adsorption of polynucleotides was insignificant in the column packed with DNA-immobilized particles prepared via amination using N-methyl-1,3-propanediamine. The column was effective for microanalysis of sequence-specific DNA.  相似文献   

10.
Pressure drop across chromatography beds employing soft or semirigid media can be a significant problem in the operation of large-scale preparative chromatography columns. The shape or aspect ratio (length/diameter) of a packed bed has a significant effect on column pressure drop due to wall effects, which can result in unexpectedly high pressures in manufacturing. Two types of agarose-based media were packed in chromatography columns at various column aspect ratios, during which pressure drop, bed height, and flow rate were carefully monitored. Compression of the packed beds with increasing flow velocities was observed. An empirical model was developed to correlate pressure drop with the aspect ratio of the packed beds and the superficial velocity. Modeling employed the Blake-Kozeny equation in which empirical relationships were used to predict bed porosity as a function of aspect ratio and flow velocity. Model predictions were in good agreement with observed pressure drops of industrial scale chromatography columns. A protocol was developed to predict compression in industrial chromatography applications by a few laboratory experiments. The protocol is shown to be useful in the development of chromatographic methods and sizing of preparative columns.  相似文献   

11.
The general principles and practical aspects of preparative high-performance liquid chromatography (l.c.) of mono- and di-saccharides, sugars acids, lactones, and N-acetylated amino sugar derivatives are described. Milligram to gram quantities of these carbohydrates were isolated on semi-preparative (0.78 X 30 cm) or preparative (approximately 2.0 X 30 cm) columns packed with aminopropyl silica gel provided better resolution of individual mono- and di-saccharides, but columns of cation-exchange resin had higher capacity and were more durable and economical to use. Preparative, cation-exchange columns were operated at flow rates of less than 5 mL/min and pressures of approximately 1-2 MPa, allowing them to be used on unmodified analytical l.c. systems. Details are given for the efficient packing, use, and care of these columns, and on the effects of column selectivity, packing technique, and sample size on chromatographic resolution. Isolation of naturally occurring sugars from biological sources on a laboratory-packed column is described.  相似文献   

12.
Rolled, continuous stationary phases were constructed by tightly rolling and inserting a whole textile fabric into a chromatography column. This work reports the column performance, in terms of plate height, void fraction, and resolution, of 10 cellulose-based fabrics. The relation between fabric structural properties of yarn diameter, fabric count, fabric compressibility, and column performance are quantitated. General requirements, including reproducibility of packing, for choosing fabrics to make a good SEC column are identified. This research showed that the packed columns have an optimal mass of fabric that minimizes plate height and maximizes resolution, in a manner that is consistent with chromatography theory. Mass of material packed is then an important column parameter to consider when optimizing columns for the rapid desalting of proteins. Proteins were completely separated from salt and glucose in less than 8 min at a pressure drop less than 500 psi on the rolled, continuous stationary-phase columns. These results, together with stability and reproducibility, suggest potential industrial applications for cellulose-based rolled, continuous stationary-phase columns where speed is a key parameter in the production process.  相似文献   

13.
Dispersed phase holdup and volumetric mass transfer coefficient were measured in a reciprocating plate column with high porosity packing in interplate spaces of the column and the performance was compared with that of the column without packing. The data and its analysis show substantial increase in the dispersed phase holdup and in the interfacial area to give an enhancement of 4 to 5 times in the volumetric efficiency of the column with the added packing.  相似文献   

14.
The transport and binding properties of a novel hybrid particle-nonwoven membrane medium are described. In this construct, a polymeric chromatographic resin is entrapped between two layers of a nonwoven polypropylene membrane. The membrane-supported resin medium offers the advantage of increased interstitial pore diameter to allow passage of cells and other debris in the feed, while providing sufficiently high surface area for product capture within the resin particles. Columns packed with PIM displayed excellent flow distribution and had interstitial porosities of 0.48 ± 0.01, 25-60% larger than those typical of a packed bed. These columns were able to pass over 95% of E. coli cells and human red blood cell concentrate in 30 column volumes while maintaining a pressure drop significantly lower than that of a packed bed with a similar amount of resin. The dynamic binding capacity of bovine serum albumin (BSA) to the chromatographic resin entrapped in the PIM packed column was essentially the same as that observed with the same volume of resin in a packed bed. The General Rate (GR) model of chromatography was used to analyze experiments indicating the breakthrough behavior of the PIM columns is predictable, and very similar to those of a normal packed bed. These results suggest that PIM constructs can be designed to process viscous mobile phases containing particulates while retaining the desirable binding characteristics of the embedded chromatographic resin and could find uses in adsorption separation processes from complex feed streams such as whole blood, cell culture, and food processing.  相似文献   

