首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel aldo–keto reductase (LEK) from Lodderomyces elongisporus NRRL YB-4239 (ATCC 11503) was discovered by genome database mining for carbonyl reduction. LEK was overexpressed in Escherichia coli BL21 (DE3), purified to homogeneity and the catalytic properties were studied. Among the substrates, ethyl 4-chloro-3-oxobutanoate was converted to ethyl (R)-4-chloro-3- hydroxybutanoate ((R)-CHBE), an important pharmaceutical intermediate, with an excellent enantiomeric excess (e.e.) (>99 %). The mutants W28A and S209G obtained by site-directed mutation were identified with much higher molar conversion yields and lower Km values. Further, the constructed coenzyme regeneration system with glucose as co-substrate resulted in a yield of 100 %, an enantioselectivity of >99 %, and the calculated production rate of 56.51 mmol/L/H. These results indicated the potential of LEK for the industrial production of (R)-CHBE and other valuable chiral alcohols.  相似文献   

2.
Enzymes and microorganisms were screened for the asymmetric hydrolysis of (R, S)-5-acetoxymethyl-3-tert-butyl-oxazolidin-2-one 1. Lipases from Pseudomonas aeruginosa and Alcaligenes species, and microorganisms which belong to Enterobacter species or Klebsiella species were found to hydrolyze 1 enantioselectively to give (R)-5-hydroxymethyl-3-tert-butyl-oxazolidin-2-one (R)-2 and (S)-l. (S)-2, one of the typical intermediates for preparing optically active β-blocking agents (β-blockers), was obtained with high enantiomeric excess (91~98% e.e.) from (S)-1.  相似文献   

3.
《Inorganica chimica acta》1988,149(2):253-258
The chiroptical properties of five-coordinate diastereomeric complexes of general formula [PtCl2(R,R)-{C6H5CH(CH3)N(CH3)CH2}2{olefin}], with olefin ligands having electron-withdrawing substituents, have been investigated. The sign of CD bands in the 28 000–30 000 cm−1 region appears to be correlated to the absolute configuration of the prochiral coordinated alkene. Single-crystal X-ray diffraction structure determination has been performed on the single diastereomer [PtCl2(E-but-2-enedinitrile)(R,R)-{C6H5CH(CH3)N(CH3)CH2}2]· C6H6. The compound crystallizes in the monoclinic space group C2 with a = 17.842(2), b = 8.466(1), c = 10.464(1) Å, β = 109.34(1)°, Z = 2. The number of observed reflections was 1943 and the final R and Rw values were 0.020 and 0.028 respectively. Trigonal-bipyramidal geometry is observed around the Pt atom, with the two Cl atoms in axial positions. The unsaturated ligand lies in the equatorial plane disclosing S,S absolute configuration.  相似文献   

4.
To investigate the effect and mechanism of microRNA-186-5p (miR-186-5p) on the apoptosis in high glucose (HG)–treated cardiomyocytes. Diabetic cardiomyopathy model was established in cardiomyocytes by stimulating with HG. The expressions of miR-186-5p and toll-like receptor 3 (TLR3) were detected by quantitative polymerase chain reaction or Western blot analysis, respectively. Apoptosis was detected in HG-treated cardiomyocytes by flow cytometry and Western blot analysis. The interaction between miR-186-5p and TLR3 was explored by bioinformatics analysis and luciferase activity assay. Results showed that miR-186-5p expression was downregulated in HG-treated cardiomyocytes and its overexpression reversed HG-induced apoptosis and cleaved caspase-3 protein expression. Moreover, TLR3 was indicated as a target of miR-186-5p and regulated by miR-186-5p. Knockdown of TLR3 suppressed HG-induced apoptosis and cleaved caspase-3 protein expression. Besides, restoration of TLR3 ablated the effect of miR-186-5p on cell apoptosis. Collectively, miR-186-5p attenuated HG-induced apoptosis by regulating TLR3 in cardiomyocytes, providing novel biomarker for treatment of diabetic cardiomyopathy.  相似文献   

5.
6.
Ethyl (S)-4-chloro-3-hydroxy butanoate (ECHB) is a building block for the synthesis of hypercholesterolemia drugs. In this study, various microbial reductases have been cloned and expressed in Escherichia coli. Their reductase activities toward ethyl-4-chloro oxobutanoate (ECOB) have been assayed. Amidst them, Baker's yeast YDL124W, YOR120W, and YOL151W reductases showed high activities. YDL124W produced (S)-ECHB exclusively, whereas YOR120W and YOL151W made (R)-form alcohol. The homology models and docking models with ECOB and NADPH elucidated their substrate specificities and enantioselectivities. A glucose dehydrogenase-coupling reaction was used as NADPH recycling system to perform continuously the reduction reaction. Recombinant E. coli cell co-expressing YDL124W and Bacillus subtilis glucose dehydrogenase produced (S)-ECHB exclusively.  相似文献   

7.
(22R,23R,24S)-22,23-Isopropylidenedioxy-5α-ergost-2-en-6-one 2b is an important intermediate of brassinolide. We found that the enone 2b can be prepared by transformation of (22R,23R,24S)-3α,5-cyclo-22,23-isopropylidenedioxy-5α-ergostan-6-one 5b with catalytic amount of both p-TsOH and NaBr in DMF under reflux. 5b was prepared from (22R,23R,24S)-3α,5-cyclo-22,23-dihydroxy-6β-methoxy-5α-ergostane 9b or a 6β-benzyloxy compound 9c, which was obtained in a manner similar to Mori’s brassinolide synthesis. The enone 2b was eventually prepared via a benzyl ether 9c from stigmasterol 3a in a 15.5% yield in 11 steps.  相似文献   

8.
The first steps in the biodegradation of 1,8-cineole involve the introduction of an alcohol and its subsequent oxidation to a ketone. In Citrobacter braakii, cytochrome P450cin has previously been demonstrated to perform the first oxidation to produce (1R)-6β-hydroxycineole. In this study, we have cloned cinD from C. braakii and expressed the gene product, which displays significant homology to a number of short-chain alcohol dehydrogenases. It was demonstrated that the gene product of cinD exhibits (1R)-6β-hydroxycineole dehydrogenase activity, the second step in the degradation of 1,8-cineole. All four isomers of 6-hydroxycineole were examined but only (1R)-6β-hydroxycineole was converted to (1R)-6-ketocineole. The (1R)-6β-hydroxycineole dehydrogenase exhibited a strict requirement for NAD(H), with no reaction observed in the presence of NADP(H). The enzyme also catalyses the reverse reaction, reducing (1R)-6-ketocineole to (1R)-6β-hydroxycineole. During this study the N-terminal His-tag used to assist protein purification was found to interfere with NAD(H) binding and lower enzyme activity. This could be recovered by the addition of Ni2+ ions or proteolytic removal of the His-tag.  相似文献   

9.
Crystalline aromatic l-amino acid decarboxylase from Micrococcus percitreus is inactive in the absence of pyridoxal phosphate (PLP). The inactive form of the enzyme shows absorption at 340 nm and contains one mol of PLP per mol of enzyme. Binding of PLP to the inactive form is accompanied by a pronounced increase in absorbance at 415 nm. The amount of PLP that binds to this holoenzyme is 2 mol per mol of enzyme. The inactive half-resolved form, i. e. semiapoenzyme, is obtained again by dialysis of the holoenzyme against phosphate buffer. When the semiapoenzyme is dialyzed against phosphate buffer containing 3,4-dihydroxyphenyl-l-alanine, it loses the absorption at 340 nm with the loss of PLP. This apoenzyme regains the activity and absorption at 340 nm and 415 nm on association with PLP.  相似文献   

10.
Malignant gliomas are common and aggressive brain tumours in adults. The rapid proliferation and diffuse brain migration are the main obstacles to successful treatment. Here, we show 25(R)-spirostan-3β,5α,6β,19-tetrol, a polyhydroxy steroid, is capable of suppressing proliferation and migration of C6 malignant glioma cells in a concentration-dependent manner. The compound 25(R)-spirostan-3β,5α,6β,19-tetrol was synthesised by seven steps starting from diosgenin in 8.55% overall yield. The structures of the synthetic compounds were characterised by infrared (IR), 1H nuclear magnetic resonance (NMR), 13C NMR spectra and EA.  相似文献   