15.
A mathematical model of the size exclusion chromatography (SEC) process in chromatographic columns has been developed. It considers the following three mass transfer processes in the SEC column: axial dispersion in the bulk‐fluid phase, interfacial film mass‐transfer between the stationary and mobile phases, and diffusion of solutes within the macro pores of the packing particles. Differential equations of the process model were solved by the finite difference method. Characteristics of the column and the packing particles (bed void volume fraction, particle porosity, accessible particle porosity) were obtained experimentally, as well as retention times of different molecules with known molecular weights. Experiments were performed with two different columns containing two different packing materials, Superdex 75 HR 10/30 and BioSep SEC S2000, respectively. The model has been validated by comparing theoretical and experimental retention times for the different columns.  相似文献   

16.
A novel frit preparation method for one‐end tapered‐fused silica‐packed capillary columns in nano‐LC‐ESI MS was developed. A hollow‐fused silica capillary column with a tapered tip as nano‐spray emitter was filled with 5 μm C18 beads, and then a sintered frit about 0.25 mm in length was prepared at the tip by butane flame. A stainless steel protection tube with 0.5 mm id was used to control the length of the frit and to protect the packed C18 beads behind the sintered frit during the sintering. C18 sintered frits were evaluated by BSA tryptic digests with nano‐LC‐LTQ. The sintered frits did not produce post‐column band broadening due to very small volume (about 0.2 nL) and did not produce adsorption to sample. The sintered frit columns had good separation reproducibility and separation performance compared with self‐assembled particles frit columns and commercial columns.  相似文献   

17.
Recent technical advances in aqueous two-phase systems (ATPS) have made this a sound technique for the extraction of biomacromolecules. The extraction of alpha-amylase was investigated using aqueous two-phase systems formed by sodium sulphate-polyethylene glycol (PEG) in water in a 47-mm inner diameter spray column packed with three types of static mixers. The effects of dispersed-phase flow rate, phase composition, column height and diameter were studied. The extraction column was operated in a semi-batch manner. It was found that the hold-up and volumetric mass transfer coefficients increased with an increase in dispersed (PEG-rich) phase velocity and decreased with increasing phase composition. Empirical correlations were developed for fractional dispersed-phase hold-up and volumetric mass transfer coefficients.  相似文献   

18.
The packing of compressible biochromatographic resins at large scale suffers from a poor understanding of how column packing method, resin properties, and column geometry impact column performance. To improve understanding, we develop and evaluate a one-dimensional, continuum mechanics model of column packing by mechanical compression. We show that the model can quantitatively predict the change in bed height, applied stress, and internal axial porosity profile without adjustable parameters when the modulus and wall friction coefficients are determined independently. The model possesses theoretical relationships for wall support and resin rigidity that should enable it to describe the mechanical compression of any biochromatographic resin for any column diameter. Moreover, this framework could provide a path to analogous models for flow packing and dynamic axial compression.  相似文献   

19.
A high-performance liquid chromatographic method has been developed for the forensic analysis of eleven frequently used cyclic antidepressant drugs (ADSs) (amitriptyline, amoxapine, clomipramine, desipramine, dosulepine, doxepin, imipramine, maprotiline, melitracen, mianserine and nortriptyline) using a recently developed reversed-phase column with 2 μm particles for the analysis of biological samples. The separation was carried out using two different C8 reversed-phase columns (column 1: 100 mm × 4.6 mm I.D., particle size 2 μm, TSK gel Super-Octyl; column 2: 100 mm × 4.6 mm I.D., particle size 5 μm, Hypersil MOS-C8) for comparison. The mobile phase was composed of methanol-20 mM KH2PO4 (pH 7) (60:40, v/v) and the flow-rate was 0.6 ml/min for both columns. The absorbance of the eluent was monitored at 254 nm. When the eleven drugs were determined, the sensitivity with the 2 μm particles was about five times greater than with the 5 μm particles. Retention times on column 1 were shorter than those on column 2. These results show that the new ODS column packing with a particle size of 2 μm gives higher sensitivity and a shorter analysis time than the conventional ODS column packing when applied to the analysis of biological samples.  相似文献   

20.
This method describes the determination of propiomazine by direct injection of rat plasma into a chromatography system based on coupled reversed-phase columns. An extraction column, packed with porous silica particles with covalent-bound 1-acid glycoprotein (AGP), was used to separate the plasma proteins from the analyte. After isolation the analyte was transferred to the analytical column for separation and detection. Propiomazine was detected by an electrochemical detector and the limit of quantification was 2.0 ng/ml (100 pg injected). The absolute recovery was 80.9±2.4% at 9.0 ng/ml level. The inter-day and intra-day precision was 10.9% (5.6 ng/ml) and 2.8% (9.0 ng/ml), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号