11.
The cerebrosides were first isolated by Thudicum in 1874 and the structures were established by Carteret al. in 1950 (for review, see [2]). In 1961 Shapiro and Flowers [3] reported the first total synthesis of a cerebroside1 (Fig. 1) which was identified with the natural sample, only through comparison of their i.r. data. In order to confirm the absolute configuration at C-2 of natural cerebroside1, we describe here an unambiguous synthesis of two stereoisomeric cerebrosides1 and2, and found that the1H-NMR spectra of the synthetic1 (Fig. 2) was completely identical with that of the natural cerebroside reported recently by Dabrowskiet al. [4].In planning the synthetic route, the target structures1 and2 were disconnected at the dotted lines to give three key synthetic intermediates3, 4 and5 or6 (Fig. 1).Abbreviations Bu butyl - Ph phenyl - t-BuPh2SiCl t-butyldiphenylsilyl chloride - MTPA -methoxy--trifluoromethylphenylacetic acid - THF tetrahydrofuran Part 36 in the series Synthetic Studies on Cell-surface Glycans, for part 35, see [1]  相似文献   

12.
《Carbohydrate research》1987,162(2):237-246
Total syntheses of both (2S, 3R, 4E)-1-O-β-d-galactopyranosyl-N-(2′R)-2′-hydroxytetracosanoylsphingenine 23 and the (2′S) stereoisomer were performed in an unambiguous way by employing either (2S, 3R, 4E)-N-(2′R)-2′-(tert-butyl-diphenylsilyloxy)tetracosanoylsphingenine or its (2′S) stereoisomer as the key glycosyl acceptors. The synthetic cerebroside 23 was shown to be identical with the natural product through comparison of their 400-MHz, 1H-n.m.r. spectra, thus providing synthetic evidence for the 2′R configuration of the natural cerebroside.  相似文献   

13.
A novel -keto ester reductase (KER) was purified to homogeneity from recombinant Escherichia coli (pTrcKER) cells, which efficiently expressed the ker gene cloned from Penicillium citrinum IFO4631. The enzyme was monomeric and had a molecular mass of 37 kDa. It catalyzed the reduction of some -keto esters, especially alkyl 4-halo-3-oxobutyrates. However, it did not catalyze the reverse reaction, the dehydrogenation of alkyl 4-halo-3-hydroxybutyrates and other alcohols. The enzyme required NADPH as a cofactor and showed no activity with NADH. Therefore, it was defined as a NADPH-dependent aldo–keto reductase (AKR3E1), belonging to the AKR superfamily. The enzyme stereospecifically produced methyl (S)-4-bromo-3-hydroxybutyrate from its keto derivative with high stereospecificity (97.9% enantiomer excess). E. coli cells expressing KER and glucose dehydrogenase in the water/butyl acetate two-phase system achieved a high productivity of (S)-4-bromo-3-hydroxybutyrate (277 mM, 54 mg/ml) in the organic solvent layer.  相似文献   

14.
《Inorganica chimica acta》1988,145(2):191-194
Monthioformate and dithioformate complexes of [HRu(η5-C5H5)(EPh3)(E′Ph3)] (E, E′  P, As, Sb) have been synthesized as a result of the insertion reactions of [HRu(η5-C5H5)(EPh3)(E′Ph3)] with carbonyl sulfide and carbon disulfide. The complexes were characterized by microanalytical, infra red, 1H NMR, 13C NMR spectral data, molecular weight determination along with other studies.  相似文献   

15.
The present study was performed to evaluate the insulin-like effects of zinc in normal L6 myotubes as well as its ability to alleviate insulin resistance. Glucose consumption was measured in both normal and insulin-resistant L6 myotubes. Western blotting and immunofluorescence revealed that zinc exhibited insulin-like glucose transporting effects by activating key markers that are involved in the insulin signaling cascade (including Akt, GLUT4 and GSK3β), and downregulating members of the insulin signaling feedback cascade such as mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase (S6K1). In normal L6 myotubes, zinc enhanced glucose consumption via a mechanism that might involve the activation of Akt phosphorylation, glucose transporter 4 (GLUT4) translocation and GSK3β phosphorylation. In contrast, zinc exerted insulin-mimetic effects in insulin-resistant L6 myotubes by upregulating Akt phosphorylation, GLUT4 translocation and GSK3β phosphorylation, and downregulating the expression of mTOR and S6K1. In conclusion, zinc might enhance glucose consumption by modulating insulin signaling pathways including Akt–GLUT4, GSK3β, mTOR and S6K1.  相似文献   

16.
Abstract

Synthesis of the title compound, an unsaturated ketohexo-pyranosyl nucleoside of 5-fluorouracil is reported. It was prepared by oxidation of the corresponding dibenzoylhexopyranosyl nucleoside with pyridinium dichromate/molecular sieves system.  相似文献   

17.
Novel synthetic oxysterols (22S,23S)-3β-hydroxy-22,23-oxido-5α-ergost-8(14)-en-15-one (I) and (22R,23R)-3β-hydroxy-22,23-oxido-5α-ergost-8(14)-en-15-one (II) influenced biosynthesis of cholesteryl esters from [14C]acetate (85% and 180% of control at 5 μM concentration) in the human hepatoma Hep G2 cell line. Ketosterol (I) increased the level of cholesteryl ester biosynthesis from [14C]oleate in Hep G2 cells in a dose dependent manner, whereas the level of cholesteryl esters biosynthesis in the presence of ketosterol (II) reached the maximal value (269±20% of control) at 1 μM concentration of this compound. In a cell free system ketosterol (I) increased the rate of ACAT-dependent cholesterol acylation similar to 25-hydroxycholesterol, however, ketosterol (II)), efficiently stimulated an initial rate of ACAT-catalyzed cholesterol esterification, followed by rapid inactivation of this enzyme.  相似文献   

18.
Novel synthetic oxysterols (22S,23S)-3β-hydroxy-22,23-oxido-5α-ergost-8(14)-en-15-one (I) and (22R,23R)-3β-hydroxy-22,23-oxido-5α-ergost-8(14)-en-15-one (II) efficiently inhibited cholesterol biosynthesis in human hepatoma Hep G2 cells during short-term incubation in a serum free medium (IC50 values of 1.9 ± 0.2 and 0.6 ± 0.2 μ M, respectively). Cultivation of Hep G2 cells in the presence of 5 μM concentration of either (I) or (II) resulted in significant reduction of cholesterol biosynthesis (52% and 57% from control), and also changes in biosynthesis of fatty acids, triglycerides, and cholesteryl esters. Compounds (I) and (II) stimulated transformation of exogenous cholesterol to polar products secreted into the culture medium (156 % and 175% of control) as it that was shown in experiments in Hep G2 cells prelabeled with [3H]cholesterol.  相似文献   

19.
Hagey LR  Iida T  Ogawa S  Adachi Y  Une M  Mushiake K  Maekawa M  Shimada M  Mano N  Hofmann AF 《Steroids》2011,76(10-11):1126-1135
Three C(27) bile acids were found to be major biliary bile acids in the capuchinbird (Perissocephalus tricolor) and bare-throated bellbird (Procnias nudicollis), both members of the Cotingidae family of the order Passeriformes. The individual bile acids were isolated by preparative RP-HPLC, and their structures were established by RP-HPLC, LC/ESI-MS/MS and NMR as well as by a comparison of their chromatographic properties with those of authentic reference standards of their 12α-hydroxy derivatives. The most abundant bile acid present in the capuchinbird bile was the taurine conjugate of C(27) (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid, a diastereomer not previously identified as a natural bile acid. The four diastereomers of taurine-conjugated (24ξ,25ξ)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid could be distinguished by NMR and were resolved by RP-HPLC. The RRT of the diastereomers (with taurocholic acid as 1.0) were found to be increased in the following order: (24R,25R)<(24S,25R)<(24S,25S)<(24R,25S). Two epimers (25R and 25S) of C(27) 3α,7α-dihydroxy-5β-cholestan-27-oic acid were also present (as the taurine conjugates) in both bird species. Epimers of the two compounds could be distinguished by their NMR spectra and resolved by RP-HPLC with the (25S)-epimer eluting before the (25R)-epimer. Characterization of the taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid should facilitate their detection in peroxisomal disease and inborn errors of bile acid biosynthesis.  相似文献   

20.
Gas-phase reactions of ClO/BrO with RCl (R = CH3, C2H5, and C3H7) have been investigated in detail using the popular DFT functional BHandHLYP/aug-cc-pVDZ level of theory. As a result, our findings strongly suggest that the type of reaction is firstly initiated by a typical SN2 fashion. Subsequently, two competitive substitution steps, named as SN2-induced substitution and SN2-induced elimination, respectively, would proceed before the initial SN2 product ion-dipole complex separates, in which the former exhibits less reactivity than the latter. Those are consistent with relevant experimental results. Moreover, we have also explored reactivity difference for the title reactions in term of some factors derived from methyl group, p-π electronic conjugation, ionization energy (IE), as well as molecular orbital (MO) analysis.
Figure
Energy profiles for the ClO– reactions and BrO–reactions, respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